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Abstract: Atherosclerosis is a common form of cardiovascular disease, which is one of the most
prevalent causes of death worldwide, particularly among older individuals. Surgery is the mainstay
of treatment for severe stenotic lesions, though the rate of restenosis remains relatively high. Current
medication therapy for atherosclerosis has limited efficacy in reversing the formation of atherosclerotic
plaques. The search for new drug treatment options is imminent. Some potent medications have
shown surprising therapeutic benefits in inhibiting inflammation and endothelial proliferation in
plaques. Unfortunately, their use is restricted due to notable dose-dependent systemic side effects or
degradation. Nevertheless, with advances in nanotechnology, an increasing number of nano-related
medical applications are emerging, such as nano-drug delivery, nano-imaging, nanorobots, and so
forth, which allow for restrictions on the use of novel atherosclerotic drugs to be lifted. This paper
reviews new perspectives on the targeted delivery of nanoparticles to blood vessels for the treatment
of atherosclerosis in both systemic and local drug delivery. In systemic drug delivery, nanoparticles
inhibit drug degradation and reduce systemic toxicity through passive and active pathways. To
further enhance the precise release of drugs, the localized delivery of nanoparticles can also be
accomplished through blood vessel wall injection or using endovascular interventional devices
coated with nanoparticles. Overall, nanotechnology holds boundless potential for the diagnosis and
treatment of atherosclerotic diseases in the future.

Keywords: nanoparticles; atherosclerosis; targeted delivery; responsive nanoparticles; intravascular
technology; nano-coated devices; adventitial injection

1. Introduction

Atherosclerosis (AS) is the primary form of cardiovascular disease, which has been
the leading cause of death globally for many years [1,2]. It is typically recognized that
oxidized low-density lipoprotein and oxidized phospholipids activate endothelial cells
(ECs), causing monocytes to adhere and accumulate beneath the arterial endothelium.
Then, the monocytes differentiate into M1-type macrophages that secrete pro-inflammatory
factors (TNF-α, IL-1α, IL-1β, IL-6, IL-12, and IL-23, etc.) and cause chronic inflammatory
fibroplasia of the vessel wall [3,4]. Subsequently, a portion of the macrophages ingest
oxidized LDL and transform into foam cells, while others undergo apoptotic necrosis
due to endoplasmic reticulum stress and form the necrotic core of the plaque, collectively
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resulting in luminal narrowing [5,6]. The necrotic core expands in size with the number of
foam cells, and activated macrophages continue releasing matrix-degrading proteases to
weaken the fibrous cap covering the plaque, which is made up of smooth muscle and ECs.
This makes atherosclerotic lesions more prone to plaque rupture. Furthermore, damage
to the local endothelium and tissue may expose tissue factors directly to the blood, which
then triggers platelet activation and thrombosis [7,8].

The objective of atherosclerosis medication therapy is to enhance circulation, reduce
cholesterol levels, and prevent thrombosis. Anti-inflammatory medication may have
modest efficacy when combined with conventional regimens, given that inflammation is a
pivotal factor in atherosclerosis [9,10]. Nevertheless, it should be noted that all medication
therapy has limitations in treating established plaques. In the case of severe ischemia
and high degrees of stenosis, surgical removal of sclerotic plaques or luminal dilatation
aided by balloons and stents is advised [11,12]. However, surgical treatment inevitably
results in some degree of damage to the vessel wall and has a relatively high restenosis
rate. The primary causes of restenosis are the development of thrombosis in the short-
term postoperative period and the promotion of intimal hyperplasia that is mediated by a
number of inflammation-related mechanisms in the three-month postoperative period [13,14].
Abnormalities in the lipid metabolism and inflammation of the arterial wall are strongly
associated with the progression of atherosclerosis and restenosis after surgery. Some
medications, such as colchicine, rapamycin, and nucleic acid drugs, possess strong anti-
inflammatory, lipid-lowering, or anti-proliferative properties, which means they have
great potential in inhibiting atherosclerotic plaque growth and postoperative restenosis.
Unfortunately, their utility in the therapy of atherosclerosis is limited by instability or
dose-dependent toxicity [15–17]. And the introduction of nano drug delivery system (DDS)
technologies has shed light on the utilization of these medications. By temporarily isolating
the drug from the body’s internal environment during delivery to reduce degradation
and avoiding dose-related drug toxicity through effective targeted delivery, these use
constraints of these promising drugs can be removed.

In the field of drug delivery, nanoparticles usually refer to solid colloidal particles
with diameters between 10 and 1000 nm, in which drugs are adsorbed, dispersed, or en-
capsulated to form nanospheres and nanocapsules [18,19]. In 2011, nanoparticles were
defined by the European Commission as particles that make up 50% or more of the size
range of 1 to 100 nm [20]. DDSs have various significant advantages over traditional
systemic administration methods. Drug encapsulation or dispersion within nanoparticles
minimizes needless degradation. Responsive or targeted DDSs improve local accumu-
lation to increase local drug concentration and reduce the side effects associated with
systemic administration; multiple drugs can be delivered by the same nanoparticle car-
rier for combination therapy to overcome drug resistance [21–23]. Furthermore, due to
their minute diameter, nanoparticles are more likely to penetrate the body’s defensive
barriers, including the blood–brain barrier, mucous membranes, and skin, as well as enter
the tissues where they will be absorbed by the cells more efficiently via endocytosis or
other mechanisms [24]. Nanoparticle carriers can be broadly divided into two groups:
organic and inorganic (Table 1). Polymers, liposomes, and micelles are typical examples
of organic compounds, whereas inorganic compounds include silica, metals, and carbon,
among others. Liposomes are the most extensively employed nanocarriers for treating
atherosclerosis; nevertheless, liposomes have low hydrophilic drug encapsulation and
release efficiency. Polymer nanoparticles and micelles are more adaptable in terms of shape,
size, release rate, and drug-carrying capacity [25].

