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Abstract: This review explores the emerging role of extracellular vesicles (EVs) in modulating immune
system function and their application in novel cancer immunotherapy strategies, with a focus on
colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing
immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis,
types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their
implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are
addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive
analysis underscores the transformative potential of EVs in cancer treatment paradigms.
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1. Introduction

Cancer remains a leading cause of death globally, with traditional treatments like
chemotherapy and radiotherapy causing severe side effects. In the last decade, cancer
immunotherapies, which activate the immune system to fight cancer, have emerged as a
promising alternative [1,2]. The immune system plays a vital role in maintaining physi-
ological balance and can act against cancer [3,4]. Immunotherapy, targeting only cancer
cells, offers milder side effects by modulating immune functions. It includes successful
approaches like immune checkpoint antibodies, monoclonal antibodies, vaccinations, and
chimeric antigen receptor (CAR)–T cell therapies, showing significant promise in clini-
cal trials [5]. The immune system, with its innate and adaptive components, defends
against tumors and pathogens, with some cells providing long-term memory to prevent
recurrence [6–8]. Despite challenges like tumor heterogeneity, immunotherapies, such as
dendritic cell modulation and CAR–T cell therapies, are being explored, though they face
limitations [9–11]. Recently, the focus has shifted to extracellular vesicles (EVs), which
offer new avenues for cancer treatment due to their ability to carry therapeutic molecules
and cross biological barriers [12,13]. EVs, especially those derived from immune cells, are
being investigated for their potential in cancer therapy, highlighting their role in intercel-
lular communication and tumor progression [14,15]. This review explores the structural
attributes and significant impacts of EVs derived from innate and adaptive immune cells,
providing novel perspectives for advancing cancer diagnosis and treatment in the future.

2. Characteristics of Extracellular Vesicles

EVs exhibit diverse phospholipid membrane-enclosed structures, manifesting differ-
ences at unexpected biophysical, biochemical, and functional levels [16–18]. These EVs are
divided into two main types, exosomes and ectosomes, based on their distinct biogenesis
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(Figure 1). Exosomes are small EVs released through the exocytosis of multivesicular bodies
and amphisomes, with recent data suggesting the involvement of additional endomem-
brane systems, such as the endoplasmic reticulum [19] and nuclear envelope [20], in their
biogenesis [17,21,22]. In contrast, ectosomes are generated by plasma membrane budding
and blebbing, with some carrying endosomal cargo components, including small-sized
EVs, medium-sized microvesicles, and larger apoptotic bodies [18]. Nevertheless, there
are currently no definitive molecular markers available for their various biogenetic routes,
prompting the proposal of operational terms to differentiate between EV types based on
their biophysical or biochemical properties [18,21]. These EVs are identified in diverse
biological fluids, including blood, urine, saliva, and cerebrospinal fluid, and display size het-
erogeneity due to the diverse releasing cell types and distinct biogenetic pathways [23,24].
The most prevalent among them are small EVs, ranging from 50 to 150 nm in diameter,
followed by medium-sized EVs (100–1000 nm) and larger EVs (≥1 µm) [14,25–29]. Table 1
provides an overview outlining the key characteristics of each vesicle. EVs, generated
through various cell death mechanisms, intersect with viral egress [30], secretory autophagy,
the cellular senescence-associated secretory phenotype, and the DNA damage response [31].
They play pivotal roles in homeostatic processes, including the rapid removal of molecules,
cell maturation, adaptation to environmental changes, and the activation of blood clotting.
Moreover, EVs modulate other cell functions by delivering intercellular signals through
surface proteins, encapsulated cargo molecules, lipids, and glycans [24]. Both cytokines
and EVs serve as mediators of intercellular communication, with cytokines associating
with EVs as internal or external cargo.

Table 1. Categorization of EVs based on primary characteristics.

Vesicles Size (Diameter,
nm) Origin Examples Markers References

Small-sized
EVs ~50–150

Endosomes
(exosomes); some

from plasma
membrane
(ectosomes)

Exosomes, small ectosomes,
ciliary ectosomes,

microvesicles mediated by
arrestin domain-containing

protein 1

Tetraspanins, Alix,
TSG101, CD63 [26–28,32–34]

Medium-sized
EVs ~100–1000 Plasma membrane-

derived ectosomes

Microvesicles, FDC-derived
vesicles, T cell microvilli

particles, elongated
neutrophil-derived
structures, secreted
midbody remnants

Integrins, selectins,
CD40 [26–28,35,36]

