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Abstract: Recurrent respiratory papillomatosis (RRP) is a benign disease of the upper aerodigestive
tract caused by human papillomavirus (HPV) types 6 and 11. The clinical course is unpredictable and
some patients, especially younger children, experience a high rate of recurrence with a significant
impact on their quality of life. The molecular mechanisms of HPV infection in keratinocytes have
been extensively studied throughout the years, with particular regard to its role in causing malignant
tumors, like cervical cancer and head and neck carcinomas. A minor but not negligible amount
of the literature has investigated the molecular landscape of RRP patients, and some papers have
studied the role of angiogenesis (the growth of blood vessels from pre-existing vasculature) in this
disease. A central role in this process is played by vascular endothelial growth factor (VEGF), which
activates different signaling cascades on multiple levels. The increased knowledge has led to the
introduction of the VEGF inhibitor bevacizumab in recent years as an adjuvant treatment in some
patients, with good results. This review summarizes the current evidence about the role of VEGF in
the pathophysiology of RRP, the molecular pathways activated by binding with its receptors, and the
current and future roles of anti-angiogenic treatment.
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1. Introduction

Recurrent respiratory papillomatosis (RRP) is the most common benign neoplasm of
the larynx, caused by chronic infection with human papillomaviruses (HPVs) [1]. While
its incidence has classically been estimated as 1–4 cases per 100,000 persons, more recent
studies have shown a decrease in incidence after the systematic introduction of the HPV
vaccine, with values of 0.5–0.7 per 100,000 [2]. HPVs are classified as high risk (e.g., HPV
16, 18, and 31) or low risk (e.g., HPV 6 and 11), based on their capacity to cause cancer [3].
Infection with a low-risk virus in humans can result in the formation of benign lesions,
such as papillomas or skin warts, while infection with a high-risk virus may lead to the
development of carcinomas of the cervix or oropharynx.

RRP is mainly caused by infection with low-risk HPV 6 and HPV 11, and some risk
factors are believed to be involved in the infectious process, such as maternal anogenital
warts and low socioeconomic status (in juvenile form), and a high number of sexual
partners and oral sex (in adult form) [4]. Moreover, the course of the disease can vary
among individuals, ranging from an indolent course with even spontaneous remission
(less frequently) to an aggressive and recalcitrant disease with many recurrences after
treatment [5]. RRP also shows a low rate (1–2%) of malignant transformation to squamous
cell carcinoma, but the underlying mechanisms are poorly understood [6]. The treatment
of this disease still mostly consists of repeated surgical excision of papillomatous lesions,
which has recently been joined by some adjuvant treatments, although many are still
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off-label [5]. The HPV vaccine that targets HPV6 and HPV11 (Gardasil9) has sometimes
been used as an adjuvant therapy in recent years, showing encouraging results in reducing
the number of recurrences [7]. Two in-human phase I/II clinical trials on the adjuvant
use of HPV vaccines are ongoing: NCT04398433 and NCT04724980, which investigate the
benefits of INO-3107 (in both adults and adolescents) and PRGN-2012 (in adults) vaccines,
respectively [8,9]. INO-3107 consists of DNA plasmids combined with an electroporation
device, and PRGN-2012 consists of an optimized antigen with a gorilla adenovector. They
both enhance specific T-cell immunity against HPV-6 and HPV-11, and interim results are
showing promising clinical benefits.

Many studies on the pathophysiology of RRP have focused on the role of HPV and
the interaction of viral proteins with the immune system [10]. The most investigated viral
proteins involved in the disease process and in the viral cell cycle are E6 and E7, which bind
the oncosuppressors p53 and retinoblastoma (Rb) as main targets, respectively. E6 sends
p53 to degradation, whereas E7 targets Rb, thus altering the DNA repair pathways [11].
This can contribute to the development of cancer, especially when infected with high-risk
genotypes, while E6 and E7 of low-risk genotypes do not cause genomic instability [12,13].
These proteins are also involved in the development of an imbalanced immune response by
interacting with cytokines, chemokines and interferons (IFNs) [14]. This ultimately leads
to reduced cytotoxic T-cell activity against HPV and promotes viral immune evasion and
persistent infection.