Nanoparticles have been the subject of a great deal of research until now. They have a
wide application scope, not only for atherosclerosis [26,27] but also for restenosis [28–30],
cancer [31], aneurysm [32], neointimal hyperplasia [33,34], and thrombosis [35], given
their precise targeting and local accumulation ability (Figure 1). According to some recent
studies, nanoparticles showed great potential in both clinical diagnosis and therapy for
AS [36]. Nevertheless, despite the encouraging outcomes observed in cell and animal
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studies, only a limited number of these designs have successfully transitioned to clinical
trials and, even more rarely, to the market (Table 2). This paper summarizes the progress of
nanoparticle targeted therapy for atherosclerosis in terms of two delivery methods—the
systemic delivery of drug-loaded nanoparticles via intravenous administration and local
delivery, which includes intravascular (via stent or balloon) or perivascular administration
to diseased tissue. The objective of this review is to screen and summarize novel or
high-performing DDS designs for the treatment of atherosclerosis and to accelerate the
translation of more effective therapeutic options into the clinic.
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Figure 1. Vital characteristics and applications of nanoparticles. Drug-loaded nanoparticles have
numerous medicinal biomedical applications, including in atherosclerosis [26,27], restenosis [28–30],
neoplasm [31], aneurysm [32], neointimal hyperplasia [33,34], and thrombosis [35]. Their characteris-
tics, including size, shape, surface charge, and material, are closely related to nanoparticle function
type. These characteristics determine their cycle time and metabolic distribution after entering the
human body and therefore also correlate, to some extent, with the targeting efficiency and organ
toxicity of the nanoparticles.
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Table 1. Classification, synthesis, and application of medical nanoparticles.

Category Material
Nanoparticles

Medical Application References
Shape Synthesis Method

Polymer

PCL, PLA, PEG,
PLGA, chitosan,

alginate, gelatin, and
albumin, etc.

Spheres, rectangular
disks, rods, worms,

oblate ellipses,
elliptical disks, and
circular disks, etc.

Solvent evaporation,
salting-out, micro-emulsion,

mini-emulsion, dialysis,
surfactant-free emulsion,

supercritical fluid technology,
and interfacial polymerization.

Drug delivery; wound healing;
antibacterial agents. [25,37]

Liposomes Lipid Spherical or ellipsoid

Thin-film hydration, ethanol
injection, reverse phase
evaporation, detergent

depletion, etc.

Drug delivery; vaccines;
imaging agents; gene delivery. [38,39]

Non-metal Carbon, SiO2, etc. Fullerenes, quantum
dot, tubes, etc.

Photolithographic techniques,
grinding, sputtering, and

milling, etc.
Fluorescent probes [40,41]

Metals and
oxides

Iron-oxide, gold,
silver, and TiO2, etc.

Spherical, rod-like,
cage-like, etc.

Chemical reduction, green
chemistry, sonochemistry,

electrochemistry.

Drug delivery; anemia; imaging
agents; gene delivery;

molecular diagnosis; bone
cements, antibacterial, antiviral,

and antifungal agents.

[38,42,43]

Abbreviations: PCL = polycaprolactone; PLA = polylactide; PEG = polyethylene glycol; PLGA = poly lactic-co-
glycolic acid.

Table 2. Clinical trials of nanoparticles for the diagnosis or treatment of atherosclerosis.

NCT
Number Study Title

Study
Status

Enroll
Number Interventions

Study Results

ApplicationsTAV
(Mean± Standard
Deviation, mm3)

MACE-Free
Survival (%)

NCT01270139
[44]

Plasmonic
Nanophotothermal
Therapy of
Atherosclerosis

Completed 180

Intervention
1 (procedure):
transplantation of
NP; Intervention
2 (procedure):
transplantation of
iron-bearing NP;
Intervention
3 (device): stenting

Nano group:
108.2 ± 42.2;
Ferro Group:
115.6 ± 64;

Stenting Control:
178 ± 52.6

Nano group:
94.3; Ferro

Group: 91.4;
Stenting

Control: 90.5

Stable angina;
heart failure;
atherosclerosis;
multivessel
coronary artery
disease

NCT00518284
[45]

Prevention of
Restenosis Following
Revascularization

Terminated 6 Intervention (drug):
paclitaxel NP NA

Vascular
disease;
peripheral
vascular
disease

NCT04616872
[46]

Treatment of Patients
With Atherosclerotic
Disease With
Methotrexate-
associated with LDL
Like Nanoparticles

Unknown 40

Intervention 1 (drug):
LDE-methotrexate;
Intervention 2 (drug):
LDE-placebo

NA
Atherosclerosis;
coronary artery
disease

NCT04148833
[47]

Treatment of Patients
With Atherosclerotic
Disease With
Paclitaxel-associated
with LDL Like
Nanoparticles

Unknown 40

Intervention 1 (drug):
LDE-paclitaxel;
Intervention 2 (drug):
LDE-placebo

NA
Atherosclerosis;
coronary artery
disease
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Table 2. Cont.

NCT
Number Study Title

Study
Status

Enroll
Number Interventions

Study Results

ApplicationsTAV
(Mean± Standard
Deviation, mm3)

MACE-Free
Survival (%)

NCT01436123
[48]

Plasmonic
Photothermal and
Stem Cell Therapy of
Atherosclerosis
Versus Stenting

Terminated 62

Intervention
1 (device and drug):
stenting and
micro-infusion of NP;
Intervention
2 (device):
implantation of
everolimus-eluting
stent

NA
Atherosclerosis;
coronary artery
disease

NCT06399328
[49]

Cardiovascular Risk
Stratification on the
Basis of Surface
Enhanced Raman
Spectroscopy

Recruiting 220

Intervention
(diagnostic test):
surface enhanced
Raman spectroscopy

NA

Coronary
atherosclerosis
of native
coronary artery

Abbreviation: TAV = total atheroma volume; MACE = major adverse cardiovascular event; NP = nanoparticle.

2. Systemic Delivery of Drug-Loaded Nanoparticles

Nanoparticles can be delivered systemically via both passive and active pathways
(Figure 2). The systemic delivery could be influenced by interactions between nanoparticles
and plasma proteins, blood cells, and ECs, as well as the excretion and clearance of renal,
hepatic, and mononuclear phagocyte systems (MPSs) [50]. In total, 30–99% of system-
ically delivered nanoparticles aggregate in the liver, reducing the efficiency of targeted
drug delivery while simultaneously increasing the risk of hepatotoxicity [51]. Therefore,
when designing nanoparticles for systemic administration, two essential parameters that
influence delivery efficiency should be considered: nanoparticle circulation time and the
efficient binding of the nanoparticles to the target. Enhancements to the physical properties
of the nanoparticles, such as their size, shape, polymer length, and surface activity, can be
improved to maximize their cycle time and likelihood of binding to a specific target.

