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Abstract: Galectin-1 (Gal-1), a member of the human lectin family, has garnered attention for its
association with aggressive behavior in human tumors, prompting research into the development of
targeted drugs. This study aims to assess the staining pattern and prognostic significance of Gal-1
immunohistochemical expression in a homogeneous cohort of Western patients with gastric cancer
(GC). A total of 149 cases were included and tissue microarrays were constructed. Stromal Gal-1
expression was observed to some extent in most tumors, displaying a cytoplasmic pattern. Cases
with stromal Gal-1 overexpression showed significantly more necrosis, lymphovascular invasion,
advanced pTNM stages, recurrences, and cancer-related deaths. Epithelial Gal-1 expression was
present in 63.8% of the cases, primarily exhibiting a cytoplasmic pattern, and its overexpression was
significantly associated with lymphovascular invasion, peritumoral lymphocytic infiltration, and
tumor-related death. Kaplan/Meier curves for cancer-specific survival (CSS) revealed a significantly
worse prognosis for patients with tumors exhibiting stromal or epithelial Gal-1 overexpression.
Furthermore, stromal Gal-1 expression stratified stage III patients into distinct prognostic subgroups.
In a multivariable analysis, increased stromal Gal-1 expression emerged as an independent prognostic
factor for CSS. These findings underscore the prognostic relevance of Gal-1 and suggest its potential
as a target for drug development in Western patients with GC.
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1. Introduction

Gastric cancer (GC) ranks as the fifth most common malignant neoplasm and the
third leading cause of cancer-related mortality [1]. The incidence of GC exhibits substan-
tial regional disparities, with high-risk zones predominantly observed in East Asia and
comparatively lower risk in many Western nations [2]. While certain histological subtypes
of GC are influenced by genomic abnormalities, rendering them less amenable to preven-
tive measures, others exhibit clear associations with environmental factors, presenting
opportunities for prevention [3,4]. Despite advancements in targeted therapies following
the identification of HER-2 amplification and the development of antiangiogenics and
immunotherapy in GC, the mortality rate still remains high [5]. This is mainly attributed
to late-stage diagnoses, which impede the feasibility of curative surgical resection [6].
Additionally, the significant heterogeneity at both the phenotypic and molecular levels
of this tumor may be hindering the discovery of novel biomarkers and the stratification
of patients for personalized management [7]. Indeed, limited progress has been made in
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targeted therapies following the discovery of the aforementioned treatments. However,
the development of anti-claudin therapies has opened a horizon of hope for advanced GC
patients, and numerous ongoing trials are exploring novel and promising targets such as
FGFR and MET, new antiangiogenic, immunotherapeutic, and anti-HER2 approaches, as
well as innovative drug delivery systems [8–12].

1.1. Structural Characteristics of Galectins

Human lectins comprise a diverse group of proteins characterized by their specific
interactions with carbohydrates [13]. These molecules are classified into five groups accord-
ing to the structure of their specific carbohydrate-recognizing domain (CRD). The type S
lectins, also known as galectins, show affinity for β-galactosides [13,14]. Fifteen subtypes of
galectins have been identified, including galectin-1 (Gal-1) [15]. The galectin family can be
classified into three groups: prototypic single-CRD galectins, which can form non-covalent
homodimers (Gal-1, 2, 5, 7, 10, 11, 13, 14, and 15); galectins with tandem repeats of two
similar CRD motifs (Gal-4, 6, 8, 9, and 12); and the chimera-type, to which Gal-3 belongs,
containing a single CRD and capable of oligomerization (Figure 1) [16,17]. Gal-1 is a proto-
typic galectin composed of 135 amino acids and two identical CRDs, capable of existing in
monomeric or homodimeric forms [18]. It has a three-dimensional beta-sandwich structure,
with two opposing antiparallel beta-sheets [19,20].
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Figure 1. Structure of galectins. CRD: carbohydrate recognition domain. Created with BioRender.com
under an individual license (Dr. Díaz del Arco).

