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Abstract: As the lack of resources required to meet the demands of a growing population is in-
creasingly evident, plant-based diets can be seen as part of the solution, also addressing ethical,
environmental, and health concerns. The rise of vegetarian and vegan food regimes is a powerful
catalyzer of a transition from animal-based diets to plant-based diets, which foments the need for
innovation within the food industry. Vegetables and fruits are a rich source of protein, and bioactive
compounds such as dietary fibres and polyphenols and can be used as technological ingredients
(e.g., thickening agents, emulsifiers, or colouring agents), while providing health benefits. This
review provides insight on the potential of plant-based ingredients as a source of alternative proteins,
dietary fibres and antioxidant compounds, and their use for the development of food- and alternative
plant-based products. The application of these ingredients on meat analogues and their impact on
health, the environment and consumers’ acceptance are discussed. Given the current knowledge
on meat analogue production, factors like cost, production and texturization techniques, upscaling
conditions, sensory attributes and nutritional safety are factors that require further development to
fully achieve the full potential of plant-based meat analogues.

Keywords: bioactive compounds; dietary fibres; meat analogues; plant proteins

1. Introduction

In a world where the population is expected to reach 9.7 billion by 2050 [1], issues
related to food availability as well as food security need to be addressed, while keeping
agricultural practices within environmental limits at the same time, and delivering a
significant reduction in greenhouse gas emissions. The current food systems are accountable
for the cause and prevalence of factors like malnutrition and inadequate diets as the main
concerns for a vast amount of the population [2]. Furthermore, current food industry
production practices are failing to achieve a reduction in the environmental harm they
cause [3]. The adoption of plant-based diets can help to improve one’s health through a
variety of mechanisms [4,5]. Not only current food consumption trends point to an increase
in vegetarian and vegan diets, there is also a growing consumer awareness for healthier
diets, which reinforce the use of organic, plant-based and functional foods [6,7], all while
shifting attention to the production of meat analogue products or enriched meat products
with plant-based functional ingredients. Thus, meat analogue products emerge as one of
the vegetarian/vegan alternatives that facilitate both meeting the demand for functional
and complete foods, but also as products that, by being mimetic of meat both sensorially
and nutritionally, make the transition from animal protein to a vegetarian diet easier.

Consequently, this review will focus on the potential of plant-based ingredients,
mainly focusing on alternative proteins, dietary fibres, and bioactive compounds for food
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development, and how they could be used to produce alternative plant-based products,
particularly meat analogues, beneficial both for the environment and for human health.

1.1. Trends in Animal-Based Food Consumption

Meat consumption can be traced back to the origins of humanity, having obtained
a special place in the human diet throughout history. Despite what can be considered
the common perception and tendency of meat consumption in Europe, the research and
data show that there will be a worldwide increase in meat intake in the next few years,
as a natural consequence of income and population growth [8,9]. As shown in the FAO
Agricultural Outlook report, poultry, pig meat, beef, and sheep meat consumption are
projected to grow 15%, 11%, 10%, and 15%, respectively, by 2032 [10], with this increase
being mainly caused by the consumption habits of low- and middle-income countries. This
exhibits a good sign for the meat industry, as it can continue to expand. However, it is also
important to diversify and explore other routes and their potential, as a slight decrease in
meat demand in high income countries is also predicted, mainly due to the wide access
to a plethora of food sources, leading to the population refraining the use of livestock
meat as the preferential protein supply. Furthermore, the search for healthier eating habits
results in more demanding standards when it comes to food choices. Hence, consumers’
awareness leads to the consumption of natural, clean label, sustainable and functional
foods, as well as the adoption of some type of flexitarian, vegetarian, or vegan regime [7,11].
On the other hand, and despite being the optimal source to some essential amino acids
like methionine, lysine, tryptophan [12] or vitamins like vitamin B12 [13], the putative
negative health impact of meat and meat product consumption cannot be overlooked.
For instance, red meat or processed meat may increase the incidence of cancer [14]. The
aggravated risk of cancer can be further associated with the use of nitrites and nitrates in
processed meat, as these compounds are used to improve sensorial aspects like flavour
and colour or to act as antimicrobial agents. The major setback of these substances is
that, during thermal processing, there is the risk of nitrosamine production, through the
reaction with secondary amines present in the meat products [15,16]. In addition, the
excessive consumption of red meat and processed products made with red meat has
been linked to diseases like diabetes, gastrointestinal and colorectal cancer, cardiovascular
diseases and all-cause mortality [17–19], possibly due to the high levels of saturated fat,
heme iron, and other additives present in red meats and processed derivatives [20]. These
health-related implications are shown to modulate consumer behaviour towards red meat
consumption [21,22].

Simultaneously, the environmental impact associated with meat production is ex-
tremely relevant, and the rising awareness and action against global climate change in-
evitably pressures the meat industry with regard to its production system. According to
Arora and co-authors [23], the production of animal-based food products consumes more
resources and requires more land, but also produces about 250 times more greenhouse
gas (GHG) emissions than plant-based food production. Additionally, there are factors
other than climate change and GHG emissions that influence the negative impact of meat
production. Life Cycle Assessments have been performed in different meat industries,
with results pointing out the low energy efficiency of the production process and waste
management procedures, as two of the main contributors to negative environmental im-
pact [24]. Regarding the ethical reasoning behind the consumption/non-consumption
of meat, animal welfare can be a modulating factor. As per Clonan et al. [25], for meat
consumers, a good animal welfare was perceived as an important parameter when buying
meat, as it was an indicator of higher product quality, although it was not an impeachment
on the consumption itself. On the other hand, a study conducted by Ploll and Stern [26]
revealed that animal welfare was the strongest motivational trigger amongst vegans and
vegetarians to cease meat consumption. Lastly, religious beliefs also play a role regarding
meat consumption. Muslims are proven to have a negative correlation with pork meat
consumption, as well as Jews, although to a lesser extent. Also, cultures like Hinduism
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refrain from consuming beef, and certain Buddhist cultures vow against the ingestion of
meat altogether [27].

1.2. Uncovering Meat and Meat Analogues

Meat analogues, also known as meat replacers or mock meat, can be defined as mainly
plant-based products that mimic the appearance, flavour, and the fibrous texture of ani-
mal meat [28]. In fact, the last few decades saw a significant rise of plant-based and/or
meat-analogues available for consumers, with sales and consumption data forecasting a
favourable future for the industry from a business perspective [29]. However, it is also im-
portant to understand the current tendencies and products available in the processed meat
industry to make a plant-based oriented transition. According to the information present in
the literature, three main categories of processed meat products can be distinguished: burg-
ers, minced meat, and emulsion type products (e.g., ham, mortadella, sausages). Likewise,
the trend for the meat analogue products currently being studied mimics the categories
of the main processed meat products. Similarly, advances are also being made in partially
replacing meat protein with plant-based protein. While more are reported, like whole beef
mimetics or dried meat “jerky” analogues [30], the previously mentioned ones are the
most recurrent in the literature and the most updated ones. Though a mimetic product,
meat analogues are expected to recreate the visual aspect and mouthfeel of processed meat.
Furthermore, they face the complex task of not only reproducing the nutritional profile
(amino acids, and vitamin content) but also a meat-like texture, odour, and flavour. It is
also important to note that different products require different plant-based components.
Since processed meat production has not been optimized to plant-based ingredients, the
current solution is the mixture of two or more protein/ffibre/fat sources [23].

