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Abstract: Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive
pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and
transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection
and compared them with influenza A virus (IAV) and mock infections. Histopathological and bulk
RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-
infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was
accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty
acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes.
While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon
responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling
in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α
but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function. We conclude that
a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism
suppression without direct viral invasion. The effects may be induced by the combined systemic
interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent
muscle fatigue.

Keywords: COVID-19; long COVID; influenza; muscle fatigue; muscle atrophy; energy metabolism;
mitochondria; interferons; tumor necrosis factor-alpha

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global
pandemic of coronavirus disease 2019 (COVID-19) since March 2020. Although the situation
has greatly improved, thanks to the development of vaccines, advances in the treatment
of acute infections, and the evolution of less virulent strains, many new COVID-19 cases
and related morbidity and mortality are encountered every day worldwide. COVID-19
impacts human health beyond acute infection. COVID-19 long-haul symptoms are rel-
atively prevalent across different age groups [1,2], and managing these symptoms has
become a challenge. The condition in which the symptoms persist beyond 12 weeks after
an acute viral infection with no alternative diagnosis has been defined as post-COVID-19
syndrome [3].
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Post-COVID-19 syndrome can manifest many symptoms, the majority of which are
neurological and neuropsychiatric, including myalgia, fatigue, brain fog, headaches, in-
somnia, and anxiety, among others [4,5]. Muscle fatigue represents the most prevalent
symptom, as revealed by several large cohort studies, and it can occur regardless of the
severity of the initial viral infection [5–9]. Although myalgia and fatigue are common with
acute respiratory viral infections such as influenza, the symptoms are often more severe
and long-lasting when associated with SARS-CoV-2 [10], implicating prolonged structural
and functional abnormalities in skeletal muscle after acute respiratory SARS-CoV-2 infec-
tion. There are several published histopathological examinations of the skeletal muscle
of patients who suffered from long COVID-19 [11–14]. These studies showed a variety of
pathological changes, including muscle atrophy, inflammation, mitochondrial abnormali-
ties, and capillary injury. Recent studies have also shown reduced mitochondrial oxidative
capacity in patients with long COVID [12–14].

To better understand the molecular mechanisms underlying the development and
persistence of myalgia and fatigue associated with COVID-19, we performed a longitudi-
nal study to characterize the histopathological and transcriptional responses of skeletal
muscle to respiratory SARS-CoV-2 infection and benchmarked the findings to influenza
A virus (IAV) infection, utilizing the golden hamster as a model system. The hamster
model has been proven to largely phenocopy COVID-19 biology, and it displays severe
lung morphology and a tropism that matches what is observed in human patients [15–17].
Our study showed no direct viral invasion but myofiber atrophy, which was accompa-
nied by persistent suppression of the genes related to myofibers, ribosomal proteins, and
mitochondrial oxidative metabolism in the SARS-CoV-2 group. It downregulated both
cytoplasmic and mitochondrial ribosome protein genes, likely impairing protein synthesis.
It also downregulated many nuclear genes, but not mitochondrial genes, involved in fatty
acid β-oxidation, the tricarboxylic acid (TCA) cycle, and all five oxidative phosphorylation
(OXPHOS) complexes. In contrast, no myofiber atrophy or persistent gene expression
changes were observed in the IAV-infected hamsters. In addition to the transient type I and
type II interferon responses at the acute phase of either infection, only the SARS-CoV-2
infection induced TNF-α but not IL-6 response in skeletal muscle. In vitro co-treatment
of differentiated C2C12 cells, a skeletal muscle cell line, with IFN-γ and TNF-α greatly
impaired mitochondrial respiration and shifted energy metabolism from mitochondrial
oxidative respiration to glycolysis. Our findings suggest that the combined systemic inter-
feron and TNF-α responses during acute respiratory SARS-CoV-2 infection might induce
a long-lasting suppression of mitochondrial oxidative energy metabolism and myofiber
atrophy, causing acute and persistent muscle symptoms.

2. Materials and Methods
2.1. Golden Hamster Models

Six-week-old male Golden Syrian hamsters (Mesocricetus auratus) were obtained from
Charles River Laboratories (Wilmington, MA, USA). Hamsters were acclimated to the
CDC/USDA-approved Biosafety Level 3 (BSL-3) facility at the Center for Comparative
Medicine and Surgery at the Icahn School of Medicine at Mount Sinai (New York, NY,
USA). When the hamsters reached 10 weeks of age, they were randomly divided into nine
groups for induction of three different kind of infections and for evaluation at three time
points post-infection (three hamsters/infection/time point). Three infection groups include
(1) mock-infected group: intranasally treated with PBS; (2) SARS-CoV-2-infected group:
intranasally infected with 1000 pfu (total volume 100 µL) of SARS-CoV-2 (USA-WA1/2020);
and (3) IAV-infected group: intranasally infected with 100,000 pfu (total volume 100 µL)
of H1N1 IAV (A/California/04/2009). Intranasal administration was performed under
ketamine/xylazine anesthesia. Hamsters were housed for 3-, 30-, and 60 days post-infection
(dpi) before being euthanized via sodium pentobarbital and intracardiac perfusion with
PBS. After perfusion, quadriceps muscle was exposed and harvested. Half of each sample
was placed into a 4% paraformaldehyde (PFA) solution to be fixed for 48 h before being
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transferred to PBS. The other half was placed into “lysing matrix A” homogenization
tubes (MP Biomedicals, Santa Ana, CA, USA) filled with TRIzol (Thermo Fisher Scientific,
Waltham, MA, USA) and homogenized before being frozen at −80 ◦C.

2.2. Hematoxylin and Eosin (H&E) Staining

Paraffin-embedded tissue blocks were cut into 6-µm sections and mounted on charged
glass slides (Thermo Fisher Scientific). Sections were deparaffinized by immersion in
xylene and rehydrated in decreasing ethanol dilutions. Slides were then stained using
the Hematoxylin and Eosin stain kit (Vector Laboratories, Newark, CA, USA) following
the manufacturer’s instructions. Slides were dehydrated by immersion in increasing
concentrations of ethanol, cleared with xylene, and coverslipped. Standard microscope
images were acquired using a Nikon E800 microscope with spot camera and software
version 5.0 (Diagnostic Instruments Inc., Sterling Heights, MI, USA).

2.3. Immunohistochemistry (IHC)

Paraffin sections were used for immunostaining. Antigen retrieval was performed for
30 min in a pressure cooker with slides immersed in antigen retrieval buffer (Tris/EDTA
pH 9.0). Tissue sections were blocked in Tris-Buffered Saline (TBS) with 3% bovine serum
albumin and 5% normal goat serum (Vector laboratories) or 5% normal rabbit serum (Vector
laboratories) for 2 h at room temperature. For brightfield IHC, the primary antibody of
SARS nucleocapsid protein (NP100-56576, Novus Biologicals, Centennial, CO, USA) was
added to slides at a 1:250 dilution. Sections were incubated overnight at 4 ◦C. Slides
were washed in TBS with 0.025% Triton X-100 prior to immersion in 0.3% hydrogen
peroxide in TBS for 15 min. Slides were washed again, and a horseradish peroxidase-linked
secondary antibody system (PK-6100, Vector Laboratories) and diaminobenzidine substrate
were used for the detection of immunoreactive signals according to the manufacturer’s
instructions. Slides were then dehydrated by immersion in increasing concentrations of
ethanol, cleared with xylene, and coverslipped. For immunofluorescent microcopy, the
sections were incubated overnight at 4 ◦C with primary antibodies of SARS-CoV-2 N
protein (GXT635679, Genetex, Irvine, CA, USA) and SARS-CoV-2 S protein (ZMS1076,
Sigma-Aldrich, St. Louis, MO, USA) at a 1:1000 dilution. The sections were then washed
and incubated with secondary antibodies conjugated with Alexa Fluor 568 for the N protein
and Alexa Fluor 647 for the S protein (A-11011 and A-21235, respectively, Thermo Fisher
Scientific) at a 1:1000 dilution for 1 h. The slides were coverslipped after 4′,6-diamidino-
2-phenylindole (DAPI) staining of nuclei. Fluorescent microscope images were acquired
using a Zeiss Axio Observer microscope and Zen 2.6 (Blue edition) software (Carl Zeiss,
White Plains, NY, USA). Autofluorescence was captured by the green fluorescence channel
to monitor false-positive cells for SARS-CoV-2 proteins.

