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Abstract

Buried ionizable groups in proteins often play important structural and functional roles. 

However, it is generally challenging to study the detailed molecular mechanisms solely based 

on experimental measurements. Free energy calculations using atomistic simulations, on the other 

hand, complement experimental studies and can provide high temporal and spatial resolution 

information that leads to mechanistic insights. Nevertheless, it is also well recognized that 

sufficient sampling of such atomistic simulations can be challenging, considering that structural 

changes related to the buried charges may be very slow. In the present study, we describe a 

simple but effective enhanced sampling technique called replica exchange with charge tempering 

(REChgT) with a novel free energy method, multisite λ dynamics (MSλD), to study two systems 

containing buried charges, pKa prediction of a small molecule, orotate, in complex with the 

dihydroorotate dehydrogenase (DHOD), and relative stability of a Glu-Lys pair buried in the 

hydrophobic core of two variants of Staphylococcal nuclease (SNase). Compared to the original 

MSλD simulations, the usage of REChgT dramatically increases sampling in both conformational 

and alchemical space, which directly translates into a significant reduction of wall time to 

converge the free energy calculations. This study highlights the importance of sufficient sampling 

towards developing improved free energy methods.
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Introduction

Although it is inherently unfavorable to bury ionizable groups in the hydrophobic core 

of proteins due to the large desolvation free energy penalty, buried ionizable groups in 

proteins play important functional roles in many biological processes, such as catalysis,1–

4 translocation of metal ions5 and protons,6–9 and electron transport.10 Understanding 

the properties of these buried charges and dominant factors of stabilization is important 

in establishing structure-function relationships in these proteins, and could further guide 

the rational design of novel enzymes. However, detailed molecular mechanisms solely 

based on experimental measurements are often difficult to discover. High spatial and 

temporal resolution information, such as protonation state of the ionizable groups, protein 

conformational dynamics, and fluctuations of penetrated water molecules (if present), are 

often required to elucidate the physical basis of how buried ionizable groups are stabilized to 

exert critical functions.

Free energy simulations using explicit solvent all-atom force fields, on the other hand, 

can complement experimental studies and provide the required structural and dynamic 

information that leads to mechanistic insights. For example, thermodynamic integration 

(TI) has been applied to study a series of Staphylococcal nuclease (SNase) variants with 

buried Glu-Lys pairs.11,12 Constant pH molecular dynamics using multisite λ dynamics 

(MSλD) has been utilized to comprehensively investigate the buried ionizable residues of 

the matrix-2 (M2) protein from influenza A virus.13 Important insights have been obtained 

from these free energy simulations to better understand the molecular-level functioning of 

these proteins. However, obtaining sufficient sampling can sometimes be challenging for 

systems with buried charges, as reported previously in numerous studies.11,14–16 In many 

cases, substantial rearrangement of the local structure is involved, and sufficient sampling 

of such conformational changes is required to reliably estimate the corresponding free 

energy values. Therefore, we need to either perform extensive standard molecular dynamics 

simulations or combine enhanced sampling techniques into free energy simulations of such 

challenging systems.

Many enhanced sampling methods have been developed and applied to free energy 

simulations, such as different variants of replica exchange methods including replica 

exchange with solute tempering,17–21 grand canonical Monte Carlo,22–25 Gaussian 

accelerated molecular dynamics,26–29 weighted ensemble,30–32 metadynamics,33–36 

orthogonal space tempering37–40 and expanded ensemble.41–43 For more complete reviews, 

we refer the reader to references.44–49 Despite significant advancements in enhanced 

sampling methods, sufficient sampling of systems with buried charges in many cases 

remains challenging. In the present work, we have carefully analyzed MSλD free energy 

simulations of a small molecule, orotate, in complex with the dihydroorotate dehydrogenase 

(DHOD) (Figure 1A), and found that local conformations related to the buried ionizable 

carboxylate group of orotate are kinetically trapped and undergo very slow transitions, 

which creates a sampling bottleneck for free energy calculations aiming to predict the 

pKa of orotate. To increase sampling efficiency of MSλD simulations in such systems, 

we propose a simple but effective approach called replica exchange with charge tempering 

(REChgT), where partial charges of residues related to the local interaction network are 
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reduced to facilitate necessary structural rearrangement, and replica exchange is used to 

recover the correct ensemble. Applying this strategy to study an even more challenging 

system, the relative stability of a Glu-Lys pair buried in the hydrophobic core of two 

variants of SNase (Figure 1B), suggests that the usage of REChgT can significantly increase 

sampling as well as increase the convergence rate of free energy calculations. This work 

highlights the importance of sufficient sampling towards developing improved free energy 

methods.