Large-sized
EVs ~1000–5000

Plasma membrane-
derived ectosomes,

endoplasmic
reticulum

Apoptotic bodies, large
oncosomes, beaded

apoptopodia, migrasomes,
secretory autophagosomes

Phosphatidylserine,
genomic DNA,

receptors
[17,26–28,37–39]
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Figure 1. Main types of EVs. The two main types of EVs, exosomes and ectosomes, are distinguished 
by their biogenesis. Exosomes, originating from endosomes, are small EVs released via exocytosis 
from multivesicular bodies and amphisomes. Recent data suggest other endomembrane systems 
like the ER and NE may also be involved. In contrast, ectosomes form through plasma membrane 
budding and blebbing, comprising small-sized EVs, medium-sized microvesicles, and larger apop-
totic bodies. EVs, extracellular vesicles; ER, endoplasmic reticulum; NE, nuclear envelope. This fig-
ure was created by the authors with BioRender.com, accessed on 16 May 2024. 

3. Isolation and Characterization 
International guidelines for isolating and characterizing EVs are regularly updated 

to enhance the purity and quantity necessary for research and clinical applications [18]. 
Challenges include differentiating EVs from other nanoparticles like lipoproteins and 
newly discovered exomeres and supermeres [40,41], and the lack of specific inhibitors for 
EV biogenesis. Common isolation methods include ultracentrifugation, immunoaffinity 
capture, and size-dependent techniques [15,18,42,43]. EVs are typically identified using 
methods like Western blotting, flow cytometry, and various microscopy techniques such 
as scanning electron microscopy, transmission electron microscopy, and cryoelectron mi-
croscopy, dynamic light scattering, atomic-force microscopy, resisting pulse sensing, and 
nanoparticle tracer analysis [44–46]. Characteristics of each of these isolation methods are 
summarized in Table 2. The isolation and characterization of EVs can significantly impact 
the diagnosis and therapeutic development of colorectal cancer (CRC) in several ways. 
EVs contain specific molecular signatures from their cells of origin, making them valuable 
for the non-invasive early detection of CRC when isolated from blood or other biofluids 

Figure 1. Main types of EVs. The two main types of EVs, exosomes and ectosomes, are distinguished
by their biogenesis. Exosomes, originating from endosomes, are small EVs released via exocytosis
from multivesicular bodies and amphisomes. Recent data suggest other endomembrane systems like
the ER and NE may also be involved. In contrast, ectosomes form through plasma membrane budding
and blebbing, comprising small-sized EVs, medium-sized microvesicles, and larger apoptotic bodies.
EVs, extracellular vesicles; ER, endoplasmic reticulum; NE, nuclear envelope. This figure was created
by the authors with BioRender.com, accessed on 16 May 2024.

3. Isolation and Characterization

International guidelines for isolating and characterizing EVs are regularly updated
to enhance the purity and quantity necessary for research and clinical applications [18].
Challenges include differentiating EVs from other nanoparticles like lipoproteins and
newly discovered exomeres and supermeres [40,41], and the lack of specific inhibitors for
EV biogenesis. Common isolation methods include ultracentrifugation, immunoaffinity
capture, and size-dependent techniques [15,18,42,43]. EVs are typically identified using
methods like Western blotting, flow cytometry, and various microscopy techniques such
as scanning electron microscopy, transmission electron microscopy, and cryoelectron mi-
croscopy, dynamic light scattering, atomic-force microscopy, resisting pulse sensing, and
nanoparticle tracer analysis [44–46]. Characteristics of each of these isolation methods
are summarized in Table 2. The isolation and characterization of EVs can significantly
impact the diagnosis and therapeutic development of colorectal cancer (CRC) in several
ways. EVs contain specific molecular signatures from their cells of origin, making them
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valuable for the non-invasive early detection of CRC when isolated from blood or other
biofluids [47,48]. High-purity EV isolation methods, such as size exclusion chromatography
or immunoaffinity capture, reduce contamination from non-EV proteins, leading to more
specific and sensitive biomarker detection [49,50]. Additionally, characterizing the cargo of
isolated EVs, including proteins and miRNAs, can help classify CRC subtypes and inform
prognosis [51].

Table 2. Comparison of methods for isolating and characterizing extracellular vesicles.