2.4. Muscle Fiber Type Composition

After IHC using primary antibodies against slow skeletal myosin heavy chain (ab11083,
Abcam, Waltham, MA, USA, 1:200 dilution) and fast skeletal myosin heavy chain (ab51263,
Abcam, 1:400 dilution), quantification of the number of each type of myofiber and my-
ofiber cross-sectional area were performed. The fiber type distribution was expressed as
a percentage of slow or fast myosin heavy chain expressing fibers in the total fibers on
the sections.

2.5. Transmission Electron Microscopy (TEM)

Tissues for TEM were processed and imaged in the Boston University School of
Medicine TEM core facility. Tissue blocks of quadriceps were post-fixed with 3% glutaralde-
hyde solution (Electron Microscopy Sciences, Hatfield, PA, USA) and 3% paraformaldehyde
(Electron Microscopy Sciences) in 0.1 M phosphate buffer (PB, pH 7.4) for 24 h at 4 ◦C.
After rinsing in 0.1 M PBS, tissue blocks were fixed with 1% osmium tetroxide (Electron
Microscopy Sciences) for 1.5 h, rinsed in water, and then dehydrated in a series of in-
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creasing acetone concentrations (50%, 90%, and 100%). The samples were then infiltrated
and block-embedded in epoxy resin (Electron Microscopy Sciences). Ultrathin sections
(50 nm) were prepared with an ultra-microtome (Leica, Wetzlar, Germany) and collected
into copper mesh grids (Ted Pella, Redding, CA, USA). Grids were counterstained with
4% uranyl acetate (Electron Microscopy Sciences) for 5 min at 60 ◦C, followed by rinses in
filtered distilled water and then in 0.4% lead citrate (Ted Pella) for 45 s at room temperature.
The sections were imaged and photographed using a JEM1400 electron microscope (JEOL)
connected to an AMT NanoSprint-43M-B Mid-Mount CMOS camera (AMT701, Advanced
Microscopy Techniques Corp., Woburn, MA, USA). Individual subsarcolemmal (SS) and
intermyofibrillar (IMF) mitochondria from three hamsters of each group were manually
traced in longitudinal orientation using ImageJ (NIH) and quantified using the morpholog-
ical and shape descriptors including area (µm2), perimeter (µm), Feret’s diameter (longest
distance between any two points within a given mitochondrion, µm), and aspect ratio
(major axis divided by minor axis, which is a measure of the length to width ratio).

2.6. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from homogenized muscle samples by TRIzol (Thermo Fisher
Scientific) and was further cleaned and treated with DNase using Directzol RNA mini-
prep (Zymo Research, Irvine, CA, USA). One microgram of total RNA from each tissue
was reverse-transcribed into cDNA with oligo dT primers using SuperScript IV reverse
transcriptase (Thermo Fisher Scientific). Quantitative polymerase chain reaction (qPCR)
was performed using primers described in Supplementary Table S1, PowerTrack SYBR
Green Master Mix (Applied Biosystems, Waltham, MA, USA), and Quantstudio 12K Flex
qPCR system (Applied Biosystems).

2.7. Quantification of Mitochondrial DNA (mtDNA) Content by Real-Time PCR

Total DNA was isolated from paraffin sections of quadriceps using Quick-DNA FFPE
MiniPrep (Zymo Research). MtDNA content was gauged by the mtDNA/nuclear DNA
(nDNA) ratio measured by qPCR of NADH-ubiquinone oxidoreductase chain 1 gene (nd1)
and beta-actin gene (actb) using primers described in Supplementary Table S1 [18].

2.8. Bulk RNA Sequencing (RNAseq)

One hundred nanograms of total RNA from each sample was enriched for polyadeny-
lated RNA and prepared for next-generation sequencing using NEBNext Ultra II Directional
RNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA) and following the manu-
facturer’s instructions. Prepared libraries were sequenced on an Illumina NextSeq 2000
platform. Prepared libraries were sequenced on an Illumina NextSeq 2000 instrument.
FASTQ files were aligned to hamster genome build MesAur1.0 using STAR [19] (version
2.7.9a). Ensembl-Gene-level counts were generated using featureCounts (Subread package,
version 1.6.2) and Ensembl annotation build 105 (uniquely aligned proper pairs, same
strand). FASTQ quality was assessed using FastQC (version 0.11.7) and alignment quality
was assessed using RSeQC (version 3.0.0). Differential expression was assessed using
Wald test implemented in DESeq2 R package (version 1.32.10). Correction for multiple
hypothesis testing was accomplished using Benjamini-Hochberg false discovery rate (FDR).
Human homologs of hamster genes were identified using NCBI ‘gene orthologs’ table
(retrieved 28 March 2022). All analyses were performed using R environment for statistical
computing (version 4.1.2). Gene Set Enrichment Analysis (GSEA) (version 2.2.1) [20] was
used to identify biological terms, pathways, and processes that are coordinately up- or
down-regulated within each pairwise comparison. Entrez Gene identifiers of human ho-
mologs of all genes in Ensembl Gene annotation were ranked by Wald statistic computed
for each pairwise comparison. Ensembl Genes matching multiple hamster Entrez Gene
identifiers and hamster genes with multiple human homologs (or vice versa) were excluded
prior to ranking, so that the ranked list represents only those human Entrez Gene IDs that
match exactly one hamster Ensembl Gene. Each ranked list was then used to perform



Biomedicines 2024, 12, 1443 5 of 24

pre-ranked GSEA analyses (default parameters with random seed 1234) using the Entrez
Gene versions of the H (Hallmark), C2 CP (Biocarta, KEGG, PID, Reactome, WikiPathways),
C3 (transcription factor and microRNA motif), and C5 (Gene Ontology, GO) gene sets
obtained from Molecular Signatures Database (MSigDB), version 7.5.1.

2.9. Cell Culture and Cytokine Treatments

C2C12 mouse myoblasts (CRL-1772) from ATCC (Manassas, VA, USA) were grown
in 0.1% gelatin-coated dishes in Dulbecco’s modified Eagle’s medium (Fisher Scientific)
containing 4500 mg/L glucose and supplemented with 10% fetal bovine serum (Thermo
Fisher Scientific) and 100 U/mL penicillin/streptomycin (Thermo Fisher Scientific) in a
humidified 5% CO2 incubator at 37 ◦C. To induce differentiation, proliferating cultures that
were near confluence were switched into a low-serum differentiation medium consisting
of 2% horse serum (Thermo Fisher Scientific). Cytokine treatments were carried out with
differentiating cells that had been in differentiation medium for 3 days after reaching
confluence. Differentiating cultures were incubated for 24 and 48 h with mouse TNF-α (410-
MT, R&D systems, Minneapolis, MN, USA, 10 ng/mL), universal type I interferon IFN-α
(11200, PBL assay science, Piscataway, NJ, USA, 100U), mouse IFN-γ (485-MI, R&D systems,
100U), and mouse IL-6 (406-ML, R&D systems, 10 ng/mL) alone or in combination.