1.2. Functional Roles of Galectin-1

Gal-1 exhibits a dual localization, being present intracellularly as well as extracellu-
larly, with its secreted form implicated in various cellular processes such as cell adhesion,
migration, proliferation, and survival, alongside proangiogenic and immunosuppressive
effects (Figure 2) [21]. Notably, Gal-1 has been associated with H-RAS activation and
downstream signaling pathways [22]. In vitro studies have demonstrated that the inhibi-
tion of Gal-1 reduces tumor growth, with corroborating evidence across diverse human
neoplasms including cervical, breast, lung, or head and neck cancers [23]. Furthermore,
Gal-1 promotes tumor metastasis by modulating adhesion molecules in the tumor stroma
and interacting with immune-related pathways [24–26]. The molecular mechanisms un-
derlying galectin actions are still being investigated due to their complexity and diversity.
Galectins are implicated in multiple cancer-related signaling pathways beyond H-RAS,
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including tyrosine kinase receptor pathways, the PD-1/PD-L1 axis, various apoptotic
pathways, the JAK/STAT pathway, the NF-κB pathway, or pathways involved in cell cycle
regulation [27–31].
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To date, several studies have examined the expression of Gal-1 in GC and its potential
prognostic significance. However, the majority of these studies have been conducted in
Asian populations, making it necessary to investigate this molecule in Western cases given
the distinct clinical, histological, molecular, prognostic, and treatment characteristics of
these patients [32]. Our objective in this study was to assess the immunohistochemical
(IHC) expression of Gal-1 in both stroma and epithelium, and to explore its correlation with
clinicopathological factors and the prognosis of a series of Western patients who underwent
surgical resection for GC.

2. Materials and Methods

This retrospective cohort study examined patients who underwent surgical resec-
tion for GC with curative intent at a tertiary institution (Hospital Clínico San Carlos,
Madrid, Spain). The patients were identified through a comprehensive search of the Sur-
gical Pathology Department’s database (Pat-Win) spanning from 2001 to 2014. Inclusion
criteria encompassed the patients who underwent oncologic gastric resection with clear
margins and D2 lymphadenectomy, excluding those who received neoadjuvant therapy
and with distant metastases at diagnosis. Only the cases with well-preserved formalin-fixed
paraffin-embedded tumor specimens were included in the final IHC analysis. Demographic,
clinical, endoscopic, and radiological data were retrieved from electronic hospital records.
Histopathological slides were reviewed by two independent pathologists, assessing micro-
scopic variables including histologic type according to the Laurén and WHO classifications,
tumor grade, growth pattern (expansive vs. infiltrative), the presence of signet ring cells,
lymphovascular invasion, perineural invasion, tumor necrosis, intratumoral and peritu-
moral lymphocytic infiltration, desmoplasia, and budding. Tumor grade was determined
based on the percentage of gland formation (low grade if glandular structures comprised
50% or more of the tumor). Tumor budding was evaluated according to the methods

BioRender.com


Biomedicines 2024, 12, 1508 4 of 16

outlined by Ueno et al. [33,34]. The tumors were staged according to the 8th edition of the
American Joint Committee on Cancer staging manual [35]. The lymph node ratio (LNR)
was calculated as the ratio of metastatic lymph nodes to the total number of retrieved
lymph nodes.

The primary outcome measure of the study was cancer-specific survival (CSS), defined
as the time interval between surgery and tumor-related death, measured in months.