2.1. Targeted Nanoparticle Delivery Based on Physicochemical Properties

Magnetism and the enhanced permeation and retention (EPR) effect of nanoparticles
are widely used as a passive accumulation approach. Furthermore, the sensitivity of
nanoparticles to shear, heat, light, ultrasound, thermal irradiation, and changes in the pH of
the microenvironment cause the breakdown of nanoparticles at the target location, releasing
the drug for therapeutic purposes and allowing their distinctive response functions [52]
(Table 3).
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Figure 2. Systemic delivery of drug-loaded nanoparticles. Nanoparticles given systemically, i.e.,
intravenously, can be targeted to a specific site via two pathways: passive targeting and active
targeting. Passive targeting can be achieved by local accumulation through the magnetic or enhanced
permeation and retention (EPR) effect of nanoparticles or by designing nanoparticles that exhibit
characteristic responses to heat, ultrasound, light, electric fields, or local microenvironments, releasing
the loaded drug to the target lesion site [52]. By contrast, nanoparticles for active targeted delivery
rely on receptor–ligand interactions to more accurately target a variety of differently expressed
molecules in the lesion.
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Table 3. Nanoparticles based on passive delivery (enrichment or characteristic response).

Nanocarrier CC Cargo
Accumulation
or Response

Strategy

Half-Life
(h)

Experiments
References

Models Sample Size * Outcomes

Iron
eNOS-

overexpressing
cells

magnetism NA
eNOS-/- mice;
bovine artery

ECs
n = 3

At least half of
the lumen is

covered with ECs
[53]

PLA/magnetite
MNPs

functionalized
ECs

magnetism NA Lewis rats; rat
aortic ECs n = 10

The fastest rapid
proliferation and
functionalization

of ECs

[54]

PLA/magnetite
MNPs

functionalized
ECs

magnetism NA

Rat carotid artery
stent angioplasty
model; rat aortic
endothelial cell

n = 26
1.7-fold less
reduction in

lumen diameter
[55]

β-cyclodextrin Sirolimus ROS or pH NA

Rat carotid artery
balloon injury

model; rat
VSMCs

n = 12
Decrease artery
intima–media

ratio
[56]

Polyethyleneimine Simvastatin acid Shear stress
and ROS 11.7 ± 1.2

Rabbit FeCl3
thrombosis

model
n = 12

The lowest
amount of
thrombosis

[57]

Abbreviations: PLA = polylactide; eNOS = endothelial nitric oxide synthase; ROS = reactive oxygen species;
VSMCs = vascular smooth muscle cells; ECs = endothelial cells; PEG = polyethylene glycol; * The number of
animals used in animal experiments.

Magnetic fields can be utilized to direct the local aggregation and distribution of
magnetic nanoparticles (MNPs) to transport ECs to improve vascular function. Vosen et al.
loaded ECs overexpressing endothelial nitric oxide synthase (eNOS) using a combination
of lentiviral vectors and MNPs, localizing at the site of endothelial damage following the
mechanical removal of plaque, to enhance vascular function by endothelializing the artery
radially and symmetrically [53]. Polyak et al. discovered, in a rat carotid stent angioplasty
model, that the magnetically assisted administration of ECs provided considerable protec-
tion against mechanical-injury-induced ISR [55]. Moreover, polylactide-based MNPs allow
for non-invasive monitoring of endothelial cell location and proliferation by the addition of
BODIPY 558/568 labeling and exhibited enhanced magnetic responsiveness, resistance to
cryopreservation, and rapid expansion [54]. Furthermore, the EPR effect has also been used
to treat AS using nano DDSs, and its targeting efficiency has been verified. Systemic passive
administration via the EPR effect is the most extensively researched targeted method for
nano DDSs in the context of cancer [58]. The EPR effect is also evident locally in atheroscle-
rotic lesions, where the newborn immature vascular ECs have not formed unbroken tight
connections with one other and are generally more permeable than normal arteries [59,60].
Utilizing ultrastructural and en face plaque imaging, Beldman et al. displayed the localiza-
tion of hyaluronan nanoparticles in both early and advanced atherosclerotic lesions. Their
findings demonstrated that atherosclerotic plaques had significantly lower endothelial con-
nectivity continuity than the normal vascular endothelium, which may have contributed
to the accumulation of nanoparticles at the lesion site and served as the primary route for
their transportation to the sub-endothelium [59].

Alterations in the hemodynamics and microenvironment surrounding the lesion
may serve as a response approach for nanoparticle-targeted treatment. Changes in blood
flow washout patterns in the bends and branches of arteries reduce shear stress and
blood flow velocity, whereas low shear stress promotes the development of atherosclerotic
plaque [61,62]. Following the formation of arterial plaque, the high shear stress at the
stenosis and the low shear stress at the stenosis’s distal exit generate turbulence; some
shear unstable nanoparticles take advantage of this turbulence to induce the disintegration
of the intact structure of the particles and leakage of the drug, completing the mission of
transporting the drug to the location of the lesion. Localized inflammation during balloon
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angioplasty is related to elevated reactive oxygen species (ROS) levels and a weakly acidic
environment. These inflammatory mechanisms are intimately associated with the develop-
ment of restenosis [63,64]. Feng et al. prepared pH- or ROS-responsive nanoparticles that
encapsulated rapamycin to inhibit intimal hyperplasia in a rat model of arterial restenosis
using a nanoprecipitation technique [56]. During the course of atherosclerotic disease, ECs
and smooth muscle cells of the lesioned artery wall exhibit oxidative stress as a result
of NAPDH up-regulation and the accompanying ROS release [65]. Thus, in addition to
reducing restenosis, weakly acidic and ROS-responsive nanoparticles may have potential
applications in slowing the progression of atherosclerotic disease.

Combining accumulation strategies with characteristic responses allows for the cre-
ation of novel smart nano DDSs with efficient targeting to raise local drug concentration
and improve therapeutic efficacy. Shen et al. created a drug-carrying system that is sensi-
tive to high shear stress (100 dynes/cm2) at plaques and especially responds to the ROS
microenvironment. Self-assembled cross-linked polyethyleneimine nanoparticles loaded
with simvastatinic acid in erythrocytes enabled the sustained release of ROS and lowered
lipid levels [57].