2.10. Immunoblotting

C2C12 myogenic cells were homogenized in RIPA buffer (50 mmol/L Tris-HCl pH 7.4,
150 mmol/L NaCl, 1% NP-40, 0.5% sodium deoxycholic acid, and 0.1% SDS) with pro-
tease inhibitors (Thermo Fisher Scientific), sonicated, and then centrifuged at 15,000× g for
15 min. The protein in the supernatant was quantified by a BCA protein assay (Thermo
Fisher Scientific). Thirty micrograms of protein were subjected to SDS-PAGE under re-
ducing conditions and transferred to polyvinylidene difluoride (PVDF) membranes (Mil-
liporeSigma, Burlington, MA, USA). Blots were blocked in 3% non-fat skim milk or 3%
BSA and washed three times with TBS containing 0.1% Tween. Membranes were incubated
with primary antibodies against total OXPHOS cocktail (ab110413, Abcam, 1:250), COX17
(11464-1AP, Proteintech, Rosemont, IL, USA, 1:500), RPS3 (66046-1-lg, Proteintech, 1:500),
RPL23 (A305-010A, Bethyl labolatories, Montgomery, TX, USA, 1:1000), or tubulin (2148S,
Cell Signaling Technology, Danvers, MA, USA, 1:1000) and then washed. Signals were
detected with IRDye 800- or 680-conjugated secondary antibodies (926-68020, 925-68021,
LI-COR Biosciences, Lincoln, NE, USA, 1:5000) with appropriate species specificity. Im-
munoblots were visualized by Image Studio software version 2.1.10 (LI-COR Biosciences)
that accompanies the LI-COR Odyssey infrared system (LI-COR Biosciences).

2.11. Bioenergetic Analysis

The oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and ATP
production rate of C2C12 cells were determined using an Agilent Seahorse XFe96 Analyzer
following the manufacturer’s instructions. XF base medium, XFe96 culture plates, and the
XF96 Extracellular Flux assay kit were purchased from Agilent Technologies (Santa Clara,
CA, USA). C2C12 cells were grown and differentiated on 0.1% gelatin-coated XFe96 culture
plates. On the third day in the differentiation medium, cells were treated with cytokine(s)
for 24 h, as described above. After the treatment, cells were washed and switched to XF base
medium supplemented with 10 mM glucose, 1 mM sodium pyruvate, and 2 mM glutamine
and cultured in a CO2-free incubator at 37 ◦C for 1 h. OCR and ECAR were measured under
basal conditions and after injections of a final concentration of 1 µM oligomycin, 0.5 µM
FCCP, and/or 1 µM antimycin A combined with 1 µM rotenone. Following completion of
the measurements, cells were washed with PBS and then lysed by adding 25 µL of RIPA
lysis buffer to each well. The protein amount of the cell lysate in each well was determined
by BCA assay. The OCR and ATP production rates were normalized to the protein amounts.
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2.12. Statistics

All non-RNAseq statistical analyses, bar graphs, x-y plots, violin plots, and heat maps
were prepared using GraphPad Prism 9 as described in the figure legends. The significance
of these analyses was determined utilizing statistical tests, including ANOVA with post-
hoc analyses. Specific post-hoc analyses and statistical thresholds are described in the
figure legends.

3. Results
3.1. There Is No Evidence of Direct SARS-CoV-2 Viral Invasion of Skeletal Muscle in the
Hamster Model

SARS-CoV-2, IAV, or PBS were intranasally delivered to golden hamsters at 10 weeks
of age. Inoculation dosages were determined based on the prior studies that achieved
comparable kinetics and viral loads in the SARS-CoV-2 and IAV model systems [15–17].
Both respiratory RNA viruses replicated in the lungs of golden hamsters, with the viral
levels reaching the highest at 3 dpi and then becoming undetectable by 7 dpi [16,17]. Based
on the results, we assessed the SARS-CoV-2 virus at 3 dpi in quadriceps by RNAseq, qRT-
PCR, IHC, and TEM. RNAseq analysis detected SARS-CoV-2 transcript of 934.7 ± 503.4
(mean ± SD) reads per million (RPM) in lungs but only 0.80 ± 0.82 RPM (p < 0.05) in muscle
at 3 dpi that was most likely from blood contamination, as muscle is rich in blood vessels.
The SARS-CoV-2 transcript was not detectable in muscle at 30 or 60 dpi. qRT-PCR detected
a high level of SARS-CoV-2 nucleoprotein subgenomic (sgN) transcript in the lungs of
SARS-CoV-2-infected animals at 3 dpi but not at 30 or 60 dpi or in mock- or IAV-infected
animals at any time points (Figure 1A). In quadriceps muscle, no significant expression of
sgN was detected in any infection groups at any time points (Figure 1B). Immunostaining
of SARS-CoV-2 N protein showed robust signals in bronchial epithelial cells (Figure 1C),
bronchioles, and alveoli (Supplementary Figure S1B,E) in SARS-CoV-2-infected hamsters at
3 dpi but not 30 dpi (Supplementary Figure S1C,F) or in mock-infected controls at 3 dpi
(Supplementary Figure S1A,D). Immunostaining of SARS-CoV-2 S protein showed the same
expression pattern (Supplementary Figure S1G–I). No expression of SARS-CoV-2 N protein
was detected by immunostaining in quadriceps of SARS-CoV-2-, IAV-, or mock-infected
hamsters at 3 dpi (Figure 1D–F), 30 dpi, or 60 dpi. TEM did not show any virus-like particles
in the quadriceps. H&E staining showed inflammatory cell infiltrates in bronchioles and
alveoli in lungs at 3 dpi (Figure 1G) but not in quadriceps at 3 dpi (Figure 1H–J). Therefore,
there is no evidence of direct SARS-CoV-2 invasion of skeletal muscle or persistent viral
pneumonia in the COVID-19 hamster model.

3.2. Respiratory SARS-CoV-2 but Not IAV Infection Induces Skeletal Muscle Atrophy

To assess histopathological changes in skeletal muscle post-COVID-19, we stained
paraffin sections of quadriceps derived from SARS-CoV-2-, IAV-, or mock-infected ham-
sters at 3, 30, and 60 dpi with H&E. It showed no myofiber necrosis or regeneration, no
endomysial inflammation or fibrosis, and no microthrombi. However, myofiber cross-
sectional areas (CSA) were significantly smaller in the SARS-CoV-2 group than in the
mock and IAV groups at 60 dpi (Figure 2A and Supplementary Figure S2). Since ham-
sters and their myofiber size grew during the period of 30–60 dpi (14.3–18.5 weeks of
age) [21] (Figure 2A), the respiratory SARS-CoV-2 infection might halt the myofiber growth,
causing atrophy.



Biomedicines 2024, 12, 1443 7 of 24
Biomedicines 2024, 12, 1443 7 of 24 
 

 
Figure 1. There is no evidence of direct SARS-CoV-2 invasion of skeletal muscle. (A,B) qRT-PCR of 
nucleoprotein subgenomic RNA (sgN) using RNA samples from lungs (A) and quadriceps muscles 
(B) of SARS-CoV-2-, influenza A virus (IAV)-, or mock-infected hamsters at 3-, 30-, and 60-days post-
infection (dpi). n = 3 hamsters/infection group/time point. Each dot represents mean value of 3 rep-
licates of each sample. Data are expressed as mean ± SEM. CT: cycle threshold. (C–F) Immunostain-
ing of SARS-CoV-2 N protein using lung tissue from SARS-CoV-2-infected hamsters at 3 dpi (C) 
and quadriceps muscles from SARS-CoV-2- (D), IAV- (E), and mock- (F) infected hamsters at 3 dpi. 
(G–J) H&E staining of lung tissue from SARS-CoV-2-infected hamsters at 3 dpi (G) and quadriceps 
muscles from SARS-CoV-2- (H), IAV- (I), and mock- (J)-infected hamsters at 3 dpi. Images are rep-
resentatives of 3 hamsters/infection group/time point (C–J). Bar = 50 µm (C–F). Bar = 100 µm (G–J). 