Another focal point in meat analogue production is the increasing tendency to apply
the concept of the circular economy to industrial systems. The circular economy can be
holistically defined as an economic model that aims to optimize the use and reuse of
resources while trying to minimize waste, although a consensual definition of this concept
is still up for debate [31]. As an economic model that has been pioneered by some European
high-income countries and progressively adopted worldwide, the reusing of the vegetable
and fruit byproducts has acquired an increased interest in the meat industry, with potential
applications as nutritional enrichment ingredients and additive replacers (e.g., as a natural
colouring alternative to nitrites) in meat protein products or as plant-based protein sources
for meat-analogues. Thus, this increasing demand for solutions and alternatives to the
current resources available requires research and innovation in the food industry. For this
reason, an analysis of the food industry and the potential of its byproducts is essential,
since this sector is responsible for the production of several tonnes of byproducts each
year. According to FAO [32], and to the Food Waste Report by UNEP (United Nations
Environment Programme) [33], around 30% of the food produced/available goes to waste,
with 13% occurring in the stages preceding retail sale. The main contributors to this waste
are cereals and pulses, vegetables, fruit, and starchy roots. Although the data currently
available may be inaccurate and certain estimates are unreliable, the fact remains that
“the food industry waste and byproducts” contribute alarmingly to the degradation of the
planet, contributing heavily to the world’s carbon footprint [34,35]. In a society where the
concept of a circular economy is becoming an increasingly important parameter worldwide,
monetary losses such as those reported by Parsafar and co-authors [36] and Campos
and co-authors [37] are an alarming sign of how the food industry must change the way
it deals with its waste, in order to not only generate economic but also technological
wealth. Currently, food byproducts are mainly directed for animal feed or composting,
thus neglecting the nutritional potential of these materials [7]. Taking into account both the
initial matrix and the processing that led to this waste, their richness lies not only in their
macronutritional content, such as proteins and dietary fibres, but also in their high content
of bioactive compounds, such as polyphenols, carotenoids or vitamins [35,38].
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2. Plant-Based Proteins in Food Formulations

According to the literature, most plant-based diets (if properly and correctly planned)
result not only in a reduction in all-cause mortality, but also in a reduction in blood pressure,
LDL cholesterol and total cholesterol levels, and in the incidence, prevalence, and mortality
of diabetes. Furthermore, and despite the controversy it may address, it is possible to
find literature wherein plant-based protein diets were found to be identical to animal
protein diets when it comes to muscle and bone health [39–41]. Finally, both the production
and consumption of most plant-based protein is positively related to the reduction in
environmental impact. According to Sabaté and co-authors [42], 1 kg of bean protein
requires 8~14 times less resources to produce than 1 kg of beef. Furthermore, the adoption
of vegan or vegetarian regimes lead to an estimated reduction in greenhouse gas emissions
of 50% and 35%, respectively [3].

However, there is a need not to overlook the current limitations and setbacks related
to this type of protein. Hence, these impairments can be divided into nutritional limitations
and technological limitations. Paired with the poor availability of certain amino acids
and a decreased digestibility, plant-based proteins, like soy or pea, often present some
compounds that are considered anti-nutrients, such as phytates, oxalates and lectins [43,44].
On the other hand, there are the technological obstacles characteristic of the very nature
of plant proteins, such as poor aqueous solubility, an increased sensitivity to pH, salt and
temperature conditions, or even reduced bioavailability due to the polysaccharidic matrix
that entrenches them. Moreover, the organoleptic profile of plant proteins needs to be
addressed due to undesirable flavours and odours [45].

Plant-based proteins can be sourced from multiple foods, like vegetables, cereals, and
roots. Procedures to acquire plant-based proteins from pea pods, mung bean, potato fruit
juice, peas and chickpeas, and wheat germ and bran [46–50] are stated in the literature. Ac-
cording to Gençdağ and co-authors [51], proteins have already been recovered from byprod-
ucts such as rice bran, oat bran, and rapeseed cake. Prandi B. and co-authors [52] reported
the successful extraction of protein from mushroom byproducts, while Privatti, R.T. [53]
described the technique to obtain a protein extract from soy okara, a byproduct of the
soy-based beverage industry. Some progress has also been made in reusing surplus protein
from soybeans or some starchy roots, such as potatoes [39]. The extraction techniques
used can vary greatly, with the choice of the process being closely linked to the purpose
of the protein/type of food in which it is to be incorporated. Common protein extraction
techniques, such as alkaline extraction, are not entirely suitable for plant-based proteins,
largely due to the characteristics described above. Thus, the industry has been focusing
on emerging and innovative technologies that not only improve extraction yields but
also technological and nutritional properties, mainly using biochemical (enzyme-assisted),
physical (ultrasound, microwave, pulsed electric field, high-voltage electrical discharge)
and solvent-based techniques (subcritical and supercritical extraction, and deep eutectic
extraction) [54–60]. As reported by Prandi and co-authors [48], enzyme-assisted extraction
can create a protein extract with a higher digestibility, whereas a direct aqueous extraction
is preferred when the aim is to obtain a protein extract with a high degree of purity. Based
on the demands of the end product, the ideal extraction technique will vary. Plant-based
proteins are a viable alternative to both animal proteins and laboratory created meats,
largely because they are cheaper and easier to obtain than animal proteins. In addition,
they can also be used for their technofunctionalities. These include foaming capacity,
emulsifying action, or viscosity forming properties [61]. It is also important to understand
the nutritional value of these alternative proteins, identifying not only their strengths but
also their main shortcomings. Firstly, most of commercially available plant-based proteins
are known for having a deficiency in essential amino acids, such as leucine, lysine, or
methionine [i.e., although they may have all the essential amino acids, their amounts are
not enough to meet the parameters set by the World Health Organization (WHO)]. An
in-depth analysis of the amino acid profile of ten proteins of plant origin was carried out
by Gorissenand and co-authors [62]. For the recommended protein intake for adults of
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0.66 g/kg body weight/day, it was reported that only potato protein met the essential
amino acid requirements. Furthermore, despite containing all nine essential amino acids,
neither soy, brown rice, lupin, oat, wheat, hemp, pea, or microalgae were found to contain
enough lysine and/or methionine. Another study, assessing the protein quality regarding
the Digestible Indispensable Amino Score (DIAAS) defined by the Food and Agriculture
Organization (FAO), presented some similar results. Starting from twelve plant-based
proteins, it was stated that potato protein was the only vegetable protein in the “excellent
quality” category. In addition, soy proteins were classified as “high quality”. In line with
the previous study, proteins from lupin, canola, corn, hemp, oats, peas, broad beans, rape-
seed, and rice showed very low levels of essential amino acids, acquiring a “no quality”
classification [63]. Regarding all this, the aim is to increasingly enable the creation of
differentiated products, facilitating the complete or partial replacement of animal proteins
with plant-based proteins, without compromising the environment, nutritional efficiency,
biological value, or production costs. However, and despite the technofunctionalities of
plant-based proteins, a direct substitution of animal protein for vegetable protein is often
not enough to obtain a satisfactory product. Thus, current solutions rely on the conjugation
of two or more plant-based protein sources to complement existing alternatives.

Besides the protein content challenges, it is also necessary to look at other compounds
of interest available in the byproducts of the food industry, such as fibres and polyphenols,
which are upcoming solutions that, while not replacing proteins, can be used to further
modulate both the nutritional and technological properties of plant-based products.

3. Dietary Fibres
3.1. Dietary Fibres in Food Formulation

The concept of dietary fibres encompasses a wide group of plant derived-carbohydrates,
non-digestible/non-absorbable by humans, and a group of some non-carbohydrate plant
cell wall compounds that present fibre-like effects [64]. Although generally categorized as
soluble or insoluble dietary fibres in the majority of the literature, according to Ye, S. and
co-authors [65], a more adequate framing would be accomplished by dividing these di-
etary fibres into four smaller groups: non-starch polysaccharides (cellulose, hemicelluloses,
pectin and other hydrocolloids, such as mucilages, gums, and β-glucans), resistant oligosac-
charides (galacto-oligosaccharides, fructo-oligosaccharides), resistant starch and lignin.

There are numerous sources of dietary fibres depicted in the literature. Soluble fibres
like pectin can be obtained from apple and cabbage, while gum can be obtained from oats
and legumes, and mucilage from chia, aloe vera or aquatic plants. Insoluble fibres can be
found in cereal bran, whole grains like rice and root vegetables (in the case of cellulose
and hemicellulose) and in vegetables (lignin). Byproducts produced by the food industry
are also rich in these types of compounds. Across the literature, examples can be found
of dietary fibre extracted from grape pomace, peach byproducts and potato peels [66–68],
citric fruits like orange [69], onion skin [70], chickpeas [71], carob [72], pear pomace [73],
mango [74] and date fruit byproducts [75].