2.1. Immunohistochemical Study

Tissue microarrays (TMAs) were constructed from tumor tissue blocks, with each
TMA containing two cores per patient representing both the tumor center and the leading
edge. The MTA-1 tissue arrayer (Beecher Instruments, Sun Prairie, WI, USA) was employed
for this purpose. Each core, measuring 1 mm in diameter, was meticulously punched
from pre-selected tumor regions within the formalin-fixed paraffin-embedded blocks. IHC
targeting Gal-1 was performed on 4-micron sections from the TMAs using a commercially
available antibody (ab112525, Abcam, Cambridge, UK) diluted at a ratio of 1/50. The
slides were independently reviewed by two pathologists, Estrada Muñoz L. and Fernández
Aceñero MJ., who were blinded to the patient prognosis. Scoring was conducted using the
H score, which integrates both the percentage of positivity and staining intensity, calculated
separately for both the epithelial and stromal compartments. Intensity was assessed on a
scale of 1–3 (mild, moderate, and intense), and the percentage of the stained cells ranged
from 1–100%. Consequently, the staining values could range from 0 to 300.

2.2. Statistical Analysis

All the data were anonymized and stored in an Excel file for analysis using the SPSS
27.0 for Windows statistical package. Associations between the variables were assessed
using either the χ2 chi-squared test (for qualitative variables) or Student’s t-test (for com-
paring means between dichotomous quantitative Gaussian variables). Non-parametric
tests, such as Mann/Whitney U, were used for quantitative variables that did not have a
Gaussian distribution according to the Kolmogorov/Smirnov test. Statistical significance
was set at a p-value < 0.05. Survival curves were generated using the Kaplan/Meier method,
with significance tested via the log-rank test. Multivariable Cox regression models were
adjusted for potential confounders.

2.3. Ethical Approval

This study was approved by the drug research ethics committee of Hospital Clínico
San Carlos (CEIm Hospital Clínico San Carlos, approval code: C.I. 16/017-E), with a
subsequent amendment in June 2021.

3. Results
3.1. Clinicopathological Characteristics of the Study Cohort

The main features of our cohort are outlined in Table 1. The mean age was 72 years,
with the majority of the patients presenting symptoms at diagnosis (89.3%). Most tumors
were located in the gastric antrum (56.2%) and exhibited a fungoid (38.7%) or ulcera-
tive (31.7%) morphology. The tumors were predominantly of the intestinal type (59.2%),
followed by diffuse (29.3%) and mixed (11.6%) types. Necrosis, signet ring cells, lymphovas-
cular invasion, and perineural infiltration were observed in 27%, 42.9%, 43.2%, and 45.3%
of the cases, respectively. Intense intratumoral and peritumoral lymphocytic infiltration
were identified in 76.1% and 27.4% of the cases, respectively. Most patients were diagnosed
with pT3 tumors (61.6%) and presented with lymph node metastases (67.6%). The primary
surgical approach was subtotal gastrectomy (70.9%) with D2 lymphadenectomy. In 61.3%
of the cases, 16 or more lymph nodes were resected. Adjuvant therapy was administered in
23.2% of the patients. During follow-up, 44.1% of the tumors recurred, and 26.6% of the
patients died due to GC.
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Table 1. Main clinicopathological features of our series.

Features Patients, n (Valid %), n = 149

Age (years) [median (range)] 76 (33–91)

Male gender 82 (55)

Symptoms
Symptomatic 106 (89.3)

Local symptoms 76 (65)
Systemic symptoms 65 (55.1)

Size, mm [median (range)] 50 (10–120)

Depth, mm [median (range)] 10 (1–29)

Macroscopic type

Polypoid 31 (21.8)
Flat 11 (7.7)

Ulcerative 45 (31.7)
Fungoid 55 (38.7)

Location

Cardias 2 (1.5)
Fundus 12 (9.2)

Body 43 (33.1)
Antrum 73 (56.2)

Laurén subtype
Intestinal 87 (59.2)
Diffuse 43 (29.3)
Mixed 17 (11.6)

High grade 78 (53.1)

Necrosis 40 (27)

Signet ring cells 63 (42.9)

Lymphovascular invasion 64 (43.2)

Perineural infiltration 67 (45.3)

Advancing front (infiltrative) 91 (61.9)

Budding 24 (26.1)

Desmoplasia 72 (49.7)

Intratumoral lymphocytic
infiltration

Mild/moderate 25 (18.1)
Intense 105 (76.1)