Isolation Methods Purity Principle Advantages Disadvantages References

Ultracentrifugation High
Differential

centrifugation based on
size and density

Large acquisition,
relatively

inexpensive

Time-consuming, may
cause vesicle damage

[15,18,42,43]

Density-gradient
centrifugation High Separation based on

density differences

High purity,
separates vesicle
subpopulations

Labor-intensive,
requires specialized

equipment

Immunoaffinity
capture High

Capture based on
surface markers using

specific antibodies

High specificity,
allows for targeted

isolation

High cost, limited by
availability of specific

antibodies

Ultrafiltration Moderate Separation based on size
differences

Relatively simple
and rapid

Potential for vesicle
damage, limited by
pore size selection

Precipitation Low
Chemical or

polymer-based
precipitation of vesicles

High yield,
relatively simple

Potential for
co-precipitation of

contaminants

4. EVs in Innate Immunity

EVs play crucial roles in both innate and adaptive immune responses, with various
immune cells like monocytes, neutrophils, and dendritic cells (DCs) releasing EVs that
contribute to inflammatory processes [52,53]. Natural killer (NK) cells, for instance, use
EVs to induce apoptosis in tumor cells, while macrophages and DCs utilize EVs for antigen
presentation and stimulating immune responses [54]. Neutrophils produce EVs that exhibit
bactericidal activities and can influence macrophage polarization. Studying EVs and innate
immunity has significant implications for diagnosing and developing therapies for CRC.
Understanding innate immune mechanisms in CRC could lead to preventive strategies, as
chronic inflammation increases CRC risk [55,56]. Profiling the innate immune composition
of tumors may help stratify patients for specific treatments and predict outcomes [55].
Additionally, innate immune cells and pathways offer potential targets for new CRC
therapies, aiming to activate antitumor immune responses [55,57].

NK cells are crucial for organ immunosurveillance, defending against cancer and
pathogens through germline-encoded surface receptors that regulate their cytotoxic activ-
ity [58]. These receptors include both activating and inhibitory types, which respond to
changes in the extracellular environment [59]. Normally, inhibitory receptors like KIRs
and NKG2A/CD94 bind to human leukocyte antigen molecules, controlling NK cell ac-
tivity to prevent damage to healthy cells [60]. During early tumorigenesis or infection,
activating receptors such as NKp46, NKp30, NKp44, NKG2D, and DNAM-1 facilitate the
formation of immunological synapses, enabling NK cells to destroy abnormal cells. In
advanced stages, dominated by tumor cells or viruses, inhibitory receptors become essential
to restrain NK cell activity [61–63]. NK-derived EVs inherit these surface receptors and
can induce apoptosis in tumor cells. However, tumor cells may reduce the expression of
active receptors, limiting NK cells’ effectiveness [64,65]. These EVs also carry cytotoxic
proteins for direct cancer cell destruction and molecules that support cellular homing, ad-
hesion, and immune activation, enhancing their impact on peripheral blood mononuclear
cells and increasing CD56+ NK cells [63,66]. Additionally, NK-derived EVs containing
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tumor suppressor miRNA-186 show cytotoxic effects against neuroblastoma cell lines [67].
A novel microfluidic system that uses patient-specific NK cells and NK-derived EVs has
shown potential for targeting circulating tumor cells, offering new avenues for personalized
NK-based immunotherapies with diagnostic and prognostic capabilities [68].

Macrophages exhibit diverse functional phenotypes in response to microenviron-
mental signals and infiltrate tumors as tumor-associated macrophages, influencing tumor
progression [69,70]. The spectrum between pro-inflammatory M1 and anti-inflammatory
M2 macrophages determines their impact, with M1 promoting tumor cell phagocytosis
and M2 supporting tumor growth and metastasis [71]. Macrophages interact with EVs,
absorbing antigens and delivering them to T cells through receptor–ligand interactions [72].
Macrophage-derived EVs exhibit diverse functions influenced by parental cell pheno-
types, stimulatory factors, lysosomal functions, autophagy, aging, and the hypoxic tumor
microenvironment [73–75]. These EVs mediate cell-to-cell communication, facilitating
the exchange of miRNAs, long non-coding RNAs (lncRNAs), and proteins [76]. For in-
stance, miRNA-223 induces macrophage differentiation, while miRNA-16-5p from M1
macrophages enhances T cell-dependent immune responses [77]. LncRNAs like PVT1
and AFAP1-AS1 modulate the tumor microenvironment and contribute to pathogenesis.
Macrophage-derived EVs also carry protein effectors like ERAP1 and CCL3, enhancing
phagocytic functions [78]. Notably, vesicle-mimetic nanovesicles from M1 macrophages
can repolarize M2 macrophages to M1, augmenting the antitumor efficacy and suppressing
tumor growth through pro-inflammatory cytokine release [79].