The great interest in dietary fibres arises both from the technofunctionalities that they
are able to display and from the health benefits they provide. The physicochemical charac-
teristics and composition of these fibres can vary, and so can their technofunctionality and
biofunctionality. Hence, they can be used as thickener agents, binders, emulsifiers, jellify-
ing agents, fat replacers, or to increase the water and fat holding capacity refer to [76,77]
or [73,78,79]. The increased viscosity and gel-forming capacities are great contributors
for the low/no-caloric bulking profile of dietaryfibres [80]. Examples of some of these
applications can be found in Table 1.
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Table 1. Examples of typical applications of dietary fibre.

Source of Dietary
Fibre

Application
Properties

References
Nutritional Physicochemical Technological

Orange byproducts
(peel, pulp, and

seeds)

Fat Replacer (70% fat
reduction in ice

cream production)

Source of phenolic
compounds and

carotenoids

Good water holding
capacity 70% fat reduction

[69]

Reduced caloric value Good oil holding
capacity Bitter aftertaste

Orange peel Development of jelly
products

Cholesterol and glucose
adsorption capacity

Good water holding
capacity

Elevated thermal
stability

[81]Good oil holding
capacity

Improved chewiness,
texture, and
gumminess

Pineapple core

Oil replacer and
volume enhancer in

baking products Reduced caloric value
Good water holding

capacity

Increased yield
capacity

[82]
Texture enhancer in

beef burgers
Prolonged shelf life

Texture enhancer

Chia seed mucilage,
Psyllium husk and

Konjac glucomannan

Fat replacer in
hazelnut spread Reduced caloric value - Total fat replacer

[83](Spray dried
microparticles

technique)

High dietary fibre
content

Enhancement in
brightness

Soybean husk
Fat and phosphate

replacer in
Frankfurter sausages

Increased calcium
content

Good water holding
capacity

[84]Antioxidant capacity
Decrease in hardening

during storage
Source of phenolic

compounds

Seaweed dietary fibre
Phosphate replacer in
Frankfurter sausages Phosphate replacer

Good water holding
capacity Texture enhancer

[85]Good oil holding
capacity

Emulsion stability
enhancer

Retarded lipid
oxidation

Wine grape pomace
Enhanced storability
of yogurt and salad

dressing

Source of phenolic
compounds Retarded lipid

oxidation
- [86]High antioxidant

dietary fibre content

Mango peel Macaroni

Source of phenolic
compounds - Increased firmness [87]High antioxidant

dietary fibre content

3.2. Biofunctionality of Dietary Fibres

Dietary fibres can positively influence some health risk factors, like diabetes or obe-
sity [88]. The physiological properties that characterize the soluble dietary fibres, like
viscosity or gel-forming capacity, can also be a modulator of the satiety sensation, helping
the treatment of obesity. Upon intake, and during digestion, the dietary fibres (mainly
the soluble ones) form a gel-like matrix that constitutes a “physical barrier” in the intes-
tine, which promotes a bigger digestion time, prolonging the presence of nutrients in the
intestine and decreasing the glucose absorption [89].

The gastrointestinal microbiota is of extreme relevance when considering a healthy
individual, as a direct correlation has been proven between the equilibrium of the gas-
trointestinal bacteria ecosystem and metabolic pathways or health complications. In recent
years, there has been a growing interest in portraying some dietary fibres as prebiotic
agents. Cancer, cardiovascular diseases, depression or mental complications have been
associated with a change in microbiota, making the importance of having a diet that can
help maintain a healthy gastrointestinal tract obvious [90–92].
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Much of the benefits also occur from the short chain fatty acids (SCFAs) (compounds
like acetate, propionate, and butyrate) that result of the fermentation of the dietary fibres
by gut microbiota. After the production of these SCFAs, they take different metabolic
pathways, thus having different functions and action mechanisms [93,94]. There are other
examples through which dietary fibres exert their biofunctionalities. One of the mechanisms
for diabetes treatment involves the ability of fibres to produce a hypoglycaemic effect by
retaining the glucose absorption through a dietary fibre barrier, as well as enhancing insulin
sensitivity. For this mechanism, Zheng, Y. and co-authors [95] stated that soluble dietary
fibres exhibited significantly higher glucose adsorbing capacity when compared with
insoluble dietary fibres. Further pathways are proposed as routes for metabolic benefits
with dietary fibres, like longer hepatic insulin extraction and bile acid binding.

However, it is important to note that the action mechanisms of fibres are complex and
that their beneficial action is also greatly influenced by the interaction and properties of
bioactive compounds, namely polyphenols, which are bound to their fibres matrix [96].

4. Polyphenolic Compounds in Food Industry
4.1. Polyphenolic Compounds

Polyphenolic compounds are secondary plant metabolites, essential for multiple plant
functions such as antioxidant protection, the response to environmental stress, and defence
mechanisms [97]. More than 8000 different phenolic compounds have been identified
in the plant kingdom, representing one of the largest and most diverse group of bioac-
tive compounds [98]. In recent years, polyphenols have been under the spotlight in the
food industry due to the nutraceutical benefits they provide, including antioxidant ac-
tivity and their potential role in oxidative stress-related disease prevention. Moreover,
some of the organoleptic properties of polyphenols can be of great use in innovative food
development [99].

From a chemical point of view, polyphenols comprise two main groups: the flavonoids
and non-flavonoids [100].

Phenolic acids are the main representatives of the non-flavonoid group. They can be
subdivided into cinnamic acids derivatives, like caffeic or ferulic acid, or hydroxybenzoic
acids derivatives, like gallic acid [101]. Flavonoids are the most abundant group of dietary
polyphenols. These compounds branch out in anthocyanins, water-soluble compounds that
are responsible for the colourful pigments of blue, red and violet, and other compounds
like flavones, flavonols, isoflavones, flavan-3-ols, flavanones [102,103]. In Figure 1, a brief
classification of the different polyphenol subclasses is presented.

As metabolites from plants, polyphenols are vastly distributed through vegetables,
fruits, and seeds. The polyphenolic content of foods varies with several factors, such as
genetic background, growing conditions, maturity stage, harvest date, and post-harvest
handling techniques (storage temperature or radiation treatments) [104,105]. As reviewed
by Abbas and co-authors [106], flavonols are the most represented dietary flavonoids and
can be found in onions, cabbage family vegetables or fruit peels [107–109]. Moreover,
legumes and soybean are the main carriers of isoflavones [110]. Phenolic acids can be found
abundantly in cereal like barley or wheat [111], in fruits such as red berries, pears and
grapes [112,113], but also in starchy roots like potatoes [114].
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4.2. Technological Properties of Polyphenolic Compounds

The potential that the food industry sees in polyphenols relates to the ability to reassess
and reuse their potential to create products that can enhance shelf life, reduce the usage
of artificial/chemically synthesized food additives, and improve organoleptic properties,
while maintaining the positive nutritional impact of these compounds. In this regard,
polyphenols have been reported to be used as functional ingredients, texture enhancers,
natural preservatives (antioxidants, antimicrobial), and colouring agents [118–120]. From
an industry perspective, synthetic preservatives, like nitrates for instance, despite their
efficiency, are becoming an outdated and unappealing solution to food conservation due
to their associated health risks and growing consumer awareness. Equally, a replacement
for natural colourants is being pursued, creating the opportunity to use polyphenolic com-
pounds like anthocyanins or flavonols to avail the red, blue, purple and yellow colours that
are inherent to them [121]. Red berries are of particular interest, as the peels of these fruits,
which are commonly discarded as a waste, are a great source of polyphenolic compounds,
responsible for the characteristic pigmentation of the fruits. This conjures yet another
clean path for the industry, not only creating new resources from previous byproducts
but also healthier and additive free products. The potential of these polyphenolic applica-
tions has already been identified, as there are already some studies on the application of
polyphenols in food products like bacterial biofilm inhibition, edible coatings, and smart
packaging [122,123].