2.2. Targeted Drug Delivery Based on Specific Markers

In general, nanoparticles that are selectively targeted based on ligand–receptor inter-
actions are more potent than those targeted only based on their physical characteristics.
Therefore, abnormally high expression molecules associated with AS are frequently utilized
as targets. For example, αvβ3-integrin expression is significantly higher in AS than in
normal arteries, and this makes it a potential biomarker for detecting for damaged vessel
detection and a specific target for nanomedicines [66,67]. Similarly, molecules highly ex-
pressed in damaged or immature endothelial cells, aggregated macrophages, or exposed
vessel wall collagen inside the plaque are specific targets for nanomedicine delivery in
AS (Table 4).

Table 4. Nanoparticles based on active delivery (receptor–ligand binding).

Nanocarrier Cargo Target Ligand Half-Life (h)
Experiments

Reference
Models Sample

Size * Outcomes

Lipid/iron
oxide Sirolimus VCAM-1

(ECs)
VHPKQHR

peptide 13.84
Apoe-/- mouse
atherosclerotic
model; MAECs

n = 30
T2 relaxation

time reduced by
2.7 times

[68]

Lipid Cyclopentenone
prostaglandins

VCAM-1
(ECs)

Anti-VCAM-
1 antibody NA

LDLr-/- mouse
atherosclerotic

model; rat
peritoneal

macrophages;
U937

n = 6
Reduced the
thickness of

aortas by 32%
[69]

Lipid Fumagillin
ανβ3-

integrin
(ECs)

ανβ3-
integrin

antagonist
NA Hyperlipidemic

rabbits n = 71

Reduced the
neovascular

signal by 50%
to 75%

[70]

PEG, PCL

Pigment
epithelium-

derived
factor

ανβ3-
integrin

(ECs)

cRGD
peptide NA

Apoe-/- mouse
atherosclerotic

model;
HUVECs

n = 18

Inhibit intimal
thickening and

reduce
plaque area

[71]

Lipid Sivelestat
ανβ3-

integrin
(neutrophils)

cRGD
peptide NA

Apoe-/- mouse
atherosclerotic

model;
HUVECs;

neutrophils

NA
Reduce plaque

area and
stabilize plaque

[72]
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Table 4. Cont.

Nanocarrier Cargo Target Ligand Half-Life (h)
Experiments

Reference
Models Sample

Size * Outcomes

PLGA, PEG

Ac2-26
(N-formyl

peptide
receptor

2 agonist)

Collagen IV
Collagen

IV-binding
peptide

NA
LDLr-/- mouse
atherosclerotic

model
NA

Inhibit
inflammation

and
stabilize plaque

[73]

pNIPAM
anti-

inflammatory
peptide

Collagen I
Collagen
I-binding
peptide

NA

Human aortic
ECs; human

coronary artery
smooth

muscle cells

NA No animal
experiments [74]

Hyaluronan
3PO

(glycolysis
inhibitor)

CD44
(macrophage) Hyaluronan 0.5 and 9

Apoe-/- mouse
atherosclerotic

model; HUVECs
n = 10

Improves
endothelial

continuity and
inhibit

inflammation

[59]

Soy PC NA
CD36

receptor
(macrophage)

oxPCs NA

LDLr-/- mouse
atherosclerotic
model; primary

mouse and
THP-1 derived
macrophages

n = 6

1.4-fold higher
accumulation in

aortic lesion
areas

[75]

Lipid, PEG CaMKIIγ
siRNA

Stabilin-2
(macrophage) S2P peptide NA

LDLr-/- mouse
atherosclerotic

model;
HeLa-Luc, RAW

264.7 and
HEK-293 cells

n = 7–9 per
group,

2 groups
Stabilize plaque [76]

PEG,
superparam-
agnetic iron

oxide

microRNA-
146a

Class A
scavenger
receptors

(macrophages
and ECs)

microRNA-
146a 1.89

Apoe-/- mouse
atherosclerotic

model
n = 54

Reduce and
stabilize
plaques

[77]

Lipid, PLGA
LOX-1
siRNA,

atorvastatin

CD44 (ECs);
apolipopro-

tein A-I
(macrophage)

apolipoprotein
A-I,

hyaluronic
acid

NA
HUVECs;

THP-1 derived
macrophages

n = 66

Reduce 39%
plaque size, 63%

lipid
accumulation,

and 68% CD68+
macrophage

content

[78]

Abbreviations: MAECs = mouse aortic endothelial cells; HUVECs = human umbilical vein endothelial cells;
VCAM-1 = vascular cell adhesion molecule-1; ECs = endothelial cells; PEG = polyethylene glycol; PCL =
polycaprolactone; cRGD = cyclic arginine–glycine–aspartic acid; PLGA = poly lactic-co-glycolic acid; pNIPAM
= poly(N-isopropylacrylamide); PC = phosphatidylcholine; oxPCs = oxidized phosphatidylcholines; LOX-1 =
oxidized LDL receptor-1. * The number of animals used in animal experiments.

2.2.1. Targeting Damaged or Immature ECs

In the initial phase of atherosclerotic plaque formation, aberrant lipid metabolism,
inflammatory response, oxidative stress, and blood flow disturbances trigger EC activation
and dysfunction. This leads to the expression of numerous adhesion molecules and inflam-
matory cell chemokines, including E-selectin, intercellular adhesion molecule 1 (ICAM-1),
vascular cell adhesion molecule 1 (VCAM-1), and monocyte chemoattractant protein 1
(MCP-1) [79]. Phospholipid molecules modified with the VCAM-1 target VHP peptide,
ultra-small paramagnetic iron oxides, and rapamycin showed therapeutic efficacy equiva-
lent to that of low-dose rapamycin and allowed for the visualization of early atheroscle-
rotic lesions [68]. Liposome nanoparticles loaded with cyclopentenone prostaglandin and
VCAM-1 antibodies specifically targeted damaged arterial ECs in atherosclerotic mice and
exhibited anti-inflammatory, apoptosis-promoting, anti-adipogenic, and cytoprotective
properties similar to heat shock proteins. This resulted in reduced lipid accumulation in
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the arterial wall [69]. Additionally, Tang et al. discovered that encapsulated colchicine
can inhibit the progression of atherosclerotic plaques through blocking the NF-κB/NLRP3
pathway. They also found that poly lactic-co-glycolic acid (PLGA) nanoparticles functional-
ized with polyethylene glycol (PEG) may prevent MPS scavenging, prolong cycle time, and
boost the probabilities of binding VHPK peptide with VCAM-1 on inflammatory ECs [15].