Recent studies have focused on the molecular process of angiogenesis, an important
step in the development of tumors, which consists of the ability of cells to recruit a blood
supply by forming new vessels from pre-existing vasculature [15]. This is of paramount
importance for inflammation and wound healing, but in the case of neoplasms, it allows
the tumor to obtain the necessary nutrients and oxygen for sustaining its growth and
expansion [15,16].

Angiogenesis is an early event in the tumorigenesis process and results from the
decreased expression of angiogenesis inhibition factors and/or an increase of inducers [15].

A key role in this process is played by vascular endothelial growth factor (VEGF), a
signal protein that stimulates endothelial cell growth and increases vascular permeabil-
ity [16,17]. VEGF signaling is mediated by interactions with specific tyrosine kinase receptors,
which can activate different pathways, like the Raf-MEK-ERK signaling cascade and the
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) pathway [18].
These pathways enhance cell migration, vascular permeability, and cell survival.

The increased knowledge about the molecular mechanisms involved in the pathophys-
iology has led to the development of targeted therapy against angiogenesis, with a direct or
indirect inhibition of this process [19]. The first anti-angiogenic drug approved by the FDA
for the clinical treatment of tumors was bevacizumab (Avastin®) as second-line therapy
for colorectal cancer in 2004 [20]. Thereafter, the indications for these drugs in clinical
practice have rapidly expanded, including mainly malignant tumors [19]. The appearance
of bevacizumab on the RRP treatment scene as an adjuvant treatment in recent years has
given a boost to a growing literature about this topic, showing promising results that could
lead to the approval of this drug for clinical practice in the future [21,22].

The aim of this paper is to review the current literature about the molecular mecha-
nisms and the genomics and proteomics associated with VEGF expression in RRP cells.

2. Biology of VEGF Signaling

VEGFs comprise a family of proteins which includes four isoforms in mammals
(VEGF-A,B,C,D) and placental growth factor (PIGF) [23]. The functional protein binds to
the specific VEGF receptor (VEGFR), a family of tyrosine kinase receptors expressed on the
surface of endothelial cells which generate signal transduction [24]. Given the dominant
role that VEGF-A plays in the angiogenesis process and the large number of papers on this
isoform in the literature, we will mainly focus on this protein.
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VEGF-A is the most potent agent for vascular permeabilization. It interacts with two
receptors, VEGF-A receptor-1 (VEGFR-l) and VEGF-A receptor-2 (VEGFR-2), which are
highly expressed on vascular endothelium. Through this interaction, VEGF-A increases
vascular permeability to plasma within seconds to minutes, with subsequent extravasation
of plasma proteins and stromal changes, leading hours to weeks later to endothelial cell
changes and migration to create new vessels [25].

The role of VEGFR-1 in angiogenesis is still not clear, since a unique expression
pattern has not been observed after its stimulation. It has weak ligand-dependent tyrosine
autophosphorylation but seems sometimes to prevent VEGF binding to VEGFR-2, although
studies have demonstrated that the two receptors appear to cooperate in inducing gene
expression in endothelial cells [26].

However, other studies have revealed that VEGFR-1 may play a role in the tissue-
specific release of growth factors from sinusoidal endothelial cells in the liver, with a
protective role for hepatocytes in hepatic insult [27]. In addition, activation of VEGFR-1 in
monocytes and macrophages has been reported to mediate the migration of these cells [28].

VEGFR-2 is a tyrosine kinase receptor consisting of an extracellular ligand-binding do-
main, a transmembrane domain, and an intracellular kinase domain that is activated upon
ligand binding; it binds VEGF with high affinity and presents two tyrosine residues that pro-
mote and regulate endothelial cell mitosis and vascular permeability, respectively. [26,29].

This receptor has one or more domains that allow interactions with signal-transmitting
proteins at the intracellular level, e.g., the SH2 domain that allows binding to phosphotyro-
sine residues [30].

In fact, binding to VEGF results in conformational changes in VEGFR-2: the intra-
cellular N-lobe binds ATP and consequently allows intrinsic receptor kinase activity and
phosphorylation of tyrosine residues in the C-lobe. This event creates binding sites for
cytoplasmic proteins that transduce the signal intracellularly. These signaling pathways
include proliferation via phospholipase C-γ (PLC-γ) and extracellular signal-related kinase
1/2 (ERK1/2), focal adhesion kinase (FAK)-mediated cell migration, and cell survival
through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) [31].