Methods

MSλD methodology

The MSλD methodology has been reported previously, and we refer the readers to 

references50–53 for more details. In brief, the potential energy of the system is shown in 

Eq. 1,

V = V x0, x0 + ∑
s = 1

M
∑

i = 1

Ns
λsi V x0, xsi + V xsi, xsi + ∑

s = 1

M
∑

i = 1

Ns

∑
t = s + 1

M
∑

j = 1

Nt
λsiλtjV xsi, xtj + V bias λ

(1)

where x0 and xsi are coordinates of the environment and substituent i at site s, respectively. M
is the number of sites and Ns is the number of substituents at site s. V bias λ  is the biasing 

potential that is critical for efficient sampling in alchemical space and is a function of λ’s 

only.52,53 As shown in Eqs. 2–6 below, there are four types of biasing potentials utilized in 

the latest framework of MSλD,

V bias λ = V fixed λ + V quadratic λ + V end λ + V skew λ

(2)

V fixed λ = ∑
s

M
∑
i

Ns
ϕsiλsi

(3)

V quadratic λ = ∑
s

M
∑
i

Ns

∑
j > i

Ns
ψsi, sjλsiλsj

(4)

V end λ = ∑
s

M
∑
i

Ns

∑
j ≠ i

Ns
ωsi, sjλsiλsj/ λsi + 0.017

(5)
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V skew λ = ∑
s

M
∑
i

Ns

∑
j ≠ i

Ns
χsi, sjλsj 1 − e−λsi/0.18

(6)

where ϕsi , ψsi , ωsi, sj  and χsi, sj  are biasing potential parameters. The linear function 

V fixed λ  is to make the free energies at end states similar, V quadratic λ  is designed to remove 

the quadratic component of free energy barriers for transitions between two end states, 

V end λ  is used to avoid trapping at the deep free energy minimum near the end state, and 

V skew λ  is an additional term to improve the fitting of free energy profiles. Note that in 

charging free energy calculations, the medium usually responds linearly to the introduction 

of charges, so the free energy varies predominantly quadratically with λ. Therefore, the free 

energy profiles in this work can be well approximated by the summation of V fixed λ  and 

V quadratic λ  (see Results and discussion for more details).

Free energy estimation

For MSλD simulations, we collect the λ trajectories and calculate free energies using the 

estimator in Eq. 7.51

ΔGMSλD λsi λsj ≈ − kBTln P λsj > 0.99
P λsi > 0.99 − V bias λsj = 1 − V bias λsi = 1

(7)

For REChgT simulations where replica exchange was performed among thermodynamic 

states/conditions with different charge scaling factors (see Free energy simulations of 

DHOD/orotate below for details), we collect all conformations under the condition of charge 

scaling factor of 1.0 and use the estimator in Eq. 7 to compute relative free energies. 

However, for 2D REChgT simulations where exchange was attempted between replicas 

with different charge scaling factors and V bias λ  (see section Free energy simulations of 

SNase mutants for details), we utilized the binless weighted histogram analysis method 

(WHAM)54,55 to unbias each snapshot and compute relative free energies. Specifically,

fi = − ln ∑
j = 1

K
∑

n = 1

Nj exp −βV total bias
i Xjn

∑k = 1
K Nkexp fk − βV total bias

k Xjn

(8)

< P η > = ∑
j = 1

K
∑

n = 1

Nj δ η Xjn − η
∑k = 1

K Nkexp fk − βV total bias
k Xjn

(9)

Liu and Brooks Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2024 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where K is the number of replicas. Nj is the number of snapshots in condition j. V total bias
k Xjn

is the total biasing potential energy computed at condition k for snapshot n sampled at 

condition j, which has two components: V bias λ  as shown in Eq. 2 and the change in 

electrostatic interactions due to charge scaling. Although it is mathematically equivalent 

to use the total potential energies in Eqs. 8 and 9, the use of V total bias greatly reduces the 

computational cost associated with recomputing energies for sampled snapshots. η was 

defined such that a given snapshot is categorized as either one of the end states (i.e., with λ 
cutoff 0.99) or an intermediate state.

Preparation of the DHOD/orotate system

The crystal structure of E. coli DHOD protein in complex with small molecule orotate 

was obtained from the RCSB protein data bank (PDB ID: 1F76)56 and used as our initial 

structure. The cofactor FMN and water molecules in the crystal structure were also kept. 