ανβ3-integrin is one of the common specific targets of neovascular ECs. Angiogenesis
inside the plaque is a sign of plaque instability, and avoiding neovascularization is a success-
ful strategy for slowing the progression of early plaques to vulnerable plaques. Combining
ανβ3-targeted paramagnetic fumagillin nanoparticles with atorvastatin showed antithrom-
botic and plaque-stabilizing effects [70]. CD31 antibody staining indicated a correlation
between its therapeutic effect and the suppression of intraplaque angiogenesis [71]. Mean-
while, the transition to vulnerable plaques in AS are encouraged to form by neutrophil
extracellular traps, which are formed through the assembly of cytoplasmic and granular
proteins on stents of de-concentrated stained monomers with the aid of neutrophil elas-
tase [80]. In order to overcome the short half-life and lack of specific targeting of sivelestat
(SVT), a competitive inhibitor of neutrophil elastase, Shi et al. developed the SVT liposome
modified with cRGD peptide, which slows the progression of atherosclerosis by stabilizing
and reducing the plaque area [72].

2.2.2. Targeting Exposed Collagen

The extracellular matrix of the artery wall contains a large quantity of collagen IV;
however, ECs normally separate collagen and the blood. The quantity of collagen IV in the
artery wall rises with the formation of atherosclerotic plaques, and collagen IV becomes
more readily exposed following endothelial damage [81].

Several studies have demonstrated that collagen IV exposed in plaques is an effective
target for drug-loaded nanoparticles. Fredman et al. encapsulated a small fragment of
annexin A1 (Ac2-26) into collagen IV-binding peptide-modified polymer nanoparticles to
reduce plaque endothelial cell oxidative stress and increase the interleukin-10 (IL-10) level,
thereby stabilizing plaques through inhibiting inflammatory progression [73]. Following an-
gioplasty, mechanical disruption to the endothelium layer causes collagen exposure, which
promotes platelet adhesion and activation and sets off an inflammatory chain reaction
that finally leads to restenosis. Anti-inflammatory peptide loading via collagen-targeted
sulfated poly(N-isopropylacrylamide)-modified nanoparticles allows for binding to ex-
posed collagen to reduce platelet adhesion. Meanwhile, the release of anti-inflammatory
peptides reduces inflammation of endothelial and smooth muscle cells and promotes
endothelialization to inhibit postoperative restenosis [74].

The effectiveness with which modified peptides target plaques varies depending on
the target. Kim et al. conducted a systematical comparison in an Apo E-/- mouse model
and discovered that cRGD targeted early atherosclerotic plaques better than collagen IV-
targeted peptides with the identical, conditionally modified iron oxide nanoparticles [82].
To optimize drug delivery efficacy, future drug-loaded nanoparticle assemblies should
include not only the affinity differences between various targets but also the selection of
ligands with higher affinities for plaques at the different stages of lesions.

2.2.3. Targeting Aggregated Macrophages in Plaques

Macrophages are crucial to the course of atherosclerotic disease. As discussed in
Section 2.2.1, ECs undergo biochemical and functional alterations in response to various
stimuli throughout the early stages of atherosclerosis. These changes direct monocytes
toward chemotaxis, adhesion, infiltration of the local sick arterial wall, and macrophage
differentiation, which leads to the creation of the first plaque. The amount of macrophages
aggregated inside the plaque promotes endothelial oxidative stress and inflammatory
response, as well as the local infiltration of inflammatory cells and plaque expansion [83].
On the surface of macrophages localized to atherosclerotic lesions, an increase in mannose
receptor (CD206) has been measured, which is often used as a target for macrophages in
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plaques for nanoparticle design. In addition, monocytes differentiate into macrophages,
with an increased expression of scavenger receptors on the cell membrane, including
CD-36, SR-BI, and MSR-A [84–86]. Oxidized phosphatidylcholine (oxPC) is abundant on
the surface of oxidized low-density lipoprotein (oxLDL) and is responsible for binding
to macrophages’ CD36 receptor in atherosclerosis. OxPC-modified liposomes showed a
significant affinity for the endothelial macrophage CD36 receptor in the THP-1 cell line, as
well as aortic lesions in LDL receptor-deficient (LDLr-/-) mice [75].

Nucleic-acid-loaded nanoparticles can be utilized to apply tailored therapies by
more accurately suppressing the activation of aberrant disease-related molecules or path-
ways, demonstrating significant therapeutic potential. Nanoparticles with siRNAs loaded
with macrophage receptor sta-bilin-2 binding peptide sequences inhibit Ca2+/calmodulin-
dependent protein kinase γ (CaMKIIγ) activity in diseased macrophages. This is achieved
through self-assembly, the down-regulation of effervescent receptor MerTK expression,
and late plaque stability. Their performance was evaluated in an atherosclerotic mouse
model, demonstrating exceptional targeting efficiency, biocompatibility, and therapeutic
effectiveness [76]. Bai et al. constructed three-dimensional spherical nucleic acid nanostruc-
tures using oligonucleotide RNA-146a, which naturally targets class A scavenger receptors
on plaque macrophages. This modulating of the NF-κB pathway, linked to vascular inflam-
mation and the immune response without viral transfection, can effectively reduce and
stabilize plaques [77].

2.2.4. Other Targeting Strategies

The key issue to be addressed in the field of nano DDSs is how to improve the targeting
efficiency of nanoparticles so that pharmaceuticals may be delivered to lesions with maxi-
mum effectiveness. As the progression of atherosclerotic lesions is strongly correlated with
the functional changes in ECs and macrophages, as well as the cellular interactions between
them, in addition to nanoparticles that individually target highly expressed molecules on
ECs and macrophages, therapeutic modes that target both types of cells are being actively
investigated and show initial signs of efficiency. The core–shell nanoplatform developed by
Zhao et al. could target ECs and macrophages in atherosclerotic lesions by sequentially
releasing atorvastatin and siRNA, targeting the key protein molecule for lipid transport
between ECs and macrophages, lectin-like oxidized low-density lipoprotein receptor-1
(LOX-1). The plaque size regressed by 39%, and lipid accumulation was decreased by 63%
in comparison to the baseline group [78].