Peritumoral lymphocytic infiltration 40 (27.4)

Lymph node metastases 96 (67.6)

Number of metastatic lymph nodes [median (range)] 3 (1–47)

pT

T1 8 (5.5)
T2 29 (19.9)
T3 90 (61.6)
T4 19 (13)

pN

N0 46 (32.4)
N1 26 (18.3)
N2 37 (26.1)
N3 33 (23.2)

pTNM
I 21 (15.2)
II 51 (37)
III 66 (47.8)

Gastrectomy Subtotal 105 (70.9)
Total 43 (29.1)

Lymphadenectomy
D1 7 (4.7)
D2 29 (19.5)

NS a 113 (75.8)
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Table 1. Cont.

Features Patients, n (Valid %), n = 149

Number of LN b resected
≥16 87 (61.3)
<16 55 (38.7)

Adjuvant therapy 26 (23.2)

Recurrence 64 (44.1)

Death due to tumor 37 (26.6)
a NS: not specified, b LN: lymph nodes.

3.2. Gal-1 Immunohistochemical Expression

The characteristics of Gal-1 IHC expression are summarized in Table 2. Overall, 96%
of the cases showed some degree of expression in stromal cells, with a cytoplasmic staining
pattern observed in all these cases. Mild and moderate staining were observed in 72.6%
and 27.4% of the cases, respectively (Figure 3). Regarding epithelial Gal-1 expression, 63.8%
of the cases showed some degree of staining in the tumor cells. Of these, 86.3% exhibited
cytoplasmic staining, with the majority showing mild intensity (72.6%).

Table 2. Immunohistochemical features of Gal-1 positive cases.

Epithelial Expression (n = 95) n %

Expression pattern

Cytoplasmic 82 86.3
Nuclear 0

Cytoplasmic and nuclear 8 8.4
Cytoplasmic and membranous 5 5.3

Staining intensity Mild 69 72.6
Moderate 26 27.4

Stromal Expression (n = 143) n %

Expression pattern Cytoplasmic 143
Nuclear 0 100

Staining intensity Mild 87 58.4
Moderate 56 41.6
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The cutoff values for positive staining were established using the ROC curve analysis,
with the epithelial Gal-1 scores ≥ 22.50 and stromal Gal-1 scores ≥ 27.50 considered positive.
According to this classification, positive Gal-1 expression in tumor stroma and epithelial
cells was identified in 32.2% and 42.3% of the cases, respectively.
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3.3. Association between Gal-1 Expression and Clinicopathological Findings

The association between the stromal and epithelial Gal-1 expression and clinicopatho-
logical parameters is summarized in Tables 3 and 4, respectively.

In univariable analysis, increased stromal Gal-1 expression, based on the established
cutoff point, was associated with tumor necrosis, lymphovascular invasion, pTNM stage,
recurrence, and cancer-related death (Table 3). There was also a trend towards significance
in the relationship between the stromal Gal-1 expression and peritumoral lymphocytic
infiltration, presence of lymph node metastases, and pN stage (p < 0.07).

Table 3. Relationship between Gal-1 expression in stroma and clinicopathological variables.

Feature Gal-1 Neg Gal-1 + p

Necrosis 19.8% 42.6% 0.004
Lymphovascular invasion 37.6% 55.3% 0.043

pTNM stage (II–III) 79.7% 95.5% 0.017
Recurrence 38.14% 56.2% 0.039

Death due to tumor 15.4% 47.9% <0.001
Peritumoral lymphocytic infiltration 22.8% 37.8% 0.060

Lymph node metastases 62.5% 78.3% 0.060

pN

pN0 37.5% 21.7%

0.066
pN1 16.7% 21.7%
pN2 28.12% 21.7%
pN3 17.7% 34.8%

Variables in italics approached significance but were not statistically significant (p > 0.05).

On the other hand, the patients with tumors positive for epithelial Gal-1, according to
our cutoff, exhibited significantly more lymphovascular invasion, peritumoral lymphocytic
infiltration, and cancer-related deaths (Table 4). The relationship between epithelial Gal-1
expression, tumor grade, and pTNM stage showed a trend towards significance.