When phosphorylated by VEGRF-2 binding, PLC-γ is activated and catalyzes the
hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate
(IP3) and diacylglycerol (DAG). These two molecules have a role in releasing Ca2+, which
in turn leads to the production of nitric oxide and prostacyclin (PGI2). Another action of
DAG is the activation of protein kinase C (PKC), a serine-threonine kinase that stimulates
endothelial cells proliferation via the Raf-MEK-ERK pathway [30,32].

On the other hand, FAK activation stimulates the recruitment of actin-anchoring
proteins to the focal adhesion plaque, a phenomenon underlying cell migration.

Another important enzyme is PI3K, which presents a p85 regulatory subunit that is
phosphorylated by VEGFR-2; this increases PI3K activity, which has a role in cell migration,
proliferation, and survival. In fact, activation of PI3K determines the increase in intracellular
levels of phosphatidylinositol-3,4,5-trisphosphate (PIP3), with consequent phosphorylation
and activation of Akt/PKB. Akt/PKB in turn phosphorylates proapoptotic proteins, such
as BAD, FKHR1, and caspase-9, with an inhibitory effect [30,33].

Moreover, PI3K induces endothelial cell migration, probably through the action of
the Rho family of small GTPases. However, the exact signal transduction is currently
unknown [30].

Important products of VEGFR-2 stimulation are NO (nitric oxide) and eNO (endothe-
lial nitric oxide), molecules implicated in endothelial cell proliferation, migration, tube
formation, increased vascular permeability, and angiogenesis [34]. eNO is activated directly
by Akt/PKB, but also via PKC and as a consequence of Ca2+ release from intracellular
reserves [30].

In fact, it must be remembered that these signal transduction pathways do not work
as watertight compartments but intersect with each other. An overview of the signal
transduction pathways activated by VEGFR-2 is shown in Figure 1.
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Figure 1. Summary illustration of signaling pathways induced by VEGFR2 activation.

A less studied but no less important receptor of VEGF is VEGFR-3, a tyrosine ki-
nase that has a higher affinity for VEGF-C and VEGF-D [35]. Its expression in human
adults is limited to lymphatic endothelial cells and regulates transient lymphatic angio-
genesis in inflammation. After binding with its ligand, VEGFR-3 acts as a homodimer
and activates SRC homology domain-containing (SHC) and growth factor receptor-bound
protein 2 (GRB2), which in conjunction with PI3K activate various pathways such as the
PI3K/MAPK-associated family members AKT, ERK1/2, and JNK (c-Jun N-terminal ki-
nase) [36]. All these pathways stimulate endothelial and lymphatic cell proliferation and
survival, as summarized in Figure 2. Some authors have also postulated a negative mod-
ulation role for VEGFR-3 in VEGFR-2 signaling of endothelial cells to maintain vascular
integrity [37]. Hereditary functional mutations of VEGFR-3 have been associated with
hereditary lymphedema (Milroy disease) and, interestingly, some patients with this rare
disease show skin papillomatosis [38,39]. In some tumoral cells, VEGFR-3 upregulation
has been shown to enhance tumoral lymphangiogenesis and metastatic spread to regional
lymph nodes [40]. On the other hand, inhibition of VEGFR-3 signaling may suppress
lymphangiogenesis and lymph node metastasis [41].

In summary, the increased understanding of the VEGF-VEGFRs pathway in recent
years has provided a more comprehensive overview of the complex mechanisms underlying
both physiological and pathological angiogenesis.
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Figure 2. Schematic illustration of the molecular pathways induced by VEGFR-3 activation. The
tyrosine kinase receptor acts as a homodimer and, after autophosphorylation, induces many distinct
molecular pathways, such as the RAS/RAF/ERK pathway, JNK activation, and the PI3K/AKT
pathway. This promotes cell survival, lymphangiogenesis, and proliferation. The figure was created
with BioRender.com.

3. Role of VEGF in HPV-Mediated Diseases and RRP

Histologically, papillomas in RRP are composed of vascular projections covered by
stratified squamous epithelium. Different studies have shown the expression of VEGF-A
mRNA and its receptors in the squamous epithelium and endothelial cells of papillomas
and increased levels of serum VEGF-A in RRP patients [16,25]. In addition, Verma et al. [16]
demonstrated a linear correlation between the expression of VEGF and disease extension,
with higher systemic and local expression of VEGF in more aggressive RRP cases.