DCs play a crucial role in bridging innate and adaptive immune responses by capturing
and presenting tumor-associated antigens to initiate antitumor immune responses [80,81].
DCs release EVs, which are small lipid vesicles utilized to stimulate antitumor immune
responses in both preclinical and clinical settings [82]. These EVs contain essential com-
ponents such as CD1 proteins for lipid antigen cross-presentation, tumor antigen peptide–
MHC complexes, costimulatory factors, and ligands for NK cell receptors [83]. Additionally,
DC-derived EVs carry heat-shock proteins, metabolic enzymes, and various RNAs, includ-
ing miRNAs, which facilitate intercellular communication and induce post-translational
modifications [84]. These EVs mediate cell-to-cell interactions and miRNA exchange, with
their contents being influenced by the maturation stage of the DCs [85]. Studies have
shown that EVs can directly present tumor antigen–MHC complexes to T cells, resulting
in a potent antitumor effect [86]. Furthermore, DC-derived EVs deliver tumor antigens to
other DCs, promoting antitumor immunity [87]. The activation of both T and B cells, espe-
cially CD8+ T cells, is observed, and strategies that enhance DC maturation significantly
increase IFN-γ-producing CD8+ T cells and IL-2 levels [82]. CD4+ T cell propagation is
extensively initiated by the vesicle TAA-MHCII complex, particularly when DCs are loaded
with a protein rather than a peptide antigen [82,88,89].

Neutrophil-derived EVs exist as distinct subtypes: neutrophil-derived trails (NDTRs)
generated by migrating neutrophils, and neutrophil-derived microvesicles (NDMVs) pro-
duced at inflammation sites [90–92]. The production mechanisms are influenced by the
immune environment, emphasizing adhesion molecule interactions. These EVs share
characteristics such as surface markers, stimulating factors, and bactericidal activity, uti-
lizing ROS- and granule-dependent mechanisms for bacterial elimination [93]. NDTRs
require integrin-mediated interactions, while NDMV production relies on the PI3K path-
way. Notably, NDMVs prominently express CD16, while NDTRs express PSGL-1 and Fcγ
type III receptor at higher levels; both are efficiently taken up by monocytes [94]. NDTRs
induce pro-inflammatory M0 macrophage polarization, whereas NDMVs prompt an anti-
inflammatory phenotype [93,95]. Differential miRNA expression analysis reveals that
NDTRs contain pro-inflammatory miRNAs (miR-4454, miR-1260, miR-7975, and miR-1285),
while NDMVs harbor anti-inflammatory miRNAs (miR-451a, miR-150, and miRNA-126),
showcasing neutrophils’ adaptive miRNA packaging based on the immune context [93].
Moreover, neutrophil-derived EVs, including granules, exhibit antimicrobial properties,
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providing defense against pathogens. With a short lifespan and ease of handling, these EVs
hold promise for drug delivery applications.

5. EVs in Adaptive Immunity

Adaptive immune cell-derived EVs play crucial roles in T and B cell development,
antigen presentation, and immune synapse formation [96]. As lymphocytes and antigen-
presenting cells are key players in immune defense against pathogens and cancer, under-
standing how their EVs contribute to immunosuppression and antitumor responses is of
significant interest. These EVs can modulate immune responses, making them potential
targets for cancer immunotherapies. Research indicates that CRC patients experience signif-
icant changes in the numbers and function of their adaptive immune cells, such as reduced
T cell counts and increased immunosenescence in advanced stages [97]. Furthermore,
combining EV-based therapies with immunotherapies could enhance treatment efficacy by
targeting tumor cells and modulating the immune response simultaneously [98,99].

The development of lymphocytes and the role of CD4+ T cell-derived EVs are pivotal in
cancer dynamics. Studies indicate that adaptive immune cells, especially T cells, are critical
in the development and progression of CRC. The interplay between immune surveillance
and tumor-promoting inflammation mediated by various T cell subsets can significantly
impact disease outcomes [97,100]. Lymphocytes, including effector T cells (CD4+ helper
and CD8+ cytotoxic) and B cells, secrete EVs that influence tumor progression and the
tumor microenvironment [54]. CD4+ T cell-derived EVs, in particular, may be pivotal
in cancer immunotherapy as they can suppress cytokine production and effector T cell
responses. These EVs carry molecules like CD73, CD25, and CTLA-4; notably, CD73+
EVs convert extracellular adenosine-5-monophosphate into adenosine, which suppresses
activated T cell responses and inhibits cytokine production [24]. Additionally, these EVs
contain miRNAs with proapoptotic or antiproliferative effects, further modulating effector
T cell activity. These characteristics highlight their potential in targeted cancer treatments,
leveraging their regulatory capacities to enhance therapeutic outcomes [101].