Table 4. Relationship between Gal-1 expression in epithelium and clinicopathological variables.

Feature Gal-1 Neg Gal-1 + p

Lymphovascular invasion 34.9% 54.8% 0.016
Peritumoral lymphocytic infiltration 21.2% 36.1% 0.047

Death due to tumor 19.5% 35.5% 0.034
Tumor grade (high) 46.5% 62.3% 0.059
pTNM stage (II–III) 80.5% 91.1% 0.089

Variables in italics approached significance but were not statistically significant (p > 0.05).

3.4. Association between Cancer-Related Death and Clinicopathological Factors
3.4.1. Univariable Analysis

Univariable analysis revealed that cancer-related death was associated with tumor
necrosis, diffuse-type tumors, lymph node involvement (pN stage, LNR, and median
number of metastatic lymph nodes), age at diagnosis, and both the positive stromal and
epithelial expression of Gal-1 (Table 5). The presence of signet ring cells showed a trend
towards significance (p = 0.051).

Table 5. Univariable analysis: significant clinicopathological characteristics associated with tumor-
related mortality.

Feature OR (95% CI a) p

Necrosis 2.5 (1.1–5.5) 0.027
Laurén (diffuse) 2.3 (1–5.2) 0.039

pN

pN0 1

0.029
pN1 1.7 (0.5–5.4)
pN2 0.9 (0.3–3)
pN3 3.8 (1.3–10.9)
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Table 5. Cont.

Feature OR (95% CI a) p

Stromal Gal-1 + 5.1 (2.3–11.3) <0.001
Epithelial Gal-1 + 2.3 (1.1–4.9) 0.034
LNR b (median) 0.25 vs. 0.1 0.011

Metastatic lymph nodes (median) 4 vs. 2 0.043
Age at diagnosis (median) 68 vs. 76 0.013

Signet ring cells 2.15 (1–4.7) 0.051
a CI: confidence interval; b LNR: lymph node ratio. Variables in italics approached significance but were not
statistically significant (p > 0.05).

3.4.2. Kaplan/Meier Curves

Kaplan/Meier curves for CSS demonstrated that increased stromal Gal-1 expression
was associated with significantly worse CSS compared to the patients without Gal-1 over-
expression (estimated mean CSS of 139 vs. 72 months, respectively; p < 0.001, Figure 4).
Furthermore, positive stromal Gal-1 expression stratified the stage III patients into two
subgroups with significant prognostic differences (estimated mean CSS of 97 vs. 50 months;
p = 0.002, Figure 5).
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Similarly, the classification of the patients based on the epithelial Gal-1 expression
also showed significant prognostic differences (estimated mean CSS of 129 vs. 95 months;
p = 0.037, Figure 6).
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3.4.3. Multivariable Analysis

The results of the Cox regression analysis for CSS are presented in Table 6. Inde-
pendent prognostic factors included diffuse Lauren type, LNR, and increased stromal
Gal-1 expression.

Table 6. Multivariable analysis (Cox regression). Independent risk factors for death from gastric cancer.

Covariates HR (95% CI a) p

Laurén (diffuse) 2.65 (1.26–5.59) 0.011
LNR b 7.71 (2.72–21.86) <0.001

Stromal Gal-1 + 3.93 (1.84–8.4) <0.001
a CI: confidence interval; b LNR: lymph node ratio.