Moreover, as shown in the recent work by Lam et al., [42] the expression of VEGFR3
is significantly increased in papilloma tissue compared to normal adjacent tissue (while
VEGFR2 did not show this overexpression), suggesting that VEGF signaling in RRP could
be mediated by this specific receptor.

These findings may suggest that angiogenesis plays a role in the formation of papil-
lomas, which is confirmed by other studies that focused specifically on the interaction
between HPV proteins and VEGF signaling [43].

As already described, E6 and E7 are the most studied HPV proteins, and they interact
both directly and indirectly with VEGF signaling, while a minor role is played by the weak
malignant transforming protein E5. E6 sends p53 to degradation through activation of
the cellular ubiquitin ligase E6AP, while E7 activity leads to activation of the elongation
factor 2 (E2F) and increased expression of the cellular p16, and ultimately enhancing cell
proliferation [44,45].

BioRender.com
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Tumor suppressor p53 has the role of inhibiting cell growth and malignant transfor-
mation, participating in a checkpoint mechanism that can arrest the cell cycle in the G1
phase after genotoxic insult, permitting the repair of damaged DNA [46].

It is well established in the literature that p53 also has a role in repressing VEGF expres-
sion, through inhibition of transcriptional factors such as SP1 or forming a transcriptional
repressor complex with elongation factor 2 (E2F) transcription factor, but there is evidence
that the relationship between p53 and VEGF is not so linear. In fact, p53 is also involved in
the expression of VEGF during the initial phases of hypoxia [47,48]. It can complex with
hypoxia-inducible factor-1a (HIF-1a, a major regulator of the hypoxic response) and bind a
specific promoter region of VEGF, inducing its transcription [47–49].

Ghahremani et al. [48] demonstrated that p53 can positively regulate VEGF expression
through the bond with HIF-1a during initial acute hypoxia, but prolonged hypoxic condi-
tions determine VEGF repression. This happens through the p21/E2F/Rb pathway. E2F
protein is expressed at low levels in the initial phases and increases during the final stages
of hypoxia, binding p53 and subsequently decreasing VEGF expression. In addition, after
cytotoxic insult, the level of p53 increases, which brings about an increase in p21 levels. p21
stops the phosphorylation of the Rb protein (when dephosphorylated, the Rb protein acts
as an inhibitor of progression in the cell cycle) and decreases the level of free E2F. However,
in the case of prolonged hypoxia, p21 levels remain constant and phosphorylation of Rb is
unchanged, inactivating the protein; the levels of free E2F increase, which complex with
p53, acting as an indirect repressor of VEGF expression [48,49].

Apart from the p53-dependent mechanism, some authors have shown that E6 can
stimulate VEGF expression in a direct manner. This happens by binding four SP1 sites
between −94 and −50 bp in the VEGF promoter [50].

In a parallel fashion, E7 increases VEGF expression through telomerase reverse tran-
scriptase (hTERT) and telomerase activity, with two independent mechanisms [51,52]. In
particular, overexpression of hTERT upregulated VEGF expression in HPV-18-positive HeLa
cells, and knockdown of hTERT expression downregulated VEGF expression. However, the
mechanism of hTERT activation in HPV-infected cells has yet to be fully elucidated, since
some authors have postulated a role of E6 in its activation in an SP1-dependent way [53].

A minor role in VEGF expression during HPV infection could be played by E5, an
oncoprotein that activates the epidermal growth factor receptor (EGFR), with a poorly
understood mechanism, which might involve interaction with the vacuolar H+-ATPase,
reducing acidification of the endosomal compartment and preventing EGFR degradation
according to some authors [54]. Moreover, E5 reduces ubiquitination of EGFR and then
increases its expression [55]. This causes the phosphorylation of phosphatidylinositol
3-kinase (PI3K) and Akt, which increases VEGF expression by activating the transcription
of COX-2 [56,57]. An overview of the described mechanisms of VEGF activation in HPV-
infected cells is illustrated in Figure 3.

These pathways only partly explain the delicate molecular equilibrium that regulates
VEGF expression. Certainly, other factors are also involved, through mechanisms that
are currently unknown. What is certain is that HPV proteins E6 and E7 (and, to a lesser