The N- and C-termini of DHOD were capped with an acetyl group and N-methyl amide, 

respectively. The system was solvated in a cubic water box, with at least 12Å from the 

protein to the nearest box edge. A proper amount of Na+ and Cl− ions were added to bulk 

water using the MMTSB tool set57 to neutralize the system and to mimic the physiological 

condition of 150 nM NaCl.

For the MSλD simulations, we need to construct a hybrid orotate molecule where all 

atoms belonging to the maximum common substructure (MCS) are represented once and 

atoms unique to either the protonated or unprotonated state are represented explicitly. The 

identification of the MCS and assignment of partial charge to each atom based on the charge 

renormalization scheme were achieved through the automated workflow msld_py_prep.58 

In conventional MSλD simulations and the free energy perturbation (FEP) like windowing 

approach, a two-state model (i.e., one protonated state and one unprotonated state) was used 

for the hybrid orotate molecule. In REChgT simulations, the hybrid orotate was represented 

by a three-state model that considers proton tautomerism, i.e., including one unprotonated 

state and two protonated states. Inclusion of such proton tautomerism is expected to 

facilitate sampling of the protonated states, but have little impact on the timescale of 

forming or breaking hydrogen bonds (HBs). Therefore, it should not affect the comparison 

of sampling efficiency of the rate-limiting structural reorganization, that is, rearrangement of 

the local HB interaction network (see Figure 4).

Preparation of the SNase systems

Initial structures of the V23K/L36E and V23E/L36K mutants of the highly stable SNase 

variant, Δ+PHS, were obtained from PDB with IDs of 6AMF59 and 3NHH,60 respectively. 

Coordinates of water molecules and ions from the crystal structures were preserved. The N- 

and C-termini of SNase were capped with an acetyl group and N-methyl amide, respectively. 

PROPKA361,62 was used to determine the protonation states of titratable residues, and 

no residue was required to change its protonation state at pH 7, the pH representing the 

conditions of our simulated solution. The Glu-Lys pair at positions 23 and 36 of SNase 

were treated as hybrid residues in all of our simulations. The Glu and Lys residues were 

modeled with three and two states, respectively. The protein was solvated in a cubic water 
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box containing ~ 12,700 and 13,800 TIP3 water molecules for V23E/L36K (3NHH) and 

V23K/L36E (6AMF), respectively. This allowed for at least 12Å between the protein and 

the nearest box edge. A proper amount of Na+ and Cl− ions were randomly placed in bulk 

water using the MMTSB tool set57 to neutralize the system and to mimic the physiological 

condition of 150 nM NaCl.

Details of molecular dynamics simulations

All simulations were performed using pyCHARMM,63 a newly developed Python 

framework that embeds CHARMM functionalities and readily integrates with other 

Python functions and toolkits. The CHARMM/BLaDE platform64 was used to accelerate 

simulations on GPUs. Periodic boundary conditions were used in all simulations. All 

systems were modeled with CHARMM36m force field.65 The forces of van der Waals 

interactions were smoothly switched to zero at 12Å starting from 10Å. The particle mesh 

Ewald method66 was used to treat the long-range electrostatic interactions. SHAKE67 was 

applied to constrain any bond involving hydrogen atoms, which allowed for a time step of 2 

fs to integrate the equations of motion. Each system was first energy minimized to remove 

potential steric clashes. Short equilibration simulations at 298.15 K under NVT conditions 

were then performed for ~ 1 ns, with the force constant of harmonic restrains on protein 

Cα positions slowly reduced from 5kcal/mol/Å2 to zero. NPT simulations at 298.15 K and 1 

atm were carried out to allow the whole system to relax without any restraint in the system. 

The average box volume of the system during this NPT equilibration simulation was used to 

determine the box size of final production NVT simulations at 298.15 K.

Free energy simulations of DHOD/orotate

To obtain the best possible V bias λ  for MSλD simulations of DHOD/orotate, an FEP-like 

windowing approach was used to compute the free energy profile as a function of λ. 

Specifically, 11 windows were used with fixed λ values that were equally spaced between 0 

and 1. Each window was simulated for 18 ns, and three independent runs were performed. 