Cell membrane-coated nanoparticles (CNPs) have lately received increased atten-
tion for their potential use in nano DDSs. Synthesized nanoparticles are encapsulated in
separated cell membranes, keeping the membrane’s native components and signal recog-
nition molecules, which can significantly increase biocompatibility and circumvent MPS
scavenging to lengthen cycle time [87]. The majority of the cell membranes utilized in
CNPs to treat atherosclerosis are derived from erythrocytes, macrophages, and platelets.
Furthermore, the particular targeting potential of CNPs is significantly increased by uti-
lizing the intrinsic affinity of platelets and macrophages for plaque and inflammatory
homing effects [88]. Song et al. created platelet-membrane-coated nanoparticles that could
efficiently target atherosclerotic plaques, and these displayed 4.98-fold greater radiant
efficiency than control nanoparticles [89]. Chen et al. created platelet-membrane-coated
mesoporous silicon nanoparticles that delivered anti-CD47 antibodies. Platelet membranes
serve to avoid immune identification and target atherosclerotic plaques, whereas the CD47
antibody allows for the normal removal of necrotic cells, stabilizes plaques, and lowers
platelet activity, hence reducing the risk of thrombosis [90]. Platelet-membrane-coated
nanoparticles can target subclinical sections of arteries at risk of plaque development, as
well as actual atherosclerotic plaques. This has therapeutic implications for the preven-
tion of early occult plaques and plaque development [91]. In in vitro experiments and
atherosclerotic mouse models, macrophage-membrane-coated biomimetic nanoparticles
loaded with anti-inflammatory and anti-proliferative drugs like rapamycin and colchicine
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demonstrated good therapeutic efficacy and biocompatibility, confirming their excellent
targeting properties based on macrophage homing action [17,92]. Modifying macrophage
membrane coatings with CD47 and α4/β1-integrin decreased MPS clearance of nanopar-
ticles through immune evasion. Additionally, α4/β1-integrin increased the targeting of
inflammatory ECs in plaques [17]. Liu reported a macrophage-membrane-encapsulated
ROS-responsive nanoparticle, which was validated in ApoE-/- mice in terms of its good
targeting and release of loaded drugs in response to the high-level ROS environment at
the lesion. Furthermore, the macrophage membrane encapsulation reduced the level of
inflammation [93].

3. Localized Direct Delivery of Drug-Loaded Nanoparticles in the Vessel Wall

Unlike systemic delivery, interventional devices can administer medications directly
to the site of the lesion, resulting in better local drug retention. Restenosis is now the most
prevalent cause of vascular dysfunction following stent placement or balloon angioplasty.
Thrombosis and stenosis are induced by excessive proliferation of endothelial and smooth
muscle cells, resulting in early mechanical damage to the endothelium and arterial wall [94].
Antiproliferative drug-eluting stents (DESs) and drug-coated balloons (DCBs) are now
being employed in clinical settings. The first generation of DESs, laden with sirolimus and
paclitaxel, outperformed bare stents in suppressing restenosis. Second-generation DESs,
loaded with everolimus and zotarolimus, are currently being assessed in terms of safety and
efficacy [95,96]. Nevertheless, it was revealed that the pure drug coating had a poor local
adhesion rate, and the medication’s potency was only sustained for a short period. Drugs
that spread throughout the body in the bloodstream have a risk of causing adverse reactions;
for instance, anticoagulants are prone to causing bleeding, and antiproliferative drugs are
potentially carcinogenic [97]. Using nanoparticles as coatings for interventional devices not
only enhances the absorption of drugs by improving endocytosis and extending the period
of effectiveness but also reduces the risk of drug diffusion and raises local adhesion stability
through target modification [98]. Localized delivery of nanoparticles to the vessel wall can
be roughly separated into two routes: intimal and media-adventitial delivery (Figure 3).
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Figure 3. Localized direct delivery of drug-loaded nanoparticles. The vessel wall structure can be
divided into three parts: intima, media, and adventitia [99]. The most common method of delivering
nanoparticles locally to the vessel wall is based on regular nano-coated devices, such as nano-coated
balloons or stents, which transfer nanoparticles to the intima when the device reaches the vessel
intima. Furthermore, nanoparticles can be injected into the media or adventitia of the vessel wall
from or out of the vessel lumen.

3.1. Intimal Route Delivery

The delivery of nanoparticles to the intima of the vessel wall is mainly based on
conventional nano-coated stents or balloons (Table 5). Nanoparticle-eluting stents exhibit
greater absorption rates and a longer effective medication action period compared to drug-
impregnated stents. The implantation of cationic NP-eluting stents encapsulated with the
fluorescent marker FITC, which was accomplished using a novel cationic electrodeposition
coating technique, resulted in significant FITC fluorescence in the intima and mid-layer
of the vessel wall of stented segments for up to 4 weeks without exacerbating injury
or inflammation. By contrast, no significant FITC fluorescence was found in arteries
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implanted with polymer-based FITC-eluting stents or bare metal stents [100]. Sirolimus
was encapsulated in polyester-based polymers to form 100–400 nm nanoparticles, which
were delivered to the coronary arteries of a pig model through a porous balloon. At 26 days
after implantation, the sirolimus concentration remained higher than the target therapeutic
level (1 ng/mg) with a relative reduction in stenosis, and without lengthy retention in the
rest of the body [101]. The distribution and diffusion properties of 400 nm liposomes used
for delivering sirolimus were investigated during rabbit iliac artery balloon angioplasty.
The findings revealed that liposomes were evenly distributed throughout the artery wall
and tended to spread progressively from the intima to the adventitia [102].

Table 5. Drug-loaded nanoparticles delivered by intimal route.