3.2. Respiratory SARS-CoV-2 but Not IAV Infection Induces Skeletal Muscle Atrophy 
To assess histopathological changes in skeletal muscle post-COVID-19, we stained 

paraffin sections of quadriceps derived from SARS-CoV-2-, IAV-, or mock-infected ham-
sters at 3, 30, and 60 dpi with H&E. It showed no myofiber necrosis or regeneration, no 
endomysial inflammation or fibrosis, and no microthrombi. However, myofiber cross-sec-
tional areas (CSA) were significantly smaller in the SARS-CoV-2 group than in the mock 
and IAV groups at 60 dpi (Figure 2A and Supplementary Figure S2). Since hamsters and 
their myofiber size grew during the period of 30-60 dpi (14.3-18.5 weeks of age) [21] (Fig-
ure 2A), the respiratory SARS-CoV-2 infection might halt the myofiber growth, causing 
atrophy. 

Skeletal muscle consists of two major fiber types with a differential preference for 
energy metabolism [22]. To address whether oxidative myofibers (slow twitch fibers) and 
glycolytic myofibers (fast twitch fibers) were differentially affected by the respiratory 
SARS-CoV-2 infection, we analyzed the CSA of each myofiber subtype at 60 dpi (Figure 
2B–E). CSA of both slow and fast twitch myofiber was significantly smaller (p < 0.01) in 

C   Lung  SARS-CoV-2 D   Muscle  SARS-CoV-2 E   Muscle  IAV F   Muscle  Mock

3 30 60
0.00

0.02

0.04

0.06

dpi

A   Lung B   Lung and skeletal muscle

3 30 60
0.00

0.02

0.04

0.06

3
0.00

0.02

0.04

0.06

dpi

Skeletal muscleLung

G   Lung  SARS-CoV-2 H   Muscle  SARS-CoV-2 I   Muscle  IAV J   Muscle  Mock

Mock
SARS-CoV-2
IAV

Mock
SARS-CoV-2
IAV

Lung
1/

C
T 

va
lu

e
sg

N

1/
C

T 
va

lu
e

sg
N

Figure 1. There is no evidence of direct SARS-CoV-2 invasion of skeletal muscle. (A,B) qRT-PCR of
nucleoprotein subgenomic RNA (sgN) using RNA samples from lungs (A) and quadriceps muscles (B) of
SARS-CoV-2-, influenza A virus (IAV)-, or mock-infected hamsters at 3-, 30-, and 60-days post-infection
(dpi). n = 3 hamsters/infection group/time point. Each dot represents mean value of 3 replicates of each
sample. Data are expressed as mean ± SEM. CT: cycle threshold. (C–F) Immunostaining of SARS-CoV-2
N protein using lung tissue from SARS-CoV-2-infected hamsters at 3 dpi (C) and quadriceps muscles
from SARS-CoV-2- (D), IAV- (E), and mock- (F) infected hamsters at 3 dpi. (G–J) H&E staining of lung
tissue from SARS-CoV-2-infected hamsters at 3 dpi (G) and quadriceps muscles from SARS-CoV-2- (H),
IAV- (I), and mock- (J)-infected hamsters at 3 dpi. Images are representatives of 3 hamsters/infection
group/time point (C–J). Bar = 50 µm (C–F). Bar = 100 µm (G–J).

Skeletal muscle consists of two major fiber types with a differential preference for energy
metabolism [22]. To address whether oxidative myofibers (slow twitch fibers) and glycolytic
myofibers (fast twitch fibers) were differentially affected by the respiratory SARS-CoV-2
infection, we analyzed the CSA of each myofiber subtype at 60 dpi (Figure 2B–E). CSA of both
slow and fast twitch myofiber was significantly smaller (p < 0.01) in SARS-CoV-2-infected
animals than in mock-infected controls (Figure 2D). In contrast, IAV-infected hamsters retained
the size of each type of myofiber. The fiber type distribution was not different among the
three groups (Figure 2E).
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Figure 2. Respiratory infection with SARS-CoV-2 but not influenza A virus (IAV)-induced muscle fiber
atrophy. (A) Bar graph showing comparison of cross-sectional area (CSA) of myofiber of quadriceps
of mock-, SARS-CoV-2-, or IAV-infected hamsters at 30- and 60-days post-infection (dpi). (B,C) Repre-
sentative images showing slow twitch myofibers stained intensely by anti-slow skeletal myosin heavy
chain antibody (B) and fast twitch myofibers stained intensely by anti-fast skeletal myosin heavy chain
antibody (C). (D) Bar graph showing comparison of CSA of slow and fast twitch myofibers of quadriceps
from mock-, SARS-CoV-2, or IAV-infected hamsters at 60 dpi. (E) Fiber type distribution expressed
in relative percent of the total number of myofibers. (A,D,E) Each dot represents mean value of CSA
(A,D) or mean percent of muscle fiber types (E) of each hamster. n = 3 hamsters/infection group/time
point. Data were analyzed by one-way ANOVA with Tukey’s post hoc test and expressed as mean
± SEM. ** p < 0.01, *** p < 0.001. (F) Number of significant differentially expressed genes (DEGs, false
discovery rate [FDR] q < 0.1) detected by RNAseq of quadriceps muscles derived from SARS-CoV-2
or IAV-infected hamsters at 3, 30, and 60 dpi compared to mock controls. n = 3 hamsters/infection
group/time point.

3.3. Respiratory SARS-CoV-2 Infection Induces Long-Lasting Downregulation of Skeletal Muscle
Genes, Primarily Affecting Oxidative Myofiber Genes

To assess the transcriptional response, we performed RNAseq using quadriceps ob-
tained from SARS-CoV-2-, IAV-, or mock-infected hamsters at 3, 30, and 60 dpi. We
performed Wald tests to compare the SARS-CoV-2 or IAV group with the mock group.
While the number of significant (FDR q < 0.1) differentially expressed genes (DEGs) re-
mained relatively stable in the IAV-infected hamsters over the 60-day period, the number
of significant DEGs increased sharply in the SARS-CoV-2-infected hamsters over the same
period (Figure 2F), indicating a much greater and longer skeletal muscle transcriptional
response to the respiratory SARS-CoV-2 infection than to the IAV infection.
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Since we observed atrophy in both slow and fast twitch myofibers in SARS-CoV-
2-infected hamsters, we analyzed the expression of the genes related to each myofiber
subtype [23] (Figure 3A,B). In SARS-CoV-2-infected animals, the majority of the genes that
are predominantly expressed by slow/intermediate myofibers were consistently down-
regulated at all three time points, with several genes achieving statistical significance at
30 and 60 dpi; conversely, no genes were significantly downregulated in IAV-infected
animals (Figure 3A). In contrast, the fast/type IIb myofiber genes did not show a consis-
tent pattern of regulation at any time point or infection group, with the exception of a
trend of upregulation at 60 dpi in the IAV-infected animals (Figure 3B). These findings
indicate that the respiratory SARS-CoV-2 infection primarily affected oxidative fibers at the
transcriptional level.
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Figure 3. Respiratory SARS-CoV-2 infection induces long-lasting downregulation of oxidative
myofiber genes and autophagy genes. (A–D) Heatmaps showing changes in the expression of slow
twitch/intermediate myofiber genes (A), fast twitch/type IIb myofiber genes (B), atrogenes (C), and
autophagy genes (D) in quadriceps muscles of SARS-CoV-2- and IAV-infected hamsters at different
time points compared to mock controls (M). Blue, white, and red indicate log2 (fold change) values of
<−2.5, 0, and >2.5, respectively, for (A,B), and log2 values of <−2, 0, and >2, respectively, for (C,D).
Symbols indicate significant differences compared to mock controls (M) by Wald test (* FDR q < 0.05,
# FDR q < 0.1). n = 3 hamsters/infection group/time point.

3.4. Respiratory SARS-CoV-2 Infection Upregulates Atrogenes and Downregulates Autophagy
Genes in Skeletal Muscle

Skeletal muscle fiber size is determined by the balance between protein synthesis and
degradation. Because the ubiquitin-proteasome system catalyzes the degradation of most
proteins in mammalian cells [24], we assessed the expression of atrogenes involved in this
system. In the SARS-CoV-2 group, these genes were upregulated at all three time points,
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with Fbxo32 significantly upregulated at 3 dpi (Figure 3C). Fbxo32 encodes skeletal-muscle-
specific E3 ubiquitin ligase F-box protein 32 (FBXO32), which is also known as muscle
atrophy F-box (MAFbx) and atrogin-1. It is considered one of the master regulators of
muscle atrophy [25]. In contrast, there was not a consistent pattern of regulation in the IAV
group, with none of the atrogenes significantly upregulated (Figure 3C). The upregulation
of atrogenes in SARS-CoV-2-infected animals might therefore contribute to the muscle
atrophy detected.