FastMBAR68,69 was used to compute free energy as a function of λ. The calculated free 

energy profiles were then fitted with function G = aλ + bλ 1 − λ , where a and b are biasing 

potential parameters for the fixed and quadratic terms, respectively. Average values of a and 

b over these three runs were used as the optimal parameters of V bias λ  in all later MSλD 

and REChgT simulations. Since the summation of V fixed λ  and V quadratic λ  approximated 

the free energy profile very well (see Figure S1), no endpoint or skew terms were used. We 

note that these simulations also provide an independent check on the subsequent REChgT 

calculations.

For the MSλD simulations, five independent runs were performed with different initial 

velocities. Each simulation lasted for 60 ns. For the REChgT simulations, partial charges of 

residues Lys 66, Asn 111, Ser 175 and Asn 177 of DHOD were scaled. These four residues 

interact strongly with the carboxylate group of orotate. Six replicas were used with charge 

scaling factors of 1.0000, 0.9018, 0.8132, 0.7333, 0.6613 and 0.5963, respectively. This 

allowed for sufficient weakening of strong local interactions while providing a reasonable 
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exchange acceptance ratio (~ 0.35 on average). Here, three independent runs were carried 

out, each for 40 ns/replica.

Free energy simulations of SNase mutants

We first used adaptive landscape flattening (ALF)52,53 to optimize V bias λ  for MSλD 

simulations of two SNase mutants. 50 iterations of 100-ps simulations were performed 

during the first phase of optimization, followed by 11 or 45 iterations of 1-ns simulations 

during the second phase for V23E/L36K (3NHH) and V23K/L36E (6AMF), respectively. 

Although it was unclear how many iterations we should run to make V bias λ  sufficiently 

optimal, the biasing parameters appeared to be converged at the end of our ALF procedure. 

For each system, the same V bias λ  obtained from the above ALF protocol was used in all of 

our production simulations using either the original MSλD or the REChgT method.

For the original MSλD simulations, we performed five independent runs, each lasting for 

60 ns. For REChgT simulations, we scaled the partial charges of all atoms in residues 

23 and 36, i.e., the Glu-Lys pair. Six replicas were used with charge scaling factors of 

1.0000, 0.9807, 0.9614, 0.9421, 0.9228, and 0.9035, respectively. Again, this was designed 

to allow the salt bridge between the Glu-Lys pair to break while facilitating sufficient 

exchange between neighboring replicas. The average exchange acceptance ratio was ~ 0.69 

for V23K/L36E (6AMF) and 0.56 for V23E/L36K (3NHH). Each REChgT simulation was 

30 ns/replica. For the 2D REChgT simulations, we had four replicas in the dimension of 

charge scaling, with scaling factors of 1.0000, 0.9678, 0.9357, and 0.9035, respectively. In 

the dimension of V bias λ , only V fixed λ  was varied (see Results and discussion for more 

details), with the fixed biasing parameters equally spaced with a spacing of 1.5 kcal/mol. 

For 3NHH, the fixed biasing parameters were −4.5 kcal/mol to 3.0 kcal/mol away from 

the original values obtained from ALF, which gave six replicas in the V bias λ  dimension 

and 24 replicas in total. For 6AMF, the fixed biasing parameters were −6.0 kcal/mol to 

4.5 kcal/mol away from the original values obtained from ALF, which gave eight replicas 

in the V bias λ  dimension and 32 replicas in total. Each 2D REChgT simulation was 100 

ns/replica, and the average exchange acceptance ratios were 0.55 and 0.54 for V23K/L36E 

(6AMF) and V23E/L36K (3NHH), respectively.

To compute the relative stability of SNase mutants when the Glu-Lys pair is changed from 

the charge-neutral form to the ionized form, we also performed MSλD simulations of Glu 

and Lys dipeptides in water. This corresponds to the unfolded states in the thermodynamic 

cycle (see Figure 2). Here we assume that the unfolded state does not form any stable 

structure such that the effect of protonation/deprotonation is primarily local and can be 

captured by simulating the corresponding residue in bulk water. Again, the hybrid Glu 

dipeptide was modeled with three states by considering proton tautomerism, and the 

hybrid Lys dipeptide was treated with a two-state model. For each dipeptide, we ran five 

independent MSλD simulations and each lasted for 10 ns.