4. Discussion

As previously mentioned, Gal-1 belongs to the lectin superfamily, specifically the pro-
totypical group, characterized by its high-affinity binding to β-galactosides through a single
CRD [36–38]. In tumorigenesis, Gal-1 may play roles in cancer growth, the development of
metastasis, and immune evasion [39]. Intracellularly, Gal-1 drives tumorigenesis via the
RAS/RAF pathway and increases H-RAS nanoclusters [40]. The increase in extracellular
Gal-1 concentration correlates with tumor aggressiveness, the acquisition of a metastatic
phenotype, tumor angiogenesis, and immune evasion [41]. In GC, Gal-1 promotes vasculo-
genic mimicry (VM) by activating the epithelial-mesenchymal transition (EMT) pathway,
providing essential nutrients for tumor growth [42–44]. Additionally, the connections
between blood vessels and VM in tumor tissues facilitate the direct access of tumor cells to
the bloodstream [43,45]. In the context of EMT in GC, Gal-1 also activates the TGF-β/Smad
signaling pathway, induces the expression of Gli-1 through a non-canonical hedgehog
pathway, and promotes the expression of sphingosine-1 phosphate receptor-1 (S1PR1) [46].

The aberrant expression of Gal-1 has been described in various tumor tissues, in-
cluding GC, ovarian carcinoma, hepatocellular carcinoma (HCC), colon carcinoma, renal
cell carcinoma, breast carcinoma, cholangiocarcinoma, squamous cell carcinoma of the
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head and neck, lung carcinoma, urothelial carcinoma, prostate carcinoma, Kaposi’s sar-
coma, Hodgkin lymphoma, and glioblastoma multiforme, often associated with poor
survival [47–68]. Three meta-analyses exploring the prognostic influence of Gal-1 expres-
sion in different cancers have been published [41,69,70].

In our study, we observed a high prevalence of the stromal expression of Gal-1 in
GC, with a predominant cytoplasmic localization. Specifically, moderate stromal staining
was observed in 41.6% of our cases. Additionally, epithelial staining was found in 63.7%
of the cases, also predominantly displaying a cytoplasmic pattern, with 27.4% of the
cases showing moderate staining. Gal-1 overexpression was detected in the stroma and
epithelium of GC in 32.2% and 42.3% of the cases, respectively, based on our established
cutoffs. Previous research on GC has primarily identified Gal-1 overexpression in the tumor-
associated stroma [47,59,64–67]. Interestingly, in some studies, Gal-1 overexpression was
not detected in tumor cells. For instance, Bektas et al. (2010) reported weak Gal-1 expression
in tumor epithelium in 15.1% of the cases and moderate expression in 3.2%, with no intense
expression observed in tumor cells [63]. They noted Gal-1 expression in stromal cells in
most tumors (>98%), distributed as mild (22.8%), moderate (28.3%), or intense (48.9%).
Similarly, Zheng et al. (2016) observed intense Gal-1 expression in tumor-associated stroma
but weak or negative expression in tumor cells [66]. In 2014, He et al. found that Gal-1
overexpression in cancer-associated fibroblasts (CAFs) enhanced GC cell migration and
invasion in vitro [47]. They reported 94 cases of GC with Gal-1 overexpression in CAFs
observed in 60.6% of them, while tumor cells showed negative staining. In contrast, Chong
et al. in 2016 identified significantly more Gal-1 expression in tumor cells and stroma in GC
cases compared to matched non-cancerous tissue samples [67].

Despite these discrepancies, the Gal-1 expression in both tumor epithelium and stroma
is logical in light of previous studies. Tumor cells expressing Gal-1 have been shown to
synthesize and secrete Gal-1 in stromal cells, and vice versa, as they are stimulated by
the same tumor cells [71]. On the other hand, the higher expression of Gal-1 in tumor
stroma is consistent with the described involvement of this molecule in the tumor mi-
croenvironment, affecting the extracellular matrix and various stromal cell types such as
mesenchymal stem cells, macrophages, inflammatory cells, and fibroblasts through various
mechanisms [47,48,59,67].

Regarding patient prognosis and consistent with the previous literature, our study
observed a significant difference in terms of CSS for the patients with Gal-1 overexpression
in tumor stroma and epithelium. However, in multivariable analysis, only stromal Gal-1
was identified as an independent prognosticator, along with Laurén’s diffuse type and LNR.