T cell EVs, primarily derived from thymic epithelial cells, play a role in lymphocyte
and thymocyte development due to their cargo. Maturation protein cargo induces the
maturation of single-positive thymocytes, while carrying antigens to thymic dendritic cells
enables EVs to participate in the negative selection of lymphocytes with self-antigen speci-
ficity, contributing to antigen presentation [102,103]. These EVs also transfer miRNAs from
T cells to antigen-presenting cells unidirectionally [104]. EVs released by B cells directly
present antigens to T cells, as they can contain functional peptide–MHC complexes [105],
and when attached to dendritic cells, this process becomes more efficient, increasing T
cell activation [106]. Antigen presentation can also occur indirectly when peptide–MHC-
positive EVs are internalized and processed by antigen-presenting cells [107]. EVs are
involved in cross-presentation, contributing to immunity against viruses and tumors due
to the presence of MHC class I complexes for CD8+ T cells [96]. Studies have shown that
various CD8+ T cell subtype-derived vesicles contribute to tumor immunosuppression [54],
but they can also promote tumor progression. For instance, in melanoma, in vitro-activated
CD8+ T cell-derived EVs activate ERK and NF-kB, increasing MMP9 expression and can-
cer cell invasion [108]. Furthermore, there is evidence indicating that EVs derived from
lymphocytes promote tumor progression in esophageal cancer by triggering the epithelial-
to-mesenchymal transition (EMT) and facilitating metastasis [109]. Studies on CRC have
also underscored the significant role of EVs in its progression, metastasis, and immune
modulation. For instance, EVs can initiate the epithelial–mesenchymal transition, stimulate
angiogenesis, and create pre-metastatic niches, thereby supporting metastasis [49,98].

EVs significantly influence B cell differentiation by mediating the exchange of CD24
among B cells, particularly during their immature primary status [110]. The secretion of EVs
from B cells is driven by TCR-MHC class II interactions, enabling these vesicles to facilitate
CD4+ T cell [111] and cytotoxic T lymphocyte activation and responses [112]. However, the
role of B cell-derived EVs is complex, as high levels can induce CD4+ T cell apoptosis, and
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their impact on antitumor responses is controversial due to their potential to inhibit CD8+
T cell responses, thereby reducing the efficacy of chemotherapy [111]. This inhibition is
partly possible because B cell-derived EVs contain CD39 and CD73, enzymes that convert
the ATP released by tumor cells post chemotherapy into adenosine, thus attenuating the
treatment’s effects [113]. Furthermore, EVs play a crucial role in the functions of the
immune synapse, a critical exchange site formed between lymphocytes (T cells, B cells,
or NK cells), antigen-presenting cells [104], and targets [114]. This synapse facilitates
the transfer of EV cargo and miRNAs, enhancing intercellular communication. Notably,
the synaptic exosomal transfer between T cells and B cells involves various miRNAs that
silence genes crucial for immune responses, such as PTEN and BIM, impacting the germinal
center reaction and B lymphocyte functions [115,116]. This miRNA exchange also supports
antibody production and germinal center development [117]. Additionally, B cells form
synapses with follicular dendritic cells, which are potential targets for B cell EVs that
transfer MHC class II molecules, essential for B cell differentiation. This intricate network
of interactions and effects underscores the multifaceted roles of EVs in immune regulation
and responses [118].

6. EVs in Inflammation

Inflammation and EVs play critical roles in the pathogenesis, progression, and treat-
ment of CRC. Inflammatory processes, particularly in chronic conditions like inflammatory
bowel disease, are pivotal in CRC development. Persistent inflammation, driven by cy-
tokines, chemokines, and growth factors, fosters an environment conducive to tumor
formation by promoting cellular proliferation, enhancing survival mechanisms, and trig-
gering genetic mutations in colon and rectal cells [119–121]. CRC activates the NF-κB and
STAT3 signaling pathways, perpetuating the production of pro-inflammatory cytokines
that sustain tumor growth and survival [120,121]. These inflammatory processes also
recruit immune cells to the tumor microenvironment, where their activation state can
either enhance antitumor responses or inadvertently facilitate tumor progression and
metastasis [122,123]. Pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β further
contribute to creating a tumor-promoting microenvironment by influencing cellular be-
haviors like migration and invasion [120,121]. Additionally, inflammatory signals can
induce the epithelial–mesenchymal transition, where epithelial cells acquire characteristics
that enhance their ability to migrate and invade surrounding tissues, thereby promoting
metastasis [49,123].