To validate our λ dynamics simulation results, we also adopted a windowing approach to 

simulate the two SNase mutants. Here, both residues of the Lys-Glu pair were treated with 

a two-state model, and λprotonated
K  and λunprotonated

E  were kept the same in each window. There were 
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19 windows for each simulation, with λ values of 0.0, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 1.0, respectively. Each window lasted 

for 180 ns, and two independent runs were carried out for each SNase mutant. Free energies 

were estimated using FastMBAR.68,69

If we define ΔΔGfold N C  as the change in folding free energy when the Glu-Lys pair 

changes from the neutral form to ionized form, then, based on Figure 2, we can see that:

ΔΔGfold N C
= ΔGfold UC KH+ ⋅ E− FC KH+ ⋅ E− − ΔGfold UC KH+ ⋅ E− FN K ⋅ EH
= ΔGfold

C KH+ ⋅ E− − ΔGfold
N K ⋅ EH − ΔGU N C

= ΔGF N C − ΔGU N C + ΔGU N C
= ΔGF N C − ΔGU N C + ln10kBT pKa

Glu − ln10kBT pKa
Lys

= ΔGF N C − ΔGU N C + 2.303kBT 4.4 − 10.4

(10)

Note that ΔGF N C − ΔGU N C  in Eq. 10 can be calculated from our simulations. 

ΔGU N C  is to account for the protonation states of Lys and Glu under neutral pH in the 

unfolded state (i.e., bulk water here), which can be roughly estimated using the definition of 

the pKa for Lys and Glu residues.11

Results and discussion

Slow conformational transition could be rate-limiting in MSλD free energy simulations

In MSλD simulations, the alchemical parameters, λ’s, are treated as dynamic variables 

and spontaneously fluctuate between 0 and 1. Such reversible transitions in λ space are 

essential for free energy estimations, for example, when using the estimator in Eq. 7. As 

discussed in previous work,52,53 the biasing potential V bias λ  (see Eqs. 1–6) is used to 

flatten the alchemical free energy landscape, thus critical for obtaining efficient sampling in 

MSλD simulations. However, we also noticed that in challenging cases, even an optimal 

V bias λ  is not sufficient to generate fast reversible transitions in alchemical space, a 

necessary condition to obtain well-converged free energy results rapidly. For example, here 

we carried out MSλD simulations of a small molecule, orotate, in complex with the protein 

DHOD to compute the relative free energies when the carboxylate group of orotate is 

either unprotonated or protonated. This is an essential step in free energy based methods 

to predict the pKa of orotate in the DHOD receptor. We first tried to run many iterations 

of ALF, an automatic and well-established protocol, to flatten the alchemical free energy 

landscape and obtain an optimal V bias λ . Unfortunately, reversible transitions in λ-space 

were rarely observed in all trial runs (data not shown). To obtain the best possible V bias λ , 

we used an FEP-like windowing approach together with the multistate Bennett acceptance 

ratio estimator (MBAR)55,68 to compute the free energy profile as a function of λ, and 

fitted the free energy profile to obtain optimal parameters for V bias λ  (see Figure S1). 

As illustrated in Figure 3A, although the orotate molecule should sample both protonated 

and unprotonated states equally if the simulation is infinitely long based on thermodynamic 
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principles, it is kinetically trapped in either state throughout 60 ns of MSλD simulations. 

This demonstrates that an optimal V bias λ  alone is not sufficient for efficient sampling in 

alchemical space. Further examination of the MSλD simulation trajectories suggests that the 

carboxylate group of orotate is forming a complex HB interaction network with neighboring 

residues. Change in protonation state of orotate is tightly coupled to changes in such an 

interaction network. For instance, when orotate is unprotonated (run 5 in Figure 3A), the 

carboxylate group acts as an HB acceptor and interacts with the Nδ atoms of Asn 177 and/or 

Asn 111 (run 5 in Figure 3B), while protonated orotate (run 1 in Figure 3A) may act as 

a hydrogen bond donor and interact with the Oδ atom of Asn 111 (run 1 in Figure 3B). 

Breaking and reforming different HBs occurs slowly (at least tens of ns, as illustrated in 

Figure 3B), which causes slow transitions in alchemical space as well as slow convergence 

of free energy calculations.

Improved sampling and more rapid free energy calculation in REChgT simulations of 
DHOD/orotate

To accelerate this type of local structural rearrangement, we designed a simple but 

effective sampling method called replica exchange with charge tempering (REChgT). In 

this approach, partial charges of residues related to the local interaction network are reduced 

to weaken the interaction strength, thus facilitating necessary structural rearrangement. 