Another proteolytic system that can contribute to muscle atrophy is autophagy. We
assessed the expression of the key genes involved in autophagy initiation (Becn1, Wipi1,
Atg9b, Nrbf2), autophagosome membrane elongation (Gabarap, Map1lc3β, Atg5), and sub-
strate capture (Sqstm1) [26]. While the expressions of Gabarap and Sqstm1 were significantly
downregulated in the SARS-CoV-2 group at 30 and 60 dpi, none of these genes showed
significant changes in the IAV group (Figure 3D). Therefore, the respiratory infection
with SARS-CoV-2, but not IAV, might lead to long-lasting impairment of autophagy in
skeletal muscle.

3.5. Respiratory SARS-CoV-2 Infection Induces Persistent Downregulation of Genes Involved in
Cytoplasmic and Mitochondrial Protein Translation and Mitochondrial Oxidative Phosphorylation
(OXPHOS) in Skeletal Muscle

To further characterize the skeletal muscle transcriptional response, we performed
GSEA using Wald statistics computed for SARS-CoV-2 and IAV infections at each time point
versus mock controls (Supplementary Data S1). There were 415 gene sets with significant
coordinate downregulation (normalized enrichment scores [NES] < 0, FDR q < 0.1) in the
SARS-CoV-2 group relative to the mock group at both 30 and 60 dpi. These included
the Reactome “autophagy” pathway, in accordance with the observed downregulation
of autophagy genes (Figure 3D), as well as numerous gene sets related to cytosolic and
mitochondrial protein translation, mitochondrial function, and oxidative phosphorylation.
We thus assessed the genes involved in these processes.

Muscle atrophy can be caused not only by increased protein degradation but also
by reduced protein synthesis. Ribosome biogenesis is a fundamental rate-limiting step
for protein synthesis, with each ribosome consisting of large and small RNA-protein
complexes. In the SARS-CoV-2 group, 17/39 (44%) of the cytosolic ribosomal protein large
subunit (RPL) genes and 16/28 (57%) of the small subunit (RPS) genes were significantly
downregulated at 30 dpi, and the number of downregulated genes increased to 37/39 (95%)
for RPL and 27/28 (96%) for RPS at 60 dpi (Figure 4A,B). In contrast, none of these genes
were significantly changed in the IAV group. Thus, the respiratory SARS-CoV-2 infection
may induce a unique, long-lasting suppression of cytoplasmic protein translation machinery
in skeletal muscle, contributing to muscle atrophy.

We also analyzed the expression of the genes encoding mitochondrial ribosomal pro-
teins (MRPs). Mitochondrial ribosomes translate mRNAs transcribed from mitochondrial
DNA, but the MRPs themselves are encoded by nuclear genes. While both large and small
subunit MRP genes were consistently downregulated in the SARS-CoV-2 group, with the
majority achieving statistical significance at 60 dpi, none of them were significantly changed
in the IAV group (Figure 4C,D). Therefore, mitochondrial protein synthesis may also be
suppressed in skeletal muscle by a respiratory SARS-CoV-2 infection.

We next analyzed the mRNA expression of the five mitochondrial OXPHOS complexes
that are composed of proteins of structural cores, supernumerary subunits, and assembly
factors [27], which are encoded by both mtDNA genes and nDNA genes (Figure 5A–E).
While the expression of the 13 mtDNA genes encoding essential proteins of complexes
I, III, IV, and V did not change significantly in either the SARS-CoV-2 or the IAV group
(Figure 5A,C–E), many nDNA genes encoding proteins of all five complexes were signif-
icantly downregulated in the SARS-CoV-2 but not the IAV group, with more significant
changes seen at 60 dpi than at 30 dpi (Figure 5A–E). Therefore, the respiratory infection
with SARS-CoV-2 induced a global and long-lasting downregulation of nuclear genes
involved in skeletal muscle OXPHOS.
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Figure 4. Respiratory infection with SARS-CoV-2 but not influenza A virus (IAV) causes persistent
downregulation of many cytosolic and mitochondrial ribosomal protein genes. Heatmaps showing
changes in the expression of cytosolic ribosomal protein large subunit (RPL) (A), cytosolic ribosomal
protein small subunit (RPS) (B), mitochondrial ribosomal protein large subunit (MRPL) (C), and
mitochondrial ribosomal protein small subunit (MRPS) (D) genes. Blue, white, and red indicate
log2 (fold change) values of <−2, 0, and >2, respectively. Symbols indicate significant differences
compared to mock controls (M) by Wald test (* False discovery rate [FDR] q < 0.05, # FDR q < 0.1).
n = 3 hamsters/infection group/time point.
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Figure 5. Respiratory infection with SARS-CoV-2 but not influenza A virus (IAV) causes persistent
downregulation of nuclear genes encoding core proteins, supernumerary subunit proteins, and assem-
bly factors of all mitochondrial oxidative phosphorylation (OXPHOS) complexes. (A–E) Heatmaps
showing changes in the expression of genes encoding protein components of complex I (A), II (B),
III (C), IV (D), and V (E). Blue, white, and red indicate log2 (fold change) values of <−2, 0, and >2,
respectively. Symbols indicate significant differences compared to mock controls (M) by Wald test
(* False discovery rate [FDR] q < 0.05, # FDR q < 0.1). n = 3 hamsters/infection group/time point.
MT-: mtDNA genes.

Mitochondrial function can be affected by altered mitochondrial biogenesis, dynamics
(fusion and fission), and mitophagy. To address whether biogenesis was affected at the
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transcriptional level, we first estimated the relative amount of cellular mtDNA by the ratio
of mtDNA/nDNA. The ratio tended to be lower in the SARS-CoV-2 group than in the IAV
and mock groups, but the difference was not significant (Supplementary Figure S3A). We
then analyzed the expression of the genes involved in mitochondrial biogenesis [28–30]
(Supplementary Figure S3B). There was not a consistent pattern of differential expression,
although at 60 dpi in the SARS-CoV-2 group, the estrogen-related receptor α (ESRRA) gene
(Esrra) was significantly downregulated and the sirtuin-1 gene (Sirt1) was significantly up-
regulated. ESRRA is a downstream target of peroxisome proliferator-activated receptor-γ
coactivator-1 α (PGC-1α), which is the master regulator of mitochondrial biogenesis [31,32].
The transcription of the PGC-1α gene (Ppagc1a) itself was not differentially regulated with
respect to SARS-CoV-2 infection. None of the main genes involved in the regulation of mito-
chondrial fusion or fission [29,33] showed significant changes (Supplementary Figure S3C).
Among mitophagy pathway genes [29,34], although the expression of PTEN-induced ki-
nase 1 gene (Pink1) and parkin RBR E3 ubiquitin protein ligase gene (Prkn) did not change
significantly, the expression of Bcl2 interacting protein 3 gene (Bnip3), Gabarap1, and Sqstm1
were significantly downregulated in the SARS-CoV-2 group at 30 and/or 60 dpi (Sup-
plementary Figure S3D). Taken together, the respiratory SARS-CoV-2 infection inhibited
mitophagy and, to a lesser degree, mitochondrial biogenesis, but not mitochondrial fusion
or fission at the transcriptional level.

3.6. Respiratory SARS-CoV-2 Infection Downregulates Many Enzyme Genes Involved in Fatty
Acid β-Oxidation and TCA Cycle

Since the respiratory SARS-CoV-2 infection downregulated OXPHOS genes in skeletal
muscle, we next addressed whether the other aspects of the energy metabolism were also
affected. To this end, we performed GSEA and analyzed the enzyme genes involved in
each catabolic pathway (Figures 6 and 7, and Supplementary Figure S4).