Several studies have analyzed the prognostic value of Gal-1 expression in GC, both in
tumor epithelium and tumor-associated stroma [47,59,64–67]. In 2018, Wu et al. conducted
a meta-analysis comprising 18 studies involving 2674 patients with various malignancies,
including six articles focusing on digestive tumors (three GC and three HCC) [41]. They
reported that the overexpression of Gal-1 was associated with lower OS (HR: 1.79, 95% CI:
1.54–2.08, p < 0.001), suggesting its potential as a prognostic factor in malignant tumors,
particularly in digestive cancers. In 2019, Huang et al. obtained similar results in their meta-
analysis of 29 studies involving 3543 cases of 13 different cancers, confirming the association
between Gal-1 and decreased survival (HR: 2.12; 95% CI: 1.71–2.64; p < 0.001) [69]. In 2018,
Long et al. analyzed a total of 2093 GC patients, including eight retrospective case/control
studies, and found that the high expression of Gal-1 or low expression of galectins-3, -8,
and -9 were significantly linked to poorer prognosis in GC patients [70]. Notably, this
study incorporated two investigations on Gal-1 expression in GC. Finally, in 2018, You
et al. reviewed 127 cases of GC, identifying Gal-1 expression and the presence of VM as the
indicators of poor prognosis [59].

Previous publications have evaluated the clinicopathological characteristics associated
with Gal-1 expression in the stroma of GC [47,59,63–67]. Tumors with Gal-1 overexpression
have been linked to features such as advanced TNM stage, lymphovascular invasion, or
lymph node metastases. Moreover, earlier investigations have revealed associations with
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tumor depth, size, location, perineural infiltration, or serosal invasion. Although our study
did not confirm the relationship between some of these findings and Gal-1 expression,
we found a significant correlation between stromal Gal-1 overexpression and various
clinicopathological characteristics, including the presence of necrosis, lymphovascular
invasion, or advanced pTNM stage. Additionally, epithelial Gal-1 overexpression was
significantly related to peritumoral lymphocytic infiltration. The relationship between
lymph node involvement, tumor grade, and stromal and epithelial Gal-1 overexpression,
respectively, tended to be significant.

The association observed in our study between stromal Gal-1 overexpression and the
presence of necrosis may be attributed to the role of Gal-1 in creating a microenvironment
conducive to tumor progression. As documented in the prior literature, free Gal-1 promotes
tumor angiogenesis and protects the tumor from immune attack by inducing the apoptosis
of effector T lymphocytes [72,73]. Moreover, evidence suggests that tumor cell death
via necrosis inhibits an adequate immune response, and effector T lymphocytes are not
identified in the hypoxia-exposed necrotic tumor areas [74]. Furthermore, these hypoxia-
exposed areas are sites at risk for the development of more aggressive and treatment-
resistant cell phenotypes [75].

We have also demonstrated an association between the presence of peritumoral lym-
phocytic infiltration and epithelial Gal-1 overexpression, although, for Gal-1 expression
in the stroma, only a trend of association with peritumoral lymphocytic infiltration was
identified (p = 0.06). However, our study failed to demonstrate a relationship between Gal-1
expression and the presence of intratumoral infiltrates (p > 0.05). This finding contradicts
the previous reports where Gal-1 was described to create an immune evasion environment,
altering cytokine production and triggering a proapoptotic effect on T lymphocytes [76–80].
Additionally, Gal-1 blockade has been reported to induce the positive regulation of CD4+
and CD8+ T-lymphocyte tumor infiltrates in pancreatic adenocarcinoma, head and neck
carcinoma, melanoma, neuroblastoma, lung adenocarcinoma, ovarian carcinoma, and
breast carcinoma [52,55,78,81–84]. A recent analysis showed that Gal-1 not only induces
the apoptosis of T lymphocytes but can also reprogram regulatory CD8+ T-cells, increasing
their immunosuppressive capacity [85]. Regarding B lymphocytes, Gal-1 seems to pro-
mote the regulatory immunosuppressive function of certain subsets, such as T2 and T1 B
cells [86]. On the other hand, recent studies suggest that Gal-1 may play a proinflammatory
role in certain diseases, such as sepsis or specific infections [31]. Characterizing the subsets
of lymphocytes in the tumor microenvironment in subsequent studies could clarify the role
of Gal-1 in lymphocytic infiltration in GC.