Here, we hypothesize that for systems with buried charges, many local strong interactions 

related to the buried charge are likely polar, such as HBs and salt bridges. Therefore, 

reducing electrostatic interactions by reducing the partial charges is probably one of the 

most effective and simplest approaches to weaken such interactions, thus lowering the 

barrier of structural reorganization. Furthermore, by incorporating replica exchange into 

this approach, it promotes mixing of conformations and at the same time allows us to 

recover the correct ensemble of no charge reduction. Applying REChgT to study the above 

orotate/DHOD system shows that the local structure is no longer trapped and more structural 

fluctuations can be observed compared to the original MSλD simulations (Figures 4A and 

B). For instance, for the HB formed between the oxygen atoms of the orotate carboxylate 

group and the Oδ atom of Asn 111, the original MSλD simulations could only sample either 

HB-formed or HB-broken states in a single simulation, while both states can be sampled 

in one REChgT simulation (Figures 4B). Although these distance probability distributions 

for atom pairs involved in the HB interaction network are not fully converged even in the 

REChgT simulations, as shown in Figures 4B, such improved sampling in conformational 

space appears to be sufficient to be translated into more exhaustive sampling in alchemical 

space (Figure 4C) and faster convergence of free energy calculations. As shown in Figure 

S4, two of our REChgT simulations require less than 10 ns to reach a self-consistent free 

energy estimation, which can not be achieved in 60 ns using the original MSλD simulations. 

Further comparison of free energy values obtained from REChgT simulations and the 

windowing approach with the MBAR estimator shows that the two approaches give the same 

results within uncertainty (Table 1), suggesting that REChgT does not introduce any bias in 

free energy calculations.
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Improved sampling and faster convergence of free energy calculation in 2D REChgT 
simulations of a more challenging system: SNase

To examine how general REChgT is and if REChgT remains effective in more challenging 

cases, we studied the relative stability of the Glu-Lys pair buried in the hydrophobic core of 

two SNase mutants, V23E/L36K (PDB ID: 3NHH60) and V23K/L36E (PDB ID: 6AMF59) 

of Δ+PHS. Non-replica exchange MSλD simulations were also performed as a comparison. 

As shown in Figure 5, there is insufficient sampling in alchemical space without replica 

exchange for both SNase mutants. At least two factors may contribute to this sampling 

issue: slow conformational relaxation and an imperfect V bias λ , the latter of which is 

optimized using ALF and we do not know how optimal it is in such challenging cases prior 

to any rigorous free energy calculations. These two problems have different origins and 

may need different strategies to be alleviated, but it is hard to separate their contributions 

solely based on the MSλD simulations. Compared to the above test case of DHOD/orotate 

where we performed another rigorous free energy calculation to obtain optimal V bias λ , the 

complications shown here is more frequently encountered and more general.

We first tried to directly apply REChgT by reducing partial charges of the Glu-Lys pair, 

assuming that slow structural transitions are the main cause of insufficient sampling. As 

shown in Figures S8 and S9, although improved sampling in alchemical space can be 

observed for both SNase mutants, it is still insufficient for well-converged free energy 

calculations within 20 ns. For instance, in the REChgT simulation of V23K/L36E (6AMF), 

Lys 23 sampled both protonated and unprotonated states, while Glu 36 was consistently 

trapped near the protonated state (Figure S8), implying that V bias λ  may not be sufficiently 

optimal to drive fast reversible transitions in alchemical space.

Instead of further optimizing V bias λ  using ALF, which has its own challenges if there 

is no easy way to obtain sufficient information in short trial simulations, we tried to 

further incorporate biasing potential replica exchange into REChgT, i.e., constructing a 2D 

replica exchange scheme. In one dimension, partial charges of residues related to the buried 

charge are reduced, and in the second dimension, V bias λ  is varied. Exchange is attempted 

between all nearest neighboring conditions (see Figure S10). Here, we assume that although 

V bias λ  from ALF may not be perfect, searching the biasing potential parameter space near 

the current V bias λ  using biasing potential replica exchange could find one condition that is 

able to sufficiently flatten the alchemical free energy landscape.70 Also, charging free energy 

profiles can often be well approximated by the summation of two terms, V fixed λ  and 

V quadratic λ  (see Figure S1 for example), and further examination of the performance of ALF 

in charging free energy calculations for the orotate/DHOD system has indicated that ALF 

can reliably optimize V quadratic λ , but not V fixed λ  (see Figure S11). Therefore, V fixed λ
together with partial charges of the Glu-Lys pair are varied among different conditions in 

the 2D REChgT scheme. This design aims to alleviate the two aforementioned problems, 

slow conformational relaxation and imperfect V bias λ , at the same time. As shown in 

Figure 6, reversible transitions in alchemical space indeed could be sampled in these 2D 

REChgT simulations, a significant improvement over the original MSλD simulations. We 

then used WHAM to estimate the folding free energy difference when the Glu-Lys pair 

is changed from charge-neutral to ionized form. As shown in Figure 7, the results are 
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highly consistent with those obtained from windowing approach together with the MBAR 

estimator. Moreover, it reaches self consistency within ~ 60 ns. Such a high convergence rate 

was not observed in the MSλD simulations.