Glycolysis is a cytoplasmic pathway that breaks down glucose into pyruvate. GSEA showed
that the genes involved in glycolysis were not coordinately regulated with respect to infection
with either SARS-CoV-2 or IAV (Supplementary Figure S4A), although the hexokinase 2 gene
(Hk2) was significantly upregulated and the lactate dehydrogenase B gene (Ldhb) was significantly
downregulated in the SARS-CoV-2 group at 30 and 60 dpi (Supplementary Figure S4B,C). In the
same manner, the genes participating in amino acid metabolism were not coordinately regulated
in response to either infection (Supplementary Figure S4D).

Unlike glycolysis or amino acid metabolism, fatty acid metabolism was coordinately
downregulated in the SARS-CoV-2 group at 30 and 60 dpi but not in the IAV group
(Figure 6A). While none of the fatty acid synthesis genes showed significant changes
(Figure 6B), several genes encoding enzymes involved in the fatty acid β-oxidation showed
more significant changes in the SARS-CoV-2 group than in the IAV group at 30 and 60 dpi,
among which only the carnitine palmitoyl transferase 1 (CPT1) gene (Cpt1) was upregulated
at 60 dpi, while the rest were downregulated (Figure 6C,D). β-oxidation is a catabolic
process by which fatty acids are broken down to acetyl-CoA. CPT1 is located at the outer
mitochondrial membrane to transfer the acyl group from CoA to carnitine, a rate-limiting
step in β-oxidation. Within mitochondria, each round of β-oxidation requires the sequential
actions of several enzymes, including enoyl-CoA delta isomerase 1 (ECI1), enoyl-CoA
hydratase (ECH), hydroxyacyl-CoA dehydrogenase (HADH), and acetyl-Coenzyme A
acyltransferase 2 (ACAA2) [35]. The genes encoding these enzymes (Eci1, Echs1, Hadh,
and Acaa2, respectively) were all significantly downregulated at 60 dpi in the SARS-CoV-2
group but not in the IAV group (Figure 6C,D). Therefore, the respiratory infection with
SARS-CoV-2, but not IAV, caused persistent suppression of fatty acid β-oxidation genes.
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Figure 6. Respiratory SARS-CoV-2 infection downregulates some enzyme genes involved in fatty acid
oxidation. (A) Summary of Gene Set Enrichment Analysis (GSEA) performed using the Hallmark
fatty acid metabolism gene set in SARS-CoV-2 or influenza A virus (IAV)-infected hamsters at
3-, 30-, and 60-days post-infection (dpi) compared to mock controls. Dotted lines indicate false
discovery rate (FDR) q value = 0.1 for positive (red) and negative (blue) coordinate regulation. n = 3
hamsters/infection group/time point. (B,C) Heatmaps showing changes in the expression of enzyme
genes involved in fatty acid synthesis (B) and fatty acid oxidation (C). (D) Schematic overview of
expression changes in enzyme genes involved in fatty acid oxidation in the SARS-CoV-2 group. Blue,
white, and red indicate log2 (fold change) values of <−2, 0, and >2, respectively. Symbols indicate
significant differences compared to mock controls (M) by the Wald test (* FDR q < 0.05, # FDR q < 0.1).
n = 3 hamsters/infection group/time point.

The TCA cycle is a series of chemical reactions that oxidize acetyl-CoA derived from
carbohydrates, lipids, and proteins. GSEA showed significant downregulation of the
TCA cycle genes in the SARS-CoV-2 group at 30 and 60 dpi but not in the IAV group
(Figure 7A). The isocitrate dehydrogenase gene (Idh2), succinate-CoA ligase GDP/ADP-
forming subunit alpha gene (Suclg1), succinate dehydrogenase genes (Sdhb and Sdhc), and
malate dehydrogenase 1 gene (Mdh1) were significantly downregulated by the SARS-CoV-2
infection at 30 and/or 60 dpi (Figure 7B,C). Only Sdha was upregulated in the SARS-CoV-2
group at 60 dpi. The findings indicate that the respiratory infection with SARS-CoV-2, but
not IAV, induced persistent suppression of the TCA cycle at the transcriptional level.
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Figure 7. Respiratory SARS-CoV-2 infection downregulates some enzyme genes involved in the TCA
cycle. (A) Summary of Gene Set Enrichment Analysis (GSEA) performed using the WikiPathways
TCA cycle gene set in SARS-CoV-2- or influenza A virus (IAV)-infected hamsters at 3-, 30-, and 60-
days post-infection (dpi) compared to mock controls. Dotted lines indicate false discovery rate (FDR)
q value = 0.1 for positive (red) and negative (blue) coordinate regulation. n = 3 hamsters/infection
group/time point. (B) Heatmap showing changes in the expression of enzyme genes involved in
TCA cycle. (C) Schematic overview of gene expression changes in TCA cycle enzyme genes in
the SARS-CoV-2 group. Blue, white, and red indicate log2 (fold change) values of <−2, 0, and >2,
respectively. Symbols indicate significant differences compared to mock controls (M) by Wald test
(* FDR q < 0.05, # FDR q < 0.1). n = 3 hamsters/infection group/time point.

3.7. Respiratory SARS-CoV-2 or IAV Infection Causes Mild Morphological Changes of
Intermyofibrillar Mitochondria

Mitochondria are highly dynamic organelles that remodel their shape, size, and dis-
tribution to ensure adaptation to cellular bioenergetic requirements and stress. To address
whether there were associated changes in mitochondrial morphology, we performed a TEM
study. Scattered subsarcolemmal mitochondrial aggregations were similarly observed in both
SARS-CoV-2- and mock-infected hamsters, whereas small intermyofibrillar mitochondrial ag-
gregations were more frequently seen in the SARS-CoV-2 group than in the mock group. In the
SARS-CoV-2 group, mitochondrial cristae appeared normal with no inclusions, but focal loss
of myofilaments was observed. Enlarged and elongated mitochondria were more frequently
seen in SARS-CoV-2 hamsters than in mock-infected controls (Figure 8A,B). We assessed the
size and shape of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in quadri-
ceps muscles. IMF mitochondria, but not SS mitochondria (Supplementary Figure S5A–D,
Supplementary Table S2), were morphologically different among 3 groups. The IMF mito-
chondria in the SARS-CoV-2 group were larger in area, perimeter, and Feret’s diameter than
those in the IAV and mock groups (Figure 8D–F, Supplementary Table S3), indicating that the
IMF mitochondria in the SARS-CoV-2 group are more enlarged and elongated, a sign of mito-
chondria stress [36–38]. Similar changes in mitochondria were seen in a muscle biopsy from a
young adult patient who experienced persistent myalgia and fatigue following COVID-19
with no other causes identified (Figure 8C).
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Figure 8. Respiratory SARS-CoV-2 infection causes mitochondrial morphological changes in ham-
sters and patient. (A,B) Representative longitudinal electron microscopic images of quadriceps mus-
cle of mock- (A) or SARS-CoV-2-infected hamsters (B) at day 60 post-infection (dpi) showing an 
increased number of enlarged and/or elongated mitochondria (white asterisk) in SARS-CoV-2-in-
fected hamsters. (C) Longitudinal electron microscopic image of a muscle biopsy from a patient with 
persistent post-COVID muscle fatigue showing many enlarged and/or elongated mitochondria 
(white asterisk). (D–F) Bar graphs showing comparisons of area (D), perimeter (E), and Feret’s di-
ameter (F) of intermyofibrillar (IMF) mitochondria of quadriceps muscles of hamsters at 60 dpi. Each 
dot represents mean value of area (D), perimeter (E), and Feret’s diameter (F) of each hamster. n = 3 
hamsters/infection group. Data were analyzed by one-way ANOVA with Tukey’s post hoc test and 
expressed as mean ± SEM. * p < 0.05, ** p < 0.01. IAV: Influenza A virus. 