4.3. Biofunctionality of Polyphenolic Compounds

The interest in polyphenolic compounds is also sustained by the bioactivity they dis-
play (Figure 2). These properties are well characterized in the literature, encompassing an-
tioxidant, anti-inflammatory, antimicrobial, anticarcinogenic, and anti-neurodegenerative
activities [124].
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Above all, polyphenols are acclaimed for their antioxidant and radical scavenging
properties. Nonetheless, these activities may vary according to the polyphenolic compound
in question, with the number and position of these hydroxyl groups greatly influencing
the free radical scavenging ability. Polyphenols are not only able to halt free radical
formation and stop lipid peroxidation reactions by displacing a radical scavenger role,
but also exhibit metal chelating properties [125]. Polyphenols can be modulators of cell
signalling and downregulate tumour progression by inducing proteins [126,127]. Moreover,
a co-antioxidant function can be observed in these compounds, since they are involved in
the regeneration of vitamin E [128]. The ability of polyphenols to modulate the expression
of transcription factors that control inflammatory responses, such as NF-kβ factors, or
pro-inflammatory mediators like Mitogen-activated protein kinases (MAPKs) is of great
value. Another use for the bioactive potential of polyphenols is in type 2 diabetes mellitus
treatment. According to Malik and co-authors [129], the major hypoglycaemic effect relates
to the ability to reduce the intestinal absorption of carbohydrates. This modulation is also
caused by α-glucosidase and α-amylase (as well as other enzymes responsible for glucose
metabolism/transport) suppression, and by enhancing insulin production.

Besides these properties, polyphenols can be portrayed as antibacterial compounds,
as the inhibition of L. monocytogenes and S. aureus has already been described in the litera-
ture [130]. Phenolic acids, like ferulic, ellagic and p-coumaric acid, were found to be able to
inhibit harmful bacteria, like Gram-positive (Staphylococcus aureus, Listeria monocytogenes)
and Gram-negative bacteria (Salmonella typhimurium, Escherichia coli) [131].

However, and perhaps the most determinant factor for the in vivo action of polyphe-
nols, is the bioaccessibility dilemma, since transformations in food processing, particle
size, type of polyphenol, digestive interactions and food matrix interactions limit the effec-
tiveness of polyphenol assimilation [132]. Adding to this is the bioavailability dilemma.
Recognized as one of the main setbacks for the bio-efficiency of polyphenolic bioactivity in
food products, the bioavailability factor cannot be overlooked. Due to their unstable nature,
digestive modifications, and overall complexity, polyphenols tend to have a low absorption
in the human body. Following this line of thought, in recent years it has been proposed that
the nutraceutical effect of polyphenols arises from direct action with dietary fibres, since
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these compounds can be found chemically associated and entrapped within the plant fibre
matrix. The concept of “antioxidant dietary fibre” derives from these polyphenol–fibre
matrix associations, and is sustained by examples like the hydroxycinnamic acid links to
fruit fibre or the fact that 95% of grain phenolic compounds are linked to dietary fibre
polysaccharides [133]. This can be an interesting topic for the vegetable/fruit processed
food industry, as it reveals the need to further comprehend how to correctly apply the
polyphenol’s potential and how the polyphenol–dietary fibre matrix controls the polyphe-
nols’ release rate and their behaviour during digestion. Above all, the formation of the
polyphenolic–dietary fibre matrix will enhance the number of polyphenols delivered to the
colon, to potentially interact with gut microbiota.

5. Polyphenols and Dietary Fibre Matrix Interactions

The non-extractable polyphenol classification encompasses a broad amount of polyphe-
nols, ranging from low molecular weight ones like phenolic acids and flavan-3-ols to high
molecular weight polyphenols like condensed and hydrolysable tannins [134]. Once syn-
thesized, these polyphenols are transported to plant cell walls, where they will exert their
functions. Therefore, polyphenols bond with a plethora of plant cell wall compounds like
cellulose, hemicellulose, pectin, lignin or even proteins [135]. As previously revised, these
cross-links are formed through covalent bonds that include ester bonds between the phe-
nolic acid carboxyl group and the hydroxyl group of plan cell wall constituents [135–138].
Furthermore, a carbon atom or a hydroxyl group from both ends can bind through a C-C
bond or an ether bond, respectively. However, non-covalent interactions, like electro-
static interactions, hydrophobic interactions, hydrogen bonds and ionic bonds, should
not be ruled out, as they too contribute to the formation and stability of these complex
matrixes [139,140]. All of this can serve a great purpose to the food industry, as it is possible
to gather the practical examples of these polyphenol–fibre interactions that have already
been reported in the literature and seize the potential of both compounds for product
formulation. Table 2 shows some examples of dietary fibre and polyphenol content from
various fruit and vegetable sources.

Table 2. Examples of fruits and vegetables as sources of dietary fibre and polyphenols.

Source Total Dietary Fibre (%) Total Phenolic Content
(mg GAE/100 g) References

Apple 51.1 1016 [141]

Blackberry pomace 78.37–79.91 1044 [142,143]

Black Currant 49.24 11,060 [144]

Blueberry pomace 60.8 10,810 [145,146]

Grape (Pinot Noir.) skin pomace 56.31 2140 [147]

Kiwifruit skin flour 25.85–30.30 1262.34 [148]

Lemon (Citrus limon L.) peels 64.07 796 [149,150]

Mango peels 35.6 6480 [151]

Orange (Citrus sinensis L.) peel extract 19.4 3596 (mgTAE/100 g) [152]

Orange (Citrus sinensis Osbeck) peel pulp
and seeds 63.69 12,123 [153]

Passionfruit (Passiflora edulis) peel 62.65 694.33 [154]

Passionfruit (Passiflora edulis) peel flour 45.34 758.09 [155]

Pineapple (Ananas comosus) peel 14.72 3000 [156]
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Table 2. Cont.

Source Total Dietary Fibre (%) Total Phenolic Content
(mg GAE/100 g) References

Pomegranate (Punica granatum L.) peel 28.10–33.93 5365–8560 [157,158]

Raspberry pomace 77.5 1974–2394 [159,160]

Tomato peel 86.15 158.1 [161]

Beetroot peel 33.6 3972–6630 [162]

Carrot (Daucus carota L.) pomace 52 515.73 [163]

Broccoli stalk flour 16–22 300–837 [164]

Mushroom (Flammulina velutipes) stem flour 32.3 630 [165]

Onion (Allium cepa L.) brown skin 75 5270 [166]

Potato (Solanum tuberosum L.) peel extract 13.05 834.24 [167]

Pea (Pisum sativum L.) pod flour 51 3200 [168]

Polyphenol–Dietary Fibre Matrix—Technological Properties and Food Applications

Byproducts from the fruit and vegetable industries may be paired with the opportu-
nity to harness the huge amount of dietary fibre and polyphenols that arise from these
products. In line with what was previously mentioned, several studies point out the rich
content in bioactive compounds like dietary fibresand polyphenols in food byproducts
like apple, berry pomace, or potato, passion fruit, and orange peels (Table 2). Hence, the
wastage problem requires new solutions from the industrial sector. The need for innovation,
considering all the nutraceutical benefits of dietary fibres and polyphenols currently known,
corroborates the increasing interest in the commercial application of bioactive compounds
in the food industry, as a boost in functional food design can take place. Therefore, while
being of relevance to evaluating and knowing the bioactivity of these compounds, it is
important to access the technological properties of the different dietary fibres and polyphe-
nols when applied in food products and, finally, study their digestibility, nutritional impact,
and organoleptic profile.

Considering the recent research on polyphenols–dietary fibre interaction, Araújo and
co-authors [169] stated that the textural properties of starch can be altered by polyphenol
usage. Compounds like phenolic acids, flavonoids and tannins are interlinked with the
gelatinization, retrogradation, viscosity and digestibility properties of starch [170]. In
Table 3, it is possible to see some other examples of the incorporation of polyphenol–dietary
fibre matrixes and their impact on some food products.