Finally, Gal-1 has potential value as a therapeutic target. As previously discussed,
Gal-1 expression in tumor tissue can act as a biological modifier in tumor growth, inva-
sion, angiogenesis, and metastasis, creating a tumor microenvironment that facilitates
tumorigenesis. These functions can decisively influence patients’ treatment response. Thus,
some reports indicate that Gal-1 induces resistance to specific treatments in certain ma-
lignancies, such as kinase inhibitors (sorafenib) in HCC or cisplatin in cervical squamous
cell carcinoma and HCC [87–89]. Interestingly, Gal-1 also facilitates the action of other
compounds, such as vincristine in B-lymphoblastic lymphoma and paclitaxel in ovarian
cancer [90,91]. Numerous articles have analyzed Gal-1 inhibition as a therapeutic tool in
diverse tumors [22,78,92]. For instance, recent reports demonstrate that Gal-1 blockade
significantly increases intratumoral T-cell infiltration, leading to a better response to anti-
PD-1 therapy [78]. Specific Gal-1 inhibitor efficacy has been described in oral squamous
cell carcinoma, thyroid carcinoma, HCC, ovarian carcinoma, breast carcinoma, or small cell
lung carcinoma [21,22,52,87,93,94].

5. Strengths and Limitations of the Study
5.1. Strengths

This study presents a homogeneous set of findings derived from a group of Western
patients from Spain. All the patients were resectable cases diagnosed and treated in a
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tertiary hospital, and the histological and IHC features were independently reviewed by
two pathologists following a detailed histological protocol.

5.2. Limitations

This study is retrospective in nature, which inherently introduces potential limitations
in terms of data collection, the inference of causality, and susceptibility to biases. GC is less
prevalent in Western countries compared to Asian countries, resulting in a smaller pool of
patients available for analysis. Our cohort represents a homogeneous Spanish population
of resectable patients; therefore, conclusions about other ethnicities, particularly those
originating from Asian countries, and about non-surgical cases should not be extrapolated.
IHC study was performed on the TMA sections, which do not represent the entirety of
the sampled tumor. To overcome this limitation, cores were selected from both the central
and peripheral tumor areas, with no significant differences observed in staining between
them. Finally, IHC has inherent limitations as a semi-quantitative technique prone to
interobserver variability. To mitigate these differences, the Gal-1 IHC was evaluated by two
independent pathologists.

6. Conclusions

The findings from our study highlight the significance of Gal-1 in tumor progression
and prognosis among Western patients with GC. Gal-1, which has been linked to tumor
growth and aggressiveness in various tumor types, was frequently expressed in both
the stromal and epithelial compartments of GC tissues. Specifically, the high stromal
expression of Gal-1 was significantly correlated with aggressive clinicopathological features
and poorer CSS in our cohort of Western patients. Moreover, stromal Gal-1 overexpression
emerged as an independent prognostic factor for CSS in multivariable analysis. These
results underscore the potential of Gal-1 as a prognostic marker and therapeutic target
in GC, suggesting the feasibility of developing targeted drugs against this protein to
improve patient outcomes. Demonstrating Gal-1 overexpression could become a cost-
effective technique for selecting GC patients for targeted therapy in the future. Additionally,
combining anti-Gal-1 therapies with immunotherapy in these patients could enhance the
effectiveness of immunotherapeutic drugs.

Further investigations into the mechanisms underlying Gal-1-mediated tumor pro-
gression and the development of effective Gal-1-targeted therapies may offer promising
avenues for the management of GC in Western regions. In addition, expanding the scope of
research to encompass larger studies across diverse populations will be crucial to validate
our findings.
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