Figure 8. Respiratory SARS-CoV-2 infection causes mitochondrial morphological changes in hamsters
and patient. (A,B) Representative longitudinal electron microscopic images of quadriceps muscle
of mock- (A) or SARS-CoV-2-infected hamsters (B) at day 60 post-infection (dpi) showing an in-
creased number of enlarged and/or elongated mitochondria (white asterisk) in SARS-CoV-2-infected
hamsters. (C) Longitudinal electron microscopic image of a muscle biopsy from a patient with per-
sistent post-COVID muscle fatigue showing many enlarged and/or elongated mitochondria (white
asterisk). (D–F) Bar graphs showing comparisons of area (D), perimeter (E), and Feret’s diameter
(F) of intermyofibrillar (IMF) mitochondria of quadriceps muscles of hamsters at 60 dpi. Each dot
represents mean value of area (D), perimeter (E), and Feret’s diameter (F) of each hamster. n = 3
hamsters/infection group. Data were analyzed by one-way ANOVA with Tukey’s post hoc test and
expressed as mean ± SEM. * p < 0.05, ** p < 0.01. IAV: Influenza A virus.
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3.8. Respiratory SARS-CoV-2 Infection Induces Type I and Type II Interferon (IFN) Responses and
Tumor Necrosis Factor-Alpha (TNF-α) Response in Skeletal Muscle

Acute respiratory SARS-CoV-2 infection generates a robust systemic cytokine response
in addition to type I and type II interferon responses, and the plasma levels of IFN-α,
IFN-γ, IL-1β, IL-6, and TNF-α are significantly increased in human patients with acute
COVID-19 [39–43]. Since there is no evidence of direct SARS-CoV-2 viral invasion, we
used GSEA to assess whether the transcriptional changes observed in skeletal muscle were
triggered by the systemic responses. Both SARS-CoV-2 and IAV respiratory infections
induced acute and transient type I and type II interferon responses in skeletal muscle, with
strong coordinated upregulation of IFN-α and IFN-γ response genes at 3 dpi but not at 30
or 60 dpi (Figure 9A,B). Likewise, IFN-α and IFN-γ responses were strongly induced at
3 dpi but not at 30 dpi in the lungs (Supplementary Figure S6A,B). TNF-α signaling via
NFκB was coordinately upregulated in muscles at 3 and 60 dpi in the SARS-CoV-2 group,
but only at 30 dpi in the IAV group (Figure 9C), although the expression of the TNF-α
gene (Tnf ) itself was extremely low in muscles. In the lungs, TNF-α signaling via NFκB
was strongly enriched at 3 dpi and then very low at 30 dpi in both SARS-CoV-2 and IAV
groups (Supplementary Figure S6C). While IL-6 signaling was strongly induced in the
lungs following acute respiratory SARS-CoV-2 infection (Supplementary Figure S6D), it
was not coordinately upregulated in skeletal muscle (Figure 9D). These findings suggest
an interesting hypothesis that the persistent transcriptional changes in the skeletal muscle
of SARS-CoV-2-infected animals might be related to the transient systemic interferon and
TNF-α responses during the acute viral infection.
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Mitochondrial Respiration and Shifts Energy Metabolism from Oxidative Respiration to 
Glycolysis 

To address whether the combination of interferons and TNF-α could potentially trig-
ger skeletal muscle abnormalities seen in the COVID-19 hamster model, we treated differ-
entiated C2C12 myogenic cells (myotubes) with IFN-α, IFN-γ, and TNF-α individually or 
in various combinations. Immunoblot analysis showed a significant reduction in NADH 
dehydrogenase 1 beta subcomplex subunit 8 (NDUFB8, complex I) and succinate dehy-
drogenase complex iron sulfur subunit B (SDHB, complex II) protein expression after 48 
hrs of treatment with IFN-α/IFN-γ/TNF-α or IFN-γ/TNF-α but not with interferon or 
TNF-α alone (Figure 10A,B). The expression of selected proteins of complexes III, IV, and 
V, as well as ribosome small and large units, did not show changes with treatments (Figure 
10A and Supplementary Figure S7A,B). To assess mitochondrial oxidative function, we 
measured the oxygen consumption rate (OCR) using a Seahorse cell metabolic analyzer. 

Figure 9. Type I and Type II interferon and TNF-α/NFκB cytokine responses are induced in muscle
by respiratory SARS-CoV-2 infection. Summary of Gene Set Enrichment Analysis (GSEA) performed
using Hallmark cytokine/inflammation gene sets in SARS-CoV-2- or Influenza A virus (IAV)-infected
hamsters at 3-, 30-, and 60-days post infection (dpi) compared to mock controls. Dotted lines indi-
cate false discovery rate (FDR) q value = 0.1 for positive (red) and negative (blue) coordinate regula-
tion. n = 3 hamsters/infection group/time point. Results are shown for IFN-α response (A), IFN-γ
response (B), TNF-α/NF-κB signaling response (C), and IL-6/JAK-STAT3 signaling response (D).

3.9. Co-Treatment of C2C12 Myotubes with IFN-α, IFN-γ, and TNF-α Markedly Impairs
Mitochondrial Respiration and Shifts Energy Metabolism from Oxidative Respiration to Glycolysis

To address whether the combination of interferons and TNF-α could potentially trigger
skeletal muscle abnormalities seen in the COVID-19 hamster model, we treated differentiated
C2C12 myogenic cells (myotubes) with IFN-α, IFN-γ, and TNF-α individually or in various
combinations. Immunoblot analysis showed a significant reduction in NADH dehydrogenase
1 beta subcomplex subunit 8 (NDUFB8, complex I) and succinate dehydrogenase complex
iron sulfur subunit B (SDHB, complex II) protein expression after 48 h of treatment with
IFN-α/IFN-γ/TNF-α or IFN-γ/TNF-α but not with interferon or TNF-α alone (Figure 10A,B).
The expression of selected proteins of complexes III, IV, and V, as well as ribosome small and
large units, did not show changes with treatments (Figure 10A and Supplementary Figure
S7A,B). To assess mitochondrial oxidative function, we measured the oxygen consumption
rate (OCR) using a Seahorse cell metabolic analyzer. Twenty-four hours of treatment with
IFN-α/IFN-γ/TNF-α or IFN-γ/TNF-α, but not the others, dramatically reduced basal respi-
ration rate (Figure 10C), but non-mitochondrial respiration did not change by any treatment
(Figure 10D). The treatments did not change the total protein amount compared to untreated
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controls (Supplementary Figure S7C), indicating that the reduction in basal respiration was
not caused by cell death. We also measured ATP production rates by mitochondrial oxidation
and glycolysis. C2C12 myotubes displayed high oxidative metabolism at baseline; however,
IFN-α/IFN-γ/TNF-α and IFN-γ/TNF-α treatments induced a dramatic shift from oxidative
respiration towards glycolysis (Figure 10E). The combinations of IL-6 with interferons, in-
cluding IFN-α/IFN-γ/IL-6 and IFN-γ/IL-6, did not affect OXPHOS protein expression, basal
respiration, or oxidative and glycolytic ATP production rates (Figure 10F–I). Therefore, the
combination of type II interferon with TNF-α but not IL-6 impaired mitochondrial oxidative
functions in skeletal muscle cells in vitro.
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Figure 10. Treatment with a combination of Type II interferon and TNF-α leads to mitochondrial
dysfunction in C2C12 myotubes. (A–E) Effects of treatments of C2C12 myotubes with IFN-α, IFN-γ,
and TNF-α individually or in combinations. (A) Immunoblot analysis of OXPHOS protein expression.
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(B) Quantification of NADH dehydrogenase 1 beta subcomplex subunit 8 (NDUFB8, Complex I;
C-I) and succinate dehydrogenase complex iron sulfur subunit B (SDHB, Complex II; C-II) protein
expression normalized to tubulin and relative to untreated control. Data were analyzed by one-
way ANOVA with Tukey’s post hoc test and expressed as mean ± SEM of three independent
experiments. (C) Oxygen consumption rate under basal conditions (basal respiration). (D) Non-
mitochondrial respiration. (E) Glycolytic (Glyco) ATP production rate (red) and mitochondrial (Mito)
ATP production rate (blue). (F–I) Effects of treatments of C2C12 myotubes with IFN-α, IFN-γ, and IL-
6 individually or in combinations. (F) Immunoblot analysis of OXPHOS protein expression. (G) basal
respiration. (H) non-mitochondrial respiration. (I) Glycolytic (Glyco) ATP production rate (red) and
mitochondrial (Mito) ATP production rate (blue). For (C–E,G–I), data were analyzed by one-way
ANOVA with Tukey’s post hoc test and expressed as mean ± SEM of 3 repetitive experiments with 5
or 6 technical replicates. ** p < 0.01, *** p < 0.001, # p < 0.05, +++ p < 0.001. + indicates treatment with
IFN-α, IFN-γ, TNF-α, or IL-6.