Protonation states of the buried Glu-Lys pair in SNase

The well-converged free energy results in the present study also allow us to further examine 

the protonation state of this Glu-Lys pair in the hydrophobic interior of SNase protein. 

A previous experimental study59 has found that the free energy contribution due to the 

coupling between Lys23 and Glu36 in 6AMF is −2.4 kcal/mol at pH 7, which is similar to 

side chain HB strengths in proteins. Furthermore, it matches the coupling free energy for 

an analogous neutral pair (Lys-Gln) buried inside the same background protein. Therefore, 

it has been suggested that Lys23 and Glu36 prefer to be neutral when introduced to the 

SNase Δ+PHS protein. Based on Figure 7A, our simulation result is consistent with the 

experimental observation, and we predict that the neutral form is ~1 kcal/mol more stable 

than the charged form. Such preference of the Lys23-Glu36 pair being neutral inside SNase 

Δ+PHS has also been observed by previous TI simulations using the same force field.11

For the other Glu-Lys pair, Glu23-Lys36 in 3NHH, NMR spectroscopy has shown that the 

resonances of Glu23 are within the range normally observed for surface Glu residues.60 

Also, the coupling free energy between Glu23 and Lys36 was −5kcal/mol at pH 7,60 much 

stronger than that for the Lys23-Glu36 pair in 6AMF (−2.4 kcal/mol). These observations 

suggest that Glu23-Lys36 are charged inside the the protein. Unfortunately, our simulations 

(and previous TI simulations using the same force field11) did not recapitulate the suggested 

interpretation. Multiple factors may contribute to the discrepancies between our simulation 

and the experimental results. Considering that we only used an additive force field and 

did not consider electronic polarization, which may be essential for stabilizing buried ion 

pairs in SNase mutant,12 the level of agreement with experimental observations we observed 

here appears to be quite encouraging. Additionally, the interaction between a Ca2 +  ion and 

Asp21 seem to be very important for stabilizing the β1 − β2 loop,59 but we did not carefully 

optimize the parameters related to Ca2 +  to properly recapitulate the dynamic structure of 

β1 − β2 loop. This may contribute to a systematic shift of ΔΔGfold N C  for both mutants.

Conclusion

Buried titratable groups often play important functional roles in many biological processes. 

Therefore, there is a great need to understand their properties and stabilizing mechanisms 

for both theoretical and practical purposes. This requires obtaining high resolution spatial 

and temporal information of the system, such as protonation states of the ionizable 

groups, protein conformational dynamics, and fluctuations of penetrating water molecules 

(if present), which pose great challenges for both experimental and computational studies. 

In the present study, we developed an enhanced sampling method named REChgT for 

MSλD free energy simulations of systems with buried charges. Two test systems were 

studied, DHOD in complex with orotate and two SNase mutants with a buried Glu-Lys 

pair. We found that slow convergence in alchemical space was a direct result of slow 

conformational rearrangement related to the buried charges. Considering that many local 
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strong interactions related to the buried charge are likely polar, such as HBs and salt bridges, 

the key idea of REChgT is to reduce relevant electrostatic interactions by reducing the 

partial charges, thus lowering the barrier of structural reorganization. In comparison with 

conventional MSλD simulations, the use of REChgT could significantly increase sampling 

in both conformational and alchemical space. This directly translates into faster convergence 

of free energy calculations. For instance, both test cases require tens of ns/replica to 

achieve self-consistency when REChgT is utilized, which is unprecedented compared to 

the unaccelerated MSλD simulations.