As a shift towards greener and innovative solutions is taking place, both dietary fibres
and polyphenols have great potential regarding the food industry. Considering the vast
sources for these compounds and the low cost in pairing them, there is a lot to explore.
Nonetheless, despite the antioxidant, antimicrobial and additive-like properties of these
bioactive compounds, it is of extreme importance not to compromise food safety. Through
the reviewed literature, the lack of studies on the microbial and overall food safety-related
conditions of the newly formulated products was evident, with few articles reporting
results regarding such parameters. A better understanding of the impact that byproducts
and waste alternatives have on shelf life and product preservation is needed, as it would
be of great interest for the consumers and the food industry.
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Table 3. Examples of the application of different sources of polyphenol–dietary fibre matrixes in food products.

Source Product
Properties

References
Nutritional Physicochemical/Technological Sensorial

Apple Skin powder Muffin

Higher total dietary fibre content Lower volume Darker colour

[171,172]
Higher phenolic content Increased firmness Enhanced sweetness

Higher antioxidant activity
Higher density Similar Overall acceptability

Carob

Pulp powder Turkish delight

Reduced sugar content

Higher water insoluble dry matter Colour change [72]Carrot
Antioxidant activity

Higher phenolic content

Orange Higher mineral content

Mango Peel powder Macaroni
Higher phenolic content Increased cooking loss Colour change

[87]Higher total dietary fibre content Increased firmness Acceptable overall quality for products with
up to 5% of mango peel powderHigher antioxidant activity

Grape Pomace powder Yoghurt and
salad dressing

Higher antioxidant activity Lower pH levels Colour change

[86]Higher lactic acid content Flavour and texture change
Higher phenolic content Delayed lipid oxidation Similar overall acceptabilityHigher total dietary fibrecontent Lower viscosity

Chestnut Shell powder extract Cookies

Higher total dietary fibre content Lower hardness Colour change

[173,174]Higher caloric value High total polyphenol content and total flavonoid content
bioaccessibility (high recover rates after intestinal digestion)

Texture change
Higher phenolic content Similar overall acceptability

Higher antioxidant activity

Raspberry Press cake powder Fruit leather
Higher phenolic content Lower firmness Colour change [175]

Black current Higher antioxidant activity Texture change

Grape Peel Extract flour Jam
Lower caloric value High water activity

Colour change [176]Higher phenolic content High titrable acidity
Higher antioxidant activity Good stability

Mandarin Peel Extract Enriched Wheat
bread

Higher phenolic content High total polyphenol content and total flavonoid content
bioacessibility (high recover rates after intestinal digestion)

- [177]Higher antioxidant activity

Lemon
Fibre powder

(obtained from
pomace)

Dough and
steamed bread

Higher total dietary fibre content Lower extensibility
Similar overall acceptability [178]Higher phenolic content Lower elasticity

Higher antioxidant activity Higer hardness

Pineapple Peel and pomace
powder Beef burger

Higher total dietary fibre content Lower cooking loss

Similar overall acceptability [179]Higher moisture and fat retention
Low fat product Higher hardness
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Table 3. Cont.

Source Product
Properties

References
Nutritional Physicochemical/Technological Sensorial

Potato
Mash and peel

powder Salty snack
Higher total dietary fibre content Higher water holding capacity Lower sensorial score

[180]Higher phenolic content Higher oil holding capacity
Darker colourHigher mineral content Lower hardness

Onion Peel powder Bread
Higher phenolic content -

Improved appearance
[181]Similar overall acceptability

Higher antioxidant activity Darker colour

Chestnut
Mushroom

Stalks and basal
section powder Extruded snack

Higher total dietary fibre content Lower viscosity

- [182]Lower water solubility

Reduced glucose release during digestion Increased water holding capacity
Higher hardness

Tomato
Skin and seeds

powder Enriched bread
Higher phenolic content

Higher elasticity Colour, flavour, and odour changes
[183]Lower porosity

Lower acceptability
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6. Meat Analogues
6.1. The Creation of Meat Analogues

The creation of a vegan meat analogue requires a lot of understanding regarding the
technofunctionalities of the ingredients. This applies not only to the protein source but also
to fibres and other bioactive ingredients in the mixture. Although the synergic effect caused
by the combination of different ingredients makes it difficult to give an accurate behaviour
prediction, it is important to look out for some properties that are characteristic of specific
components. In the case of proteins, good emulsion-forming capacity, water solubility and
a good amino acid profile are valued. In the same sense, gelling and viscosity capacity, as
well as good water and oil holding capacity, are decisive factors when choosing the fibres.
Finally, regarding other components like polyphenols, it is important to look at their colour
stability, bitterness, and additive substitute potential.

6.2. Alternative Protein Sources for Processed Meat and Meat Analogues

To begin, it is important to understand that the choice of protein source plays a major
role in texture, colour, flavour and cooking loss [184]. As previously mentioned, there is a
plethora of plant-based proteins described in the literature that can be sourced from food
byproducts. Factors like the nutritional profile, environmental impact, and extraction yield
modulate the main choices when it comes to defining the plant-based protein source. Thus,
soy, wheat, pea and potato proteins are amongst the top choices [185].

Soy protein has been one of the primal plant-based protein sources for meat alterna-
tives, with its history dating back to ancient China. Recognized as a cheaper alternative,
with good nutritional quality and good technological properties, soy derivatives like soy
flour, soy protein concentrate, and soy protein isolates can be transformed in processed
meat analogues. Soy industry byproducts, like soymeal, okara, soy-whey, and hull have
been used to produce several meat analogues [186]. Despite its potential, soy protein
has been progressively losing the spotlight in industry innovation. This can be due to
the concerns raised about the consumption of genetically modified organisms, crop over-
exploitation or antinutritional factors [187]. In that sense, the addition of wheat gluten
proteins to the formulation of meat analogues has been encouraged.

Wheat protein has unique characteristics, due to its gluten-rich nature. Although
lacking in nutritional value (poor lysine content), wheat protein can function as an efficient
stabilizer and texturizing agent, when used as a complement to another protein source.
Across the literature, it is possible to find examples of the combined usage of wheat and
soy proteins that resulted in acceptable meat analogues with high fibre texturization,
and good protein value [188,189]. However, there is one big drawback: with a rise of
gluten intolerance and the demand of gluten free products, wheat gluten protein inevitably
becomes an unviable option as a standard in meat analogues.

Proteins from pulses, like chickpea or pea, due to their low risk of allergenicity,
worldwide cultivation suitability, and due to not being genetically modified organisms [190]
are other alternatives to soy-based proteins. Like soy, pulse proteins are rooted in a lot of
diets, and there are already some commercial pulse protein isolates available. Across the
literature, it is possible to see that the extraction process of this protein greatly influences
its functional properties. Hence, a wet pea protein isolate applied in a meat analogue had
better emulsification and foaming properties, whereas dry pea protein isolates have higher
solubility and water holding capacity [191]. Despite their potential, pulse proteins have
major sensorial setbacks, like an intense off-flavour and odour, or poorer nutritional quality
when compared with other alternatives. Thus, a deeper understanding of pea protein
extraction, processing and application, as well as waste management, is needed in order to
develop pea protein-based meat analogues [192].

Potato starch is widely used in the food industry as a texture enhancer due to its
unique gelling properties, and as a bulking agent [193]. Nonetheless, the spotlight is now
pointed at potato protein, emerging as the most promising plant-based protein for meat
analogue formulations. Potato protein displays a better amino acid profile than soy, the
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current standard in non-animal proteins [62]. With patatins and protease inhibitors as
the two main proteins, potato protein preparations excel in some functional properties
like solubility, as well as their foaming and emulsifying properties, performing like the
commercial soy protein preparations. Also, potato protein has been successfully used to
decrease cooking loss and inhibit the lipid oxidation of meat emulsions [194]. As an emerg-
ing solution, there are still some hindrances associated with potato proteins. Regarding
sustainable processing, the isolation and purification of potato proteins from byproducts
like potato juice or pulp has been attempted. However, the costs of the procedure and
the bitter-tasting glycoalkaloids present in potato juice stand as the main obstacles for the
larger industrialization of this method. Regardless, it is possible to find in the literature
preparations of the main proteins of potato that have high nutritional value and valuable
functional, antioxidant, and anti-obesity properties [50,195,196].