4. Discussion

Muscle fatigue represents the most common symptom that persists after COVID-19.
By characterizing the longitudinal skeletal muscle histopathological and transcriptional
changes after acute respiratory SARS-CoV-2 infection in the COVID-19 hamster model, our
present study has generated several important findings that shed light on the potential
mechanisms underlying muscle symptoms associated with COVID-19 and long COVID.

First, our study supports the notion that SARS-CoV-2 is unlikely to directly invade
skeletal muscle after an acute respiratory infection. So far, there has been no convincing
evidence that SARS-CoV-2 directly invades skeletal muscle in humans [12,14,44,45]. In
the COVID-19 hamster model, our present study shows no evidence of direct SARS-CoV-
2 infection of skeletal muscle, as SARS-CoV-2 RNA and protein expression, virus-like
particles, and inflammatory cell infiltrates are all absent in skeletal muscle.

Second, despite the absence of direct viral invasion, skeletal muscle in the COVID-19
hamster model undergoes myofiber atrophy and long-lasting transcriptomic changes,
which are not observed with acute respiratory IAV infection. Myofiber atrophy has also
been reported in muscle biopsies of patients with long COVID [11–13]. Our study further
shows that both oxidative and glycolytic myofibers undergo atrophy, which argues against
immobilization being the sole cause of the atrophy, as disuse has a primary impact on
glycolytic fibers [46]. In parallel with this muscle atrophy, atrogenes are upregulated
while many cytoplasmic ribosomal protein genes are downregulated, suggesting that the
myofiber atrophy is likely a result of both accelerated protein degradation and impaired
protein synthesis.

Another prominent transcriptional response detected in skeletal muscle after respira-
tory SARS-CoV-2 infection is the long-lasting suppression of genes related to mitochon-
drial energy metabolism, especially those involved in mitochondrial OXPHOS, fatty acid
β-oxidation, and the TCA cycle. Consistent with our findings, reduced expression of
OXPHOS proteins, impaired mitochondrial respiration, and altered muscle metabolism
with a lower reliance on oxidative metabolism have been observed in patients with exercise
intolerance associated with long COVID [13,14]. Our study further shows that the respira-
tory SARS-CoV-2 infection affects mitochondrial oxidative metabolism at the nuclear gene
level, as the 13 protein-encoding mtDNA genes are not affected.

Third, the systemic cytokine response to acute respiratory SARS-CoV-2 infection is
likely an important trigger of the persistent histopathological and transcriptional changes
observed in skeletal muscle. While respiratory SARS-CoV-2 and IAV infections generate
comparable acute and transient type I and II interferon responses in skeletal muscle, the
inflammatory cytokine response is different, with the TNF-α/NF-κB signaling pathway
being differentially upregulated in the former. SARS-CoV-2 can infect cells and bind to
critical host mitochondrial proteins to inhibit mitochondrial function [47,48]. The impaired
mitochondrial functions can persist in a variety of non-muscle tissues, even after the virus is
cleared [49]. Our present study further shows that the respiratory SARS-CoV-2 infection can
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persistently suppress mitochondrial oxidative metabolism genes in skeletal muscle without
direct infection, which suggests a role of the acute systemic responses in the pathogenesis
of muscle abnormalities. There is no evidence of persistent viral pneumonia or a chronic
systemic response in our model.

The host interferon response is critical for controlling viral infection, but it can also
enhance the inflammatory cytokine response. Exuberant systemic inflammatory cytokine
response is a prominent feature of acute respiratory SARS-CoV-2 infection [40]. The plasma
levels of type I and type II interferons as well as several inflammatory cytokines, including
IFN-α, IFN-γ, IL-6, TNF-α, and IL-1β, are significantly increased in human patients during
acute infection [39–43]. While IL-6 signaling is strongly induced in the lungs following acute
respiratory SARS-CoV-2 infection [15,40], the genes in this pathway are not coordinately
regulated in skeletal muscle, as shown by our transcriptome study. Genes involved in
TNF-α/NF-κB signaling, however, are coordinately upregulated in muscle at the acute
phase. Given the finding that TNF-α ligand expression is extremely low in skeletal muscle,
the circulating TNF-α may act on skeletal muscle to cause muscle abnormalities. The
TNF-α/NF-κB signaling pathway is known to induce skeletal muscle atrophy [50–52] by
inhibiting muscle protein synthesis and increasing protein breakdown [53]. Activation of
TNF-α/NF-κB signaling can also lead to upregulation of Fbxo32 [54], which is significantly
upregulated in skeletal muscle at day 3 post-respiratory SARS-CoV-2 infection. Therefore,
the enrichment of this signaling pathway likely contributes to muscle atrophy.

Myalgia and fatigue are common side effects of IFN-α treatment in patients with hepatitis
C, which can lead to chronic fatigue. Comparing with healthy controls, one study reported that
the patients who developed chronic fatigue after IFN-α treatment showed high serum levels
of IL-6 and TNF-α during but not after the treatment [55]. The findings lead us to speculate
that although the type I and type II interferon responses are transient in skeletal muscle
after the respiratory SARS-CoV-2 infection, the combination of the systemic interferon and
TNF-α responses during acute infection might exert a synergistic impact on skeletal muscle
and set the stage for chronic muscle fatigue. Importantly, the simultaneous upregulation
of IFN-α, IFN-γ, and TNF-α was observed only in SARS-CoV-2-infected hamsters but not
in IAV-infected hamsters. This difference might contribute, in part, to the different impact
on mitochondrial oxidative function and the persistency of the abnormality. In support of
this notion, our in vitro study showed that the treatment of C2C12 myotubes with combined
IFN-γ and TNF-α but not IFN-γ or TNF-α alone markedly impaired mitochondrial oxidative
function. Although our in vitro study did not demonstrate a significant impact of IFN-α on
mitochondrial oxidative function, IFN-α might still play a role in vivo, as this response was
also significantly upregulated by the acute SARS-CoV-2 infection. Future studies are needed
to further elucidate the mechanisms. Our findings suggest that targeting TNF-α during acute
SARS-CoV-2 infection may be beneficial to the prevention or mitigation of persistent muscle
fatigue. Drugs, which can boost mitochondrial functions, enhance protein synthesis, and
inhibit protein degradation, may also be useful for treating muscle fatigue associated with
long COVID.

Our study has several limitations. Our cohort is relatively small and may not have
sufficient statistical power to detect all the abnormalities in skeletal muscle. Since no fresh
specimens could be withdrawn from the BSL-3 laboratory for serum or tissue protein
assays such as ELISA and Western blot, we were unable to assess serum cytokines or
muscle proteins to correlate with the transcriptional changes in the hamsters. Many
proteins that regulate skeletal muscle atrophy and energy metabolism are activated at the
translational and post-translational levels, alterations of which cannot be detected by our
transcriptional study. Nevertheless, our study is informative and may help guide future
studies and therapy development. The hamster model appears valuable for future studies
of muscle abnormalities associated with COVID-19 and long COVID, given the significant
histopathological and transcriptional changes detected.
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