Nanocarrier Cargo Delivery
Method

Device
Material

Coating
Technology

Experiments
References

Models Sample
Size * Outcomes

Chitosan,
PLGA NA Stent Stainless-

steel

Cationic
electrode-
position

Porcine
coronary artery
model; human
coronary artery

SMCs

n = 43

Comparable
levels of injury,
inflammation,

and neointimal
formation

[100]

Polyester-
based

polymers
Sirolimus Balloon NA

Drug
priming

after laser
drills

Porcine
coronary artery

model
n = 130

Reduce stenosis
in formulation-

treated sites
[101]

Phospholipid Sirolimus Balloon NA NA Rabbit iliac
arteries model NA

Diffusion from
intima to
adventitia

[102]

PLGA miRNA-126 Stent/Balloon NA Electrostatic
coating

Rabbit iliac
arteries model;

HUVECs

10 arteries
per group,
2 groups

Inhibit
neointimal
formation

[103]

TiO2
nanotubular NA Stent Titanium NA

Rabbit
restenosis

model
n = 14

Accelerate
restoration of a

functional
endothelium

and reduce 30%
stenosis

[104]

TiO2
nanotubular Ag Stent Titanium

Electrochemical
anodization

and UV
irradiation

Rabbit
extracorporeal

circulation
model; rat

abdominal aorta
model

NA

33% decrease
in the

cross-sectional
area of the

hyperplastic
tissue

[105,106]

PLGA

Docetaxel;
SZ-21

(platelet
IIb/IIIa
receptor

antibody)

Stent Stainless-
steel

Coaxial elec-
trospray
process

Bama minipigs;
HUVECs and

HUASMCs
n = 20

Inhibit
thrombosis and

in-stent
restenosis

[107]

Abbreviations: SMCs = smooth muscle cells; PDMS = polydimethylsiloxane; PLGA = poly lactic-co-glycolic acid;
PTA = percutaneous transluminal angioplasty; ATX = atherectomy; HA = hyaluronic acid; SA = sodium alginate.
* The number of animals used in animal experiments.

In addition to incorporating standard anti-inflammatory and anti-proliferative chemi-
cal nanoparticles, gene-eluting stents and TiO2 nanotube-coated stents have demonstrated
exceptional stenosis resistance. A miR-126-dsRNA-containing nanoparticle (miR-126-NP)
inhibited insulin receptor substrate 1 (IRS-1) to reduce vascular smooth muscle cell prolifer-
ation and migration. In a rabbit restenosis model, miR-126-NP-coupled stents substantially
prevented intimal development [103]. When a titanium bare stent with surface-deposited
non-drug-loaded TiO2 nanotubular arrays was implanted into a rabbit iliofemoral artery hy-
perinflation model, the extracellular matrix secreted during functional endothelial recovery
integrated into the surface of the TiO2 nanotubular arrays, and the stenosis rate was re-
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duced by 30% compared with the control group after 28 days [104]. TiO2 nanotubes coated
with Ag nanoparticles have bactericidal activity due to the delayed release of Ag+, and
UV irradiation increases their anticoagulant capability. They offer considerable promise
for implanted device applications in the cardiovascular system, since they specifically
decrease smooth muscle cell proliferation and macrophage adhesion without delaying
endothelialization and lowering inflammatory responses and proliferation [105,106].

It is also worth noting that the sequential release of antithrombotic and antiproliferative
nanoparticle-coated stents inhibited the antiproliferative medicines’ effect on endothelial-
ization. Du et al. created a core–shell structure coat made up of the platelet glycoprotein
IIb/IIIa receptor monoclonal antibody SZ-21 wrapped around a core of the antiproliferative
chemical docetaxel. It was sprayed to the surface of a stainless-steel stent using coaxial elec-
trospray to enable sequential drug release. In a pig coronary artery model, the coating was
shown to promote endothelialization while inhibiting neoplastic endothelial growth [107].

Implantable cardiovascular devices are generally coated with nanoparticles through
spraying, impregnation, cation electrodeposition, and electrostatic adsorption. Iyer et al.
assessed the efficacy of drug transfer to the arterial wall from DCBs and discovered that
the acrylic-based hydrogel coating had the highest efficacy of drug transfer (95%), signifi-
cantly greater than that of the impregnation coating (20%) and electrostatic coating (60%)
techniques under flow conditions [108].

3.2. Tunica Media and Adventitial Route Delivery

In a balloon injury model, vascular epithelial cells differentiate into diverse phenotypes
in response to vascular damage and inflammation, with fibroblasts changing into smooth
muscle-like cells and leading to stenosis [109]. Localized gene transfer from the adventitia
to the intima in the vessel wall might have a therapeutic effect on decreasing restenosis
and vascular remodeling [110]. Drug administration from the vascular lumen may impede
enough drug diffusion into the media and adventitia to suppress smooth muscle cell and
fibroblast proliferation, as well as delay endothelialization and impair long-term lumen
patency. In light of this difficulty, medication administration via microneedle to the tunica
media or the adventitial route is a comprehensive method for both sides (Table 6). Lee et al.
added 200 µm long microneedles (MNs) to the balloon using conformal transfer molding
and UV curing, allowing for medication loading. Two PVA scaffolds with variable elastic
moduli (52 and 183 kPa) were employed for in vitro release experiments. The MNs could be
penetrated to a depth that would not injure the media layer but would sufficiently overcome
the endothelium (penetration depths between 10 µm and 500 µm) [111]. A bullfrog catheter
(Mercator MedSystems, Emeryville, California) is a micro-infusion device that consists of a
balloon and a drug-injection component that penetrates the mid-membrane and epithelium
to deliver the drug and, unlike drug coatings, has a flexible regimen for injecting the
drug that can be adapted as needed [112]. Ang et al. demonstrated the sustained release
of sirolimus in the artery for 28 days and a reduction in the inflammatory response in
the damaged vessel by injecting sirolimus nanoliposomes via bullfrog catheter into the
vessel wall of a porcine femoral artery balloon injury model, resulting in a significant
decrease in the rate of luminal stenosis and neointimal area when compared to the control
group [113]. In a rat aortic wire injury model, it has been validated that adventitial injection
of hyaluronic acid/sodium alginate (HA/SA) hydrogel loaded with PLGA rapamycin
nanoparticles inhibited proliferation and inflammatory cell aggregation [114]. In addition,
the rapamycin-loaded PLGA nanoparticle/pluronic gel system was delivered through
the outer membrane to reduce phosphorylation of S6 kinase (S6K1), which significantly
inhibited smooth muscle cell proliferation at both 14 and 28 days, whereas the inhibitory
effect of rapamycin applied alone through the outer membrane re-bounded at 28 days [115].
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Table 6. Drug-loaded nanoparticles delivered by tunica media and adventitial route.