As described earlier, the range of plant-based protein application has been further
expanded with the evolution of production technologies. The textural and sensorial quality
of meat analogues are the determinants of consumer acceptance [197]. Once again, the
different classes of processed meat analogues will require specific textures, colours, and
overall visual aspects. As a response to this need, and with the main goal of simulating
the fibrous texture of meat, the industry developed different ways to extract plant-based
proteins, such as thermos-extrusion, 3D printing, high temperature conical shear cell,
electrospinning, and freeze structuring. Amongst them, extrusion methods are the most
widely used in plant-based proteins for meat analogues, facilitating low moisture extrusion
or high moisture extrusion. The techniques influence the functional properties of proteins,
since low moisture extrusion is used for texturized plant-based protein production and
high moisture extrusion is used for softer products [198,199]. Therefore, texturized proteins
will perform better in products like burgers or minced meat analogues, while a higher
temperature extrusion will benefit the production of ham and sausage analogues.

6.3. Plant-Based Fat Replacers for Processed Meat and Meat Analogues

In meat analogue formulation, there are several components that need to be accounted
for to achieve a satisfactory product, such as vegetable fat, dietary fibres, and bioactive
compounds. The vegetable fat present in plant-based meat analogues can be obtained
from sources like rapeseed or sunflower oil, and is responsible for flavour enhancement,
tenderness, and juiciness [200]. From a nutritional point of view, the fat content in meat
analogues is reduced when compared to processed meat equivalents. Although healthier,
vegetable meat often lacks the capacity for copying the sensory characteristics of meat [28].
Recent studies have reported that the next step in vegetable fat replacers are oleogels (struc-
tured oils prepared by the oleogelation of liquid oil using vegetable waxes, monoglycerides,
alcohols or the esters of fatty acids, phospholipids and phytosterols) [201] and emulsion
gels, derived from vegetable oils, that have great potential to enhance the mimicking of the
solid muscle-like texture of meat, while maintaining the nutritional benefits of vegetable
fat [202].

6.4. Polyphenols and Dietary Fibres Applications on Meat and Meat Analogue Products

As previously stated, dietary fibres and polyphenols have valuable nutraceutical prop-
erties and preventive activity for several non-communicable diseases, which represent great
potential for their role as food-enriching products [203]. Nonetheless, the technological
properties of these vegetable and fruit waste constituents have also been highlighted in the
literature, like an increased bulking capacity and a natural colouring capacity.

From a technological point of view, dietary fibres are viewed as a great bulking agent,
meat extender or fat replacer. Due to their nature, dietary fibres can increase the water
holding capacity of products and their viscosity, promoting a bulk effect on the product
and in some cases, acting as a meat extender [204,205]. Moreover, the incorporation of
some dietary fibres in the food matrix can increase the oil and fat holding capacity, making
these compounds potential texture modulators and fat mimetics. This translates to a higher
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cooking yield (and therefore a lower cooking loss), which allows for a reduction in fat
content without jeopardizing the sensorial quality of the product [206].

Polyphenols are of particular interest when it comes to processed meat products, as
they can allow for the reduction in additives, like nitrates [207]. Nitrates are one of the most
recurrent curing agents in processed meats, since they are capable of inhibiting Clostridium
botulinum, reducing off flavours, contributing to texture improvement, and are responsible
for the red/pink colour of such processed meats [208]. Some of these properties can be
achieved using the dietary–polyphenol matrix of fruit and vegetable byproducts instead
of chemical additives, assuring the quality of the product without the health concerns
that nitrites are associated with. Efenberger-Szmechtyk and co-authors [209] reported that
although polyphenols had antimicrobial and antibacterial effects, the mechanisms and
polyphenol–food matrix implications were still to be understood. While the food safety
parameter might not be the ideal focus when considering nitrate replacement, the colouring
agent and colour preservation of meat and meat analogues are things to be considered.
Recent generations have been using natural solutions like beetroot juice to mimic meat
properties, namely “bleeding” [200]. Whether incorporated in an intelligent package or
as a natural food dye, the incorporation of extracts with high phenolic content has been
proven to have a positive impact on the colour and colour conservation [210,211].

Despite this potential, the application of vegetable and fruit byproducts is still a chal-
lenging task to achieve. Due to the different nature of the matrix of processed meat and
meat-analogue products, the obstacles and challenges differ between both, requiring dif-
ferent approaches. For instance, for research focused on polyphenols and dietary fibres as
substitutes for additives, bulking agents, and nutritional enhancers, the processed meat ma-
trix prevails over the plant-based. The fact that the base formulation for a well-established
product is already known allows researchers to further explore the finer properties of
plant-based byproducts in processed meats, i.e., their application as natural dyes, nutri-
tional enhancers, or as extenders of the product shelf life. On the other hand, regarding
plant-based meat analogues, the focus is primarily on the optimization of a formulation that
can incorporate the plant-based protein without sacrificing the sensorial, technological and
safety parameters of the meat equivalent. In Table 4, an extensive list of the applications of
vegetable and fruit byproducts in processed meat and meat analogues is reported.

Table 4. Vegetable and fruit applications in processed meat and meat analogues.

Product Source Application Main Conclusions References

Fresh pork burgers White wine grape pomace Extending storage
Stability

Prevented lipid and protein oxidation
[212]Limited antimicrobial effect

Limited anti-discoloration effect

Low-salt beef burgers
Umami extract from
Shiitake mushroom

byproducts
Flavour enhancer

Increase in amino acid content
[213]Slight colour change

50% salt reduction achieved

Chicken burgers
Cherry tomato flakes,

rosemary, thyme oil and
basil leaves

Nutritional
enrichment

Successful enrichment with Mg, Fe, Se, and
vitamin B9 [214]

Higher acceptability than
conventional burgers

Chicken burgers Amaranth and pumpkin
seeds powder

Functional and
nutritional enrichment

Improved lipid stability

[215]
Improved raw meat antioxidant properties

Similar sensory quality
Increased fat, moisture, and cooking yield

Lamb burgers Melon and Pumpkin
seed oil

Fat replacer
75% replacement with similar

sensorial results [216]
Improved nutritional profile

Low-fat beef burgers Mango, pineapple, and
passionfruit pomace

Functional and
nutritional enrichment

Enhanced cooking properties [179]Similar sensory quality and acceptability
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Table 4. Cont.

Product Source Application Main Conclusions References

Hybrid beef burger Pea and wheat fibre Partial replacement of
beef meat

Improved cooking properties
[217]13% reduction in meat incorporation

Beef burgers Hibiscus dried leaves
powder

Quality and
antioxidant properties

enhancement

Similar nutritional content and
sensorial results [218]Increased antioxidant properties
after digestion

Low-fat beef and
chicken burgers Cactus cladodes powder Binder and shelf-life

extender

Improved colour, tenderness, juiciness,
and taste [219]Improved cooking properties

Increased oxidation stability

Pork burgers

Raspberry extract Oxidative stability
enhancer

43% fat reduction

[220]Pea protein Omega 3 fatty acids
enrichment

Improved cooking properties

Linseed oil Mitigation of the decrease in
oxidative stability

Pork burgers Onion skin water extracts Antioxidant activity
enhancer

Increased antioxidant activity and lipid
stability [221]

Similar sensorial results

Beef burgers Potato protein powder Lipid oxidation
Inhibitor

Improved oxidative stability [222]Lower cooking loss

Burger meat analogue
Pea protein Full replacement of

animal protein
Improved cohesiveness

[223]Sugar beet pectin Easier to shape

Textured vegetable protein Replacement for a
clean label binder Lower sensory quality and acceptability

Emulsion type meat
analogue

Pea protein Full replacement of
animal protein

Free from gluten and soy

[224]
Increased antioxidant capacity

Chickpea flour Natural antioxidant
activity enhancer)

Acceptable colour change

Vegan sausage
Mushroom mycelia of

Pleurotus sapidus
Full replacement of

animal meat

Similar physicochemical parameters to a
traditional German sausage

[225]Increased strength and hardness relatively to
a type of Russian sausage

Higher acceptance than for other vegetable
proteins tested

Chicken sausage
Soy protein isolate Partial replacement of

chicken meat

Improved emulsion stability
[226]