The dramatic improvement of sampling efficiency in REChgT simulations is expected to 

greatly benefit constant pH molecular dynamics simulations of complex systems, where 

pH could regulate the protonation states of titratable residues, thus modulating protein 

function. Note that MSλD is a high throughput free energy method and can be used to study 

multiple titratable groups simultaneously in a single simulation. Although more replicas 

are needed in REChgT simulations, the number of replicas required only depends on how 

much electrostatic interactions need to be reduced in order to allow for more structural 

reorganizations and how well ALF performs in optimizing biasing potentials, but not the 

number of titratable groups in a system. In the future, we may consider adding another 

phase of optimizing biasing potentials in ALF using short, trial 2D REChgT simulations 

(rather than the standard MSλD simulations in the current two phases of ALF). This is 

expected to give better biasing potentials for such challenging systems, which in return 

could require less replicas in the production simulations. Also, considering that all replicas 

are run in parallel in REChgT simulations, it is likely still advantageous to use more 

computational resources (not necessarily more wall time) to obtain improved sampling and 

faster convergence of free energy calculations. Similarly, relative free energy calculations for 

small molecules with net charge changes may be improved by REChgT as well, owing to 

its ability to improve local structural rearrangement. Furthermore, we note that in principle 

REChgT is not limited to MSλD simulations, and it can be applied to enhance sampling of 

other free energy methods, such as FEP and TI. However, since these methods scale poorly 

with the number of end states studied, additional design might be needed to reduce the 

computational cost. We will explore the applicability of REChgT in our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(A) Experimental structure of orotate in complex with protein DHOD (PDB: 1F76). The 

protein is shown in grey. Molecule orotate and cofactor FMN are labeled. (B) Experimental 

structure of SNase Δ+PHS variant with Lys23 and Glu36 buried inside the hydrophobic 

core (PDB: 6AMF). The protein is shown in cartoon, with color changing from red at the 

N-terminus to blue at the C-terminus. The other SNase variant studied in this work has 

Glu23 and Lys36 buried inside the hydrophobic core (PDB: 3NHH). The structure is not 

shown here.
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Figure 2: 
Thermodynamic cycle used to estimate the change in folding free energy when the Glu-Lys 

pair changes from the neutral N  form to the charged form C . U represents the unfolded 

state and F  represents the folded state. Our free energy simulations consider the two vertical 

processes.
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Figure 3: 
Limited sampling of two representative MSλD simulations of orotate in complex with 

protein DHOD. The first row corresponds to one simulation (run 1) and the second row 

corresponds to another simulation (run 5). See Figures S2 and S3 for plots for all other 

independent runs of MSλD simulations. (A) λ of the unprotonated state of orotate as 

a function of simulation time. (B) Distances between one of the oxygen atoms in the 

carboxylate group of orotate and three atoms in the neighboring residues. The red line 

indicates 4.5Å in all cases.
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Figure 4: 
Improved sampling in both conformational and alchemical space of REChgT simulations of 

orotate in complex with protein DHOD. (A) Distances between one of the oxygen atoms 

in the carboxylate group of orotate and three atoms in the neighboring residues in one 

representative REChgT simulation. The red line indicates 4.5Å in all cases. See Figure S5 

for plots from all independent REChgT simulations. (B) Probability distribution of minimum 

distances between the oxygen atoms in the orotate carboxylate group and three atoms in the 

neighboring residues in all MSλD and REChgT simulations. (C) λ of the unprotonated state 

of orotate under the condition of unscaled partial charges as a function of simulation time in 

three REChgT simulations.
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Figure 5: 
Representative plots of λ’s for the Glu-Lys pair as a function of simulation time in original 

MSλD simulations of two SNase mutants: (A) V23K/L36E (PDB ID: 6AMF) and (B) 

V23E/L36K (PDB ID: 3NHH). See Figures S6 and S7 for plots from all independent MSλD 

simulations.
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Figure 6: 
λ’s for the Glu-Lys pair as a function of simulation time in the 2D REChgT simulation 

of V23K/L36E (6AMF) under conditions 8 (A) and 24 (B) and 2D REChgT simulation of 

V23E/L36K (3NHH) under condition 9 (C). For better visual comparison with Figure 5, 

only the first 60 ns data were shown.
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Figure 7: 
Change in protein stability when the Glu-Lys pair changes from neutral form to ionized form 

(ΔΔGfold  as a function of simulation time (per replica) for (A) V23K/L36E (6AMF) and (B) 

V23E/L36K (3NHH) based on the 2D REChgT simulations (red traces) and the windowing 

approach (black traces).
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Table 1:

Comparison of free energy results obtained from REChgT simulations and the FEP-like windowing approach 

together with the MBAR estimator. Here the free energy difference for orotate changing from unprotonated 

state to protonated state in DHOD-bound state ΔGprotonation  is reported.

Protocol run ΔGprotonation kcal/mol ΔGprotonation kcal/mol

REChgT

1 29.06

30.15 ± 0.782 30.53

3 30.86

windowing/MBAR

1 30.70

30.20 ± 0.362 30.03

3 29.88
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