EVs play versatile roles in inflammation, acting as carriers of pro-inflammatory bioac-
tive lipid mediators such as eicosanoids that influence chemotaxis [124,125]. Neutrophil-
derived EVs transfer arachidonic acid, activating COX1 enzymes, which induce throm-
boxane A2 production and contribute to neutrophil extravasation [126]. Similarly, platelet-
derived EVs containing the enzyme 12-lipoxygenase produce 12-hydroxyeicosatetraenoic
acid, affecting neutrophil behavior in inflammatory arthritis [127]. EVs also interact with
the extracellular matrix, playing a role in forming chemotactic gradients for migrating
inflammatory cells [128]. In some pathological conditions such as sepsis, EVs display both
pro-inflammatory and anti-inflammatory effects [129]. Pro-inflammatory actions include
the release of cytokines, damage-associated molecular patterns (DAMPs), and mitochon-
drial DAMPs, which influence macrophage polarization, T helper cell differentiation, and
leukocyte chemotaxis. Conversely, some EVs exhibit anti-inflammatory effects through
downregulating complement factors, acute phase signaling, reducing leukocyte chemotaxis,
and inhibiting adhesion molecule expression on endothelial cells, involving the release
of CD14 from macrophage-derived EVs and the suppression of NF-κB activation in LPS-
stimulated macrophages [130]. Additionally, EVs from different types of cell death elicit
distinct immune responses: necroptotic cells release EVs that induce pro-inflammatory
cytokine secretion by macrophages [131], while inflammasome activation during pyroptosis
leads to the release of exosomes carrying pro-inflammatory miRNAs and interferon-β [132].
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Furthermore, soluble innate-immunity mediators like C-reactive protein (CRP) are trans-
ported by EVs, further influencing chemotaxis and the inflammatory response [133].

7. Immunomodulation

EVs from both immune and non-immune cells play a pivotal role in immune regu-
lation, influencing the pathology of inflammatory, auto-immune, and infectious diseases.
Recently, they have emerged as potential targets for therapies aimed at modulating the im-
mune system; EVs carry various immune regulation molecules, including immune checkpoint
molecules like CTLA4, PDL1, FASL (CD95L), and ectoenzymes CD39 and CD73, which in-
duce immunosuppression [134]. For instance, melanoma cells use exosomal PDL1 to promote
immunosuppression, highlighting EVs as a tool for identifying responders to anti-PD1 therapy
in melanoma treatment [96,135]. EV-mediated immune regulation is crucial for preventing
autoimmunity and plays a significant role in gestational immunology. Treg cell-derived
vesicles contain miRNAs that increase IL-10 production and decrease IL-6 production in
DCs [136], while syncytiotrophoblast-derived EVs contribute to immunosuppression at the
fetal–maternal interface [137]. Stem cell-derived EVs also regulate immunity by inhibiting
lymphocytes, NK cells, DCs, and monocytes/macrophages through apoptosis induction,
cell suppression, and the downregulation of molecular expression and mechanisms. This
multifaceted role of EVs in immune regulation underscores their potential in developing
therapies for various clinical conditions with an immune component, including tumors [138].

8. Antimicrobial Responses

The gut microbiota significantly influences the development, progression, and treat-
ment outcomes of CRC [139,140]. Dysbiosis, an imbalance in gut bacteria commonly
found in CRC, involves an overgrowth of harmful bacteria and a reduction in beneficial
ones [141]. This imbalance contributes to chronic inflammation in the gut, a well-established
risk factor for CRC [142]. Moreover, interactions between pathogens and immunocom-
promised hosts pose challenges due to impaired immune responses and the potential
emergence of antimicrobial-resistant strains [143,144]. Inflammatory molecules produced
by the pathogens contribute to cellular changes that promote tumor initiation and progres-
sion [139]. Pathogenic bacteria can evade immune detection, thereby supporting tumor
growth and metastasis [145]. Conversely, certain bacteria can activate immune responses
against tumor cells, influencing the course of disease progression [141,142].

EVs play a crucial role in modulating microbial infections by enabling immune cells to
recognize EVs from microbes such as bacteria, fungi, and parasites, thereby inducing the
host’s innate immune response [146–148]. These vesicles are more effective than soluble
peptides in transferring antigens between antigen-presenting cells and can sometimes
protect microbes from immune attacks [96,134]. Microbial EVs trigger pro-inflammatory
effects through microbial-associated patterns recognized by pattern recognition receptors
(PRRs) and carry antigens that stimulate immune and inflammatory responses. For in-
stance, EVs from macrophages infected with pathogens like Mycobacterium tuberculosis,
Salmonella typhimurium, or Toxoplasma gondii carry antigens that activate macrophages via
Toll-like receptors [149]. Staphylococcus aureus EVs are recognized by PRRs, leading to their
degradation [150], while Plasmodium falciparum EVs activate the cytosolic stimulator of
interferon genes pathway in monocytes [151].