Chickpea flour Improved cooking properties
Similar sensory quality and acceptability

Hybrid pork sausage Extruded pea protein Partial replacement of
pork meat

Promising results at 20% substitution
[227]Weaker texture and network formation

Frankfurter-type
sausage Buckwheat husk Functional and

nutritional enrichment
Increased phenolic, amino acid content

[228]Decreased sensory quality and acceptability

Pork Sausages Bell-pepper pomace Antioxidant activity
enhancer

Decreased total oxidation
[229]Higher phenolic content

Vegan sausage

Banana floret Meat replacer Higher protein, dietary fibre content

[230]Jackfruit
Functional and

nutritional enrichment

Reduced fat content

Pea protein isolate Increased emulsion stability
Similar sensory quality and acceptability

Dried Chinese
sausage Mango peel pectin Fat replacer Similar colour, textural quality and

acceptability for 5% pectin replacement [231]

Vienna-style chicken
sausage Soybean protein Partial replacement of

chicken meat

Improved protein quality
[232]Increased cooking yield

Decreased crude fat content

Ham Apple pomace Functional and
nutritional enrichment

Decreased oxidative processes during storage
[233]Increased yield and nutritional quality

Mortadella
Pereskia aculeata Miller leaf

mucilage

Emulsifying agent Increased emulsifying power
[234]Fat replacer Improved emulsion stability

Reduced fat content
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Table 4. Cont.

Product Source Application Main Conclusions References

Chicken Mortadella Green banana biomass Fat replacer
Increased WHC

[235]Reduced fat and caloric content
Similar acceptance for 100 replacements

Bologna-type
Mortadella

Blueberry flour Functional and
nutritional enrichment

Increased polyphenol content
[236]Increased antioxidant activity after digestion

Decreased lipid oxidation

Low-fat sausages Texturized pea protein Fat replacer Increased emulsion stability
[237]Partial replacer of

pork meat
Healthier fatty acid profile

Olive oil Decrease in colour and textural quality

Chicken Mortadella Orange albedo flour Fat replacer

23–35% fat reduction

[238]Similar lipid oxidation and emulsion stability
Good sensorial acceptance and high

purchase intent

Pork sausages

Polyphenolic extract of
Cistus incanus Natural additives

(Preservatives and
dyes)

Decreased lipid oxidation

[239]
Increased proportion of red colour

Betanin dye Microbial quality assured with 50%
nitrates reduction

Lycopene dye Slightly better overall acceptability

Bologna-type
Mortadella

Goldenberry flour
Natural preservative
(antioxidant activity

enhancer)

Increased polyphenol content
[240]Increased antioxidant activity after digestion

Decrease in lipid oxidation

Ground beef
Avocado peel extract and

nisin microcapsules

Natural additives
(Antioxidant and

antimicrobial agent)

Increased oxidation stability
[241]Increased antibacterial activity

Ground goat meat
Pomegranate rind and

seed powder Antioxidant activity
enhancer

Decreased lipid oxidation
[242]Increased antioxidant activity

Kinnow rind powder

Minced pork meat Swamp cranberry fruit
and pomace extracts

Antimicrobial
protection

Strong antibacterial properties
[243]Insufficient antifungal activity

Minced meat
analogue

Mushrooms Meat replacer Higher protein, dietary fibre and
mineral content [244]

Chickpea flour Functional and
nutritional enrichmentBeetroot extract High consumer acceptance

Canola oil Similar texture and sensorial results

Minced meat
analogue

Beetroot juice Natural additives
(Antioxidant and dye)

Similar appearance to pork and beef
minced meat [245]Soy protein

Instability of the desirable colour over time

Ground beef meat Clove essential oils Antimicrobial
protection

Complete inactivation of Listeria
monocytogenes at 10% oil incorporation [246]

Minced meat
analogue

Oat fibre Meat replacer Considerable difference for some
mechanical properties

[247]
Faba bean protein

concentrate
Functional and

nutritional enrichment
Remarkable structural strength

Higher dietary fibre content

Minced beef meat Lemon leaf extract Antimicrobial
protection

Enhanced sensory qualities, chemical quality,
and bacteriological quality

[248]Antibacterial properties against
Enterobacteriaceae, staphylococcus, coliform, and

Escherichia coli

As said before, the aim of the application of plant-based ingredients in processed meat
or processed meat analogues varies. As is possible to observe in Table 4, the results of recent
studies show a clear tendency for harnessing vegetable and fruit byproducts to formulate
hybrid or enriched products rather than completely substituting animal meat for a plant-
based alternative. In addition to the protein, dietary fibres and polyphenol applications
present in Table 4, there are also other components, like polysaccharides, vitamins and
minerals that can be explored to further improve plant-based meat production. Nonetheless,
different processed meat classes have their own focal points.
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6.5. Meat Analogues Products
6.5.1. Burgers

Burgers (or patties) are a widespread food choice in global dietary habits, very much
appreciated for their distinct mouthfeel, succulence, and flavour. They differ from minced
meat due to their matrix composition. In the case of burgers, the product normally consists
of ground meat mixed with spices, salt, binders (like breadcrumbs, starches, or fibres)
and other additives. Burgers are a cohesive mass, usually cooked by shallow frying or
baking/roasting [249]. In that sense, plant-based products that set out to mimic burgers rely
on processing technologies like the protein texturization of soy and pea to obtain a fibrous
meat-like structure. Furthermore, plant byproducts rich in dietary fibres have received
great attention as potential fat replacers/reducers and cooking improving agents due to
their water and oil holding capacity.

6.5.2. Minced Meat

Minced meat, also known as ground beef, is one of the most economic meat protein
sources available to consumers. Just like burgers, it has a place in a lot of diets worldwide,
due to its practicality and rich flavour. Once again, protein extrusion methods prevail to
produce these analogues, although some innovative techniques like shear cell technology
can be used to achieve the fibrous layered structure of meat. Despite being a processed meat
product, minced meat has the closest similarities to whole-cut meat, as it does not require
significant additions to the protein matrix. From the literature, it is possible to observe that,
in most cases, more than one plant-based protein source is used [185]. Moreover, plant
byproducts are mainly capitalized for their ability to enhance shelf life and prevent the
product quality decay, primarily due to the antioxidant and antimicrobial properties of
their bioactive compounds.

6.5.3. Emulsion Type Products (Ham, Mortadella, Sausages)

Emulsion-type meat foods comprise numerous products like ham, mortadella, and
sausages. Their formulation incorporates finely chopped meat, water, fat, fibres, salt, and
other additives. The emulsion is formed when the proteins bind to water and trap and hold
fat, forming the characteristic texture of an emulsified product when cooked [250]. Like
many other products, plant-based meat analogues tend to closely follow the formulations
of their animal protein equivalents. Thus, to achieve good meat analogue, plant-based
proteins must be able to display the emulsifying and jellifying nature and water holding
capacity that animal proteins have. This type of product does not require a fibrous texture,
allowing for a more diversified use of protein alternatives. Pea and soy proteins are once
again the main choices for these types of products, although chickpea and mushrooms
flour have also been reported as protein substitutes. Regarding this textural challenge,
meat analogues can also rely on the incorporation of dietaryfibres. There have been reports
wherein vegetables, fruits, and their byproducts, namely flours rich in dietary fibre or
starches, have been used as a bulking agent/extender and as a nutritional and functional
enhancer [190,251,252]. These byproducts also contribute to a clean label formulation,
serving as substitutes for additives or other ingredients that are not so well perceived
by consumers [185]. Besides the structural concerns, it is also important to address the
colour factor of these products. Vegetable proteins are not typically red/pink coloured,
leading to a beige/grey emulsion if no colouring agent is added. Therefore, the use of
fruit and vegetable byproducts to achieve a meat-like colour, like red berries or beetroot
juice, has been reported in the literature [253]. In addition, the use of these polyphenol-rich
ingredients extends their functionality to antioxidant and antimicrobial activity enhancers,
allowing for a possible reduction in the additives added [239]. A major challenge in this
field is to create a natural dye agent that can endure the high-temperature cooking process
without losing their dying properties.