Nanocarrier Cargo Delivery
Method

Device
Material

Coating
Technology

Experiments
Reference

Models Sample
Size * Outcomes

PDMS Paclitaxel Microneedle
balloon NA UV cured

bonding

Rabbit iliac
arteries

atherosclerosis
model

n = 12
Greater patency

and inhibit
immunity

[111]

NA Dexamethasone
Bullfrog

Micro-Infusion
Device

NA NA

Patients with
symptomatic

peripheral artery
disease receiving

PTA or ATX

n = 262 Prevent
restenosis [112]

Lipid Sirolimus
Bullfrog

Micro-Infusion
Device

NA NA Mixed breed pigs n = 16

Reduce
neointima area
and neointima

area

[113]

PLGA Sirolimus
Hydrogel

adventitial
injection

HA/SA NA Rat aortic wire
injury model NA

Inhibit intimal
hyperplasia and

immunity
[114]

PLGA Sirolimus
Pluronic gel

periadventitial
application

Kolliphor
P407 NA

Rat balloon
injury model;

SMCs
NA Inhibit intimal

hyperplasia [115]

Abbreviations: SMCs = smooth muscle cells; PDMS = polydimethylsiloxane; PLGA = poly lactic-co-glycolic acid;
PTA = percutaneous transluminal angioplasty; ATX = atherectomy; HA = hyaluronic acid; SA = sodium alginate.
* The number of animals used in animal experiments.

4. Discussion and Prospects

Nanoparticles have steadily garnered several medicinal applications over several
decades of development, including medication delivery, bio-imaging, and regenerative
medicine. However, they encounter a variety of problems related to aspects such as
biosafety, biodistribution and clearance, and drug loading and release [116]. The majority
of conclusions regarding the toxicity, distribution, and metabolism of nanoparticles are
based on the findings of short-term exposure experiments, and the majority of pharmacoki-
netic assessments of drug-loaded nanoparticles focus on the delivered drug rather than
the delivery vehicle. Consequently, one of the causes for insufficient safety evaluations
of nanoparticles is a lack of studies on the carrier’s metabolism and excretion, which also
serves as a substantial obstacle to nanoparticle clinical translation. Several studies have
demonstrated that the accumulation of nanoparticles in various organs might produce an
inflammatory response and that the distribution patterns of these particles within distinct
organs may be more directly related to their size [117–119]. The degree of biocompati-
bility of a nanoparticle is now recognized to be determined by its inherent physical and
chemical features, such as size, shape, surface characteristics, and the human environment
with which it interacts [120]. The nanoparticles’ surface is the interface that comes into
contact with the human body and plays an important role in mediating interactions of
nanoparticles with blood components or cells. These interactions might take the form
of cellular physiological function control or toxicity caused by blood incompatibility, cell
membrane disruption, immunological responses, accumulation in organs and tissues, and
so on. Amir et al. noted mechanisms for nanoparticle damage to cell membranes such as
membrane perturbation, oxidative stress signaling, signaling molecule destruction, and
genotoxicity. Due to its strong association with cellular internalization efficiency, the surface
charge of nanoparticles may be one of the most crucial surface parameters influencing their
toxicity [121]. Mokshada et al. discovered that after intravenous injection, the nanoparticle
biodistribution coefficient (NBC) was highest in the liver and spleen, with 17.56% ID/g
(for nanoparticles per gram of tissue rather than payload) and 12.1% ID/g, respectively.
By contrast, other tissues (heart, lung, brain, kidney, stomach, colon, pancreas, bone, skin,
and muscle) had NBC levels less than 5% ID/g. Furthermore, based on this nanoparticle
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distribution data, they built a computer model to simulate the distribution and dynamics
of nanoparticles of various materials and qualities, which could be beneficial for future
evaluations of nanoparticle distribution features [122]. Beyond the ordinary nano DDSs,
the advent of nanorobots offers new opportunities for the treatment of atherosclerosis.
Nanorobots are tiny machines that can transform various energy sources into mechanical
forces and perform medical procedures. Nanorobots could be sent directly to the lesion
site for precise drug delivery or direct physical intervention, making them ideal for drug
delivery, tumor diagnostics, targeted therapy, minimally invasive surgery, and other ap-
plications. Nanorobots might be developed to recognize and adhere to atherosclerotic
plaques, releasing medications in the same way as typical drug-loaded nanoparticles do,
but with higher precision and efficiency. Additionally, nanorobots could be utilized to
remove plaque from blood vessels and restore vascular patency [123] (Figure 4).
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This paper investigated the use of nanoparticles in the management of atheroscle-
rotic disease; however, nanoparticles have several notable applications in the diagnosis of
atherosclerosis, including the identification of vulnerable plaques and the use of nanopar-
ticles with both therapeutic and diagnostic functions [125,126]. Nonetheless, even if the
number of nanoparticle kinds is rapidly increasing, very few of them have gone to pre-
clinical or clinical phases, and the majority of research has only formed conclusions from
tests conducted in rodents (mice, rats) or other mammals (rabbits, pigs, dogs, and pri-
mates) [127]. Numerous nanoparticles have produced fairly acceptable results in cell
or animal experiments; nonetheless, the evidence about their toxicity, biocompatibility,
metabolic breakdown pathways, and efficacy is insufficient due to small sample sizes. On
the other hand, the features of several batches of lab-prepared nanoparticles may differ,
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and evaluating different batches of nanoparticles may yield a more stable evaluation result
for a thorough understanding of nanoparticle attributes. Furthermore, the majority of the
experimental research examined in this work yielded favorable outcomes, but the negative
impacts or qualities of nanoparticles that need to be improved are hardly discussed. A
multidimensional focus on all elements of nanoparticle properties, as well as a combination
of all of the good features of nanoparticles, are important concerns that must be addressed
in future nanoparticle design.

5. Conclusions

Overall, as nanomedicine advances, the possibilities for the clinical translation of
nanotechnology in disease diagnosis and therapy tend to be quite promising. DDSs have
alleviated numerous constraints in the use of medications in the treatment of atheroscle-
rosis, allowing for more accurate targeting of lesions and giving new directions for the
development of future pharmacological treatments and interventions. To improve the
therapeutic efficiency of drug-loaded nanoparticles, more efficient targeting strategies,
potent therapeutic agents, and superior fabrication procedures must be investigated and
tested in order to provide more therapy choices for atherosclerosis.
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