EVs also offer protection from immune attacks, with viral components from the
Picornaviridae and Herpesviridae families being shielded from immune recognition by encap-
sulation in EVs [152]. Microbial EVs defend against the complement system and protect
pathogens from complex-mediated lysis [153]. For example, Escherichia coli-derived EVs
guard against microbial peptides and antibiotics [154].

Neutrophil-derived EVs contribute to both pro-inflammatory and anti-inflammatory
responses, with their production being influenced by the complement receptor Mac-
1 [155,156]. These EVs can enhance neutrophil phagocytic capacity and release elongated
neutrophil-derived structures (ENDs) during inflammation. ENDs, formed by neutrophils
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rolling on the endothelium, contain the S100A8-S100A9 complex, promoting leukocyte
recruitment and cytokine secretion [96]. Studies comparing healthy individuals and sepsis
patients show significantly lower levels of ENDs in the plasma of healthy subjects [36].

9. Antitumor Activity

EVs secreted by all cells, including tumor cells, are pivotal in cancer research due
to their roles in modulating antitumor responses and their potential as diagnostic and
therapeutic tools. The tumor microenvironment (TME), comprising the cellular and noncel-
lular components surrounding a tumor, dynamically interacts with the tumor, influencing
growth, invasion, and metastasis. EVs facilitate this interaction by mediating intercellular
exchanges through signaling pathways, enhancing communication between malignant
and nonmalignant components of the TME, thus impacting antitumor responses [157].
Tumor-derived EVs (TEVs) affect both innate and adaptive immune responses by inter-
acting with various immune cells such as lymphocytes, dendritic cells, macrophages, and
myeloid-derived suppressor cells. These EVs carry tumor-specific antigens along with
immunostimulatory and immunosuppressive molecules, leading to both antitumor and
protumor effects. For instance, TEVs can mediate immunosuppression by transporting
immunosuppressive cytokines like TGF-β and molecules such as FAS and PDL1, which
can induce apoptosis in T cells and NK cells [158]. They also inhibit the maturation of
dendritic cells and macrophages and suppress NK cell responses, facilitating tumor im-
mune evasion [54,96]. Moreover, microRNAs within TEVs, such as mir-424, can suppress
the CD28-CD80/86 co-stimulatory pathway, enhancing tumor immune suppression [135].
Conversely, tumor antigens presented by TEVs to T cells can activate antitumor responses,
as demonstrated in studies with glioma-derived EVs in mice [159]. Additionally, TEVs can
induce IFN-β production in dendritic cells through interactions with TLR3, influencing
tumor progression and Treg cell dynamics [160]. Under stress conditions, tumor cells
release altered EVs with a distinct molecular composition, carrying molecules like HMGB1,
HSPs, ATP, and mitochondrial DNA, which create an inflammatory environment that aids
in immune recognition of the tumor [96]. This aspect is crucial as cancer patients typically
exhibit higher levels of EVs compared to healthy individuals, highlighting the potential of
EVs as biomarkers for cancer diagnosis [59,161].

Focusing on CRC, the TME shows significant immunosuppressive potential, partly
due to the inhibition of NK cell activation and chemotaxis by the TME architecture and
signaling [135]. EVs also contribute to cancer drug resistance: for example, EVs from
CD133+ cancer stem cells in CRC promote the tumorigenic capabilities of Cancer stem
cells (CSCs) and inhibit the antitumor activity of drugs like oxaliplatin [162]. CRC-derived
EVs release specific oncogenic miRNAs such as miR-21-5p and miR-200a, which mediate
interactions between cancer cells and tumor-associated macrophages, driving tumor pro-
gression and metastasis [163]. Other miRNAs from CRC-associated EVs, like miR-25-3p
and miR-130b-3p, stimulate cancer metastasis through the polarization of M2 macrophages,
which are known for their protumor activities [163]. This encourages miRNAs from CRC
EVs to be further investigated from the perspective of finding new treatments methods
based on the inhibition of their secretion.

10. Therapeutic Potential

The most significant insight from the existing research on EVs is their clinical rele-
vance in diagnosing, monitoring, and treating various diseases, as well as their utility
as biomarkers for identifying tumors and other pathological conditions, or as targets for
therapeutic interventions. EVs serve as functional biomarkers in diverse medical fields,
including organ transplants [164] (i.e., lung, heart, kidney, liver, and pancreas transplants),
in diseases such as polymyositis, dermatomyositis [165], rheumatoid arthritis [166], and
type 1 diabetes [167]. A notable study by Zhang et al. highlighted the potential of fecal EVs
(fEVs) as biomarkers for CRC diagnosis and prognosis. Their study found that fEVs in CRC
patients contained higher levels of CD147 and A33 proteins compared to healthy donors,
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effectively distinguishing between the two groups [168]. This specificity is particularly
relevant for CRC due to fEVs’ unique relationship with the intestinal tract, unlike plasma
EVs, which collect from various body districts and show negligible differences between
healthy and cancer patients. Post-surgical observations have further confirmed the decrease
in these markers, reinforcing their diagnostic and prognostic value [168]. Additionally,
CAR–T cell-derived EVs show promise in cancer therapy. These EVs, capable of crossing
biological barriers and targeting solid tumors without being affected by PD1-mediated im-
munosuppression, offer a more efficient alternative to CAR–T cells [96]. Stem cell-derived
EVs also demonstrate significant immunotherapeutic potential, affecting various immune
cells and processes in diseases like asthma and diabetes [169]. Furthermore, the potential
of EVs extends to genetic engineering, where they can be tailored to carry therapeutic
agents directly to tumor sites, enhancing drug delivery efficacy and targeting metastatic
sites [54]. Data indicate that TEVs can serve as effective vehicles for drug delivery, lever-
aging their specific affinity to integrins in targeted tissues. This affinity enables these
vesicles to efficiently distribute throughout the body, reaching metastatic tumor sites [170].
Lastly, EVs are being explored in vaccine development, using the outer membrane vesicles
of Gram-negative bacteria as a platform. Cost-effective vaccines against pathogens like
Neisseria meningitidis serogroup B have been made [171]. This simple and stable type of
vaccine boasts several benefits: from its low production cost to the reduced risk of escape
variants due to the ability to represent various antigenic molecules [96]. Figure 2 provides
an overview of the therapeutic applications of EVs.
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EV-based therapies face stringent regulatory pathways due to their novelty. Mul-
tiple clinical trials are currently investigating EVs as diagnostic, prognostic, or predic-
tive biomarkers in CRC. The ExoColon trial evaluates circulating EV contents for their
prognostic relevance in CRC, correlating with patient survival, cancer stage, and pro-
gression [172]. Trial NCT03432806 analyzes exosomes from pre-surgery peripheral blood
in colon cancer patients to guide treatment decisions for colon and liver tumors [173].
NCT04394572 aims to identify new diagnostic protein markers for CRC by examining the
number, size, and protein composition of blood exosomes [174]. Additionally, NCT03874559
investigates exosomal biomarkers in rectal cancer patients undergoing chemoradiation
therapy, while NCT04227886 focuses on exosomal RNAs as predictive biomarkers for
neoadjuvant chemoradiotherapy in rectal cancer [175,176]. One prospective feasibility
study (NCT04852653) is assessing EVs obtained via liquid biopsy to monitor neoadjuvant
treatment responses in CRC [177]. These trials encounter challenges such as standardiz-
ing EV isolation methods, ensuring adequate sensitivity and specificity, and achieving
clinical-scale characterization. Additionally, EV-based therapies for CRC are primarily in
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early-phase trials without completed phase III studies, requiring more research to confirm
their safety and efficacy. Concerns about off-target effects arise regarding EVs’ abilities to
reach various tissues, potentially affecting non-target cells or organs. It is crucial to evaluate
the immunogenicity risk of allogeneic or engineered EVs carefully.

11. Conclusions and Future Directions

Several important areas need further investigation to fully realize the therapeutic
potential of EVs in cancer immunotherapy. Firstly, a deeper understanding of the molecular
mechanisms governing the biogenesis, release, and uptake of EVs will be crucial for de-
veloping strategies to manipulate these processes for therapeutic purposes. This includes
elucidating the role of specific miRNAs and proteins contained within EVs that contribute
to immune modulation and tumor progression. Secondly, the development of more sophis-
ticated methods for isolating and characterizing EVs is essential to ensure the purity and
specificity of EV-based therapies. This will facilitate the identification of unique biomarkers
for early cancer detection and monitoring treatment responses. Moreover, the potential of
EVs as vehicles for targeted drug delivery presents a promising strategy for overcoming
the limitations of current cancer therapies, such as non-specific toxicity and drug resistance.
Engineering EVs to enhance their targeting efficiency and payload capacity could lead to
more effective and less toxic treatments. Finally, clinical trials are imperative to validate
the safety, efficacy, and therapeutic benefits of EV-based interventions in cancer patients.
These studies should also explore the potential synergistic effects of combining EV-based
therapies with existing treatment modalities, such as chemotherapy, radiation therapy, and
checkpoint inhibitors. In conclusion, EVs represent a frontier in cancer immunotherapy, of-
fering novel strategies for tumor targeting, immune modulation, and biomarker discovery.
Continued research and innovation in this field holds the promise of transforming cancer
treatment paradigms and improving patient outcomes.
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