Overall, the emulsion-type meat products offer a larger range of choice when it comes
to seizing plant-based alternatives, as it allows for the combination of the nutraceutical
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and functional properties of vegetables and fruits with plant-based proteins that meet the
basic structural needs of these types of products. However, there is still a need to keep
innovating, explore better-suited options, and reevaluate previous solutions. Factors like
the environmental impact and extraction costs of byproduct processing, or the upscaling
viability of current processing methods, need to be assessed to enable the food industry to
fully transition to plant-based greener solutions.

7. Consumer Acceptance

In addition to the physicochemical, functional and nutraceutical properties that en-
compass the great potential of processed meat analogues, there is another pivotal point that
weights on the long-term success of these products: consumer perception and acceptance
of these types of analogues.

To begin understanding the different behaviours when it comes to food selection/
experimentation, it is important to acknowledge the rich gastronomical patrimony that
mankind has. Different geographic groups are conditioned by culture, traditions, and
religion, which implies that even though food is essential to survival, different populations
have different approaches to food and diets. For that same reason, it is possible to extrap-
olate that different populations will have different perceptions and receptivity to meat
analogue consumption. As concluded by de Boer and Aiking [254], studies performed in
Europe showed that, although meat analogue consumption is growing, cultural, culinary
and economic factors related to spatial variations can have complex impacts on the transi-
tion towards an alternative meat diet. Quite conversely, the study carried out by Tsvakirai
and Zulu [255] on the South Africa market revealed that meat analogues were perceived as
a pricey symbol of class and status, remaining niche products in the studied area.

This socio-economical modulators of meat analogue consumption are followed by
other factors, like the trend in vegetarian or vegan food regimes, animal welfare and
other preconceptions that condition consumer behaviour towards meat analogue consump-
tion [256–258]. Within these, the driving reasons for a plant-based diet can be diverse and
have different impacts [259].

As previously mentioned, the current big obstacles in meat analogue acceptance
are the texture, flavour profile and appearance of these products. As food is inevitably
associated with the hedonistic act of eating, food choices will always tend towards products
with better texture and flavour. Meat analogue consumption follows this logic, as it was
possible to understand that similarity in taste has the largest impact on the willingness to
eat a meat analogue. Likewise, another study by Kerslake and co-authors [260] reported
that parameters like texture, taste and appearance have a great impact on consumers’
choice in trying a meat substitute, and deciding if the meat substitute was enjoyable or not.
However, while a meat-like texture and flavour can attract not only current meat analogue
consumers but also consumers who are looking to transition to a more plant-based diet,
it has been reported that closing the sensorial gap between meat and meat analogues can
have a negative reception on some vegetarian consumers [261].

This raises another difficult challenge to the meat analogue industry: How to target
the population to attract new consumers and maintain them, while constantly adapting
the industry products to better serve consumers’ interests? One of the answers might
be related to marketing strategy. Banovic and Sveinsdóttir [262] conducted a study on a
female population from five different countries, concluding that the future success of meat
analogues depends strongly on the successful marketing of meat analogues. They further
suggested that raising the consumer awareness about the meat analogues’ health and
environmental benefits could be a reasonable approach to this problem. However, according
to Kerslake and co-authors [260], a “one-size-fits-all” approach is not possible as a solution,
as consumer habits differ between dietary groups. Additionally, it raises awareness in terms
of labelling and transparency in communicating the product to consumers, as essential
steps to increase meat analogue consumption.
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Lastly, there is another factor that limits meat analogue ingestion: the risk factor.
Neophobia has been proven to play a role in meat analogue consumption. Literature from
Giampietri and co-authors [263], and, in a more meat analogue-oriented perspective, from
Begho and Zhu [264], unveils that risk preference is an important determinant of food con-
sumption for consumers. Furthermore, this last referenced study revealed that for Chinese
consumers, the factors that condition the intention to try meat analogues for the first time
are different from the factors that explain the intention to repeat the consumption of meat
analogues. Thus, authors suggested that by addressing consumers’ concerns about risk, i.e.,
their risk perception, the acceptance of meat analogues could be increased, overcoming the
initial barrier created by dietary concerns. Still regarding risk perception, this concept can
be greatly influenced by misconceptions and/or misinformation. Studies have reported
that US citizens have more negative mental associations with meat substitute products
than positive mental associations. This can arise from concepts like the unhealthy–tasty
intuition, where a health claim is perceived as negatively affecting taste [265,266]. Other
assumptions, like an excessive use of additives, or association with a less natural/more
processed product, are also important factors to consider.

Consumer preferences and behaviours are an important factor for meat analogue
success, as this industry can only grow if the plant-based analogues fulfil their potential.
Although globally there may be some variation in the main factors, the importance of taste,
price, health concerns, and the environment and familiarity with the product in predicting
consumer acceptance of plant-based meat alternatives has been argued in the literature. It is
only by considering all these factors that the meat analogue industry can better understand
consumer behaviour and work towards increasing the acceptance of its products.

8. Perspectives and Challenges

The meat sector has invested in the development of alternative solutions, both as ani-
mal protein substitutes/extenders and as clean label products that use natural additives of
plant origin. Regarding protein substitution, according to the authors’ perception, the most
recent developments fail to obtain a 100% plant-based processed meat analogue, and the
available literature presents mainly plant-based proteins incorporated in hybrid products
(meat extenders instead of meat replacers). Although the development of hybrid products is
helpful as a starting point, research needs to further aim for vegan, 100% plant-based meat
alternatives. In addition, the industry is continuously facing the challenge of allergenicity,
antinutrients and the lower digestibility of plant proteins compared to animal proteins.
Concerning this topic, progress has been made not only by focusing on emerging and
innovative extraction technologies and by thoroughly studying its impact on plant-based
protein nutritional value, but also on thermal processing/cooking techniques [267–269].
Nonetheless, the current gap of knowledge in this field must be addressed to fully allow
for a wider application of plant-based proteins.

9. Conclusions

Some of the products marketed as vegan or vegetarian that present themselves as
meat analogues have already been studied in the literature. They usually consist of a
mixture of vegetable proteins and binders, but they still use additives like flavour maskers,
artificial colours, and preservatives. Regarding these products, the current panorama is
that there is still no protein source that, alone, can mimic the desired characteristics of a
meat analogue. Likewise, the excessive processing currently required in the production of
meat analogues weakens the aspect of a functional, healthy, and environmentally friendly
food, associated with plant-based products. Another aspect to mention is the lack of variety
in the plant-based protein sources tested in these meat analogues. Even though there are
examples in the literature that explore the use of proteins from pulses or mushrooms, there
is a great inertia to diversify the protein sources used. It is important to use emerging
methods to continue the study of meat analogues, exploring formulations that incorporate
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plant-based protein sources that are different from the products currently available on
the market.

The valorisation of bioactive compounds such as dietary fibres and polyphenols,
present in vegetables/fruits, can be carried out in several ways. From a nutritional point
of view, its incorporation is achieved as a supplement of dietary fibre or antioxidant com-
pounds. With the expansion of new plant-based protein alternatives, it is necessary to
deepen the study of the impact of the same dietary fibre source with different protein
sources. Polyphenols have been receiving an increased interest from the meat industry, as a
shift to natural and clean label products is required. From acting as colourants, replacing
synthetic additives in meat analogues as nutraceuticals and functional ingredients, or
contributing to smart packaging, research around polyphenols still faces some challenges.
Once again, the next steps for innovation in this industry revolve around better understand-
ing the impact that different food matrixes can have on the colour stability and antioxidant
properties of polyphenols. Given the current knowledge on plant-based meat analogue
production, factors like cost, production and texturization techniques, upscaling conditions,
sensory attributes, nutritional safety (regarding allergenicity and anti-nutritional factors),
consumer acceptance, regulatory issues and health claims restrict the full development of
these products. Thus, the need for a healthier and more sustainable lifestyle and a func-
tional diet should be the catalyst for continuous research to act upon current limitations,
allowing plant-based meat analogues to reach their full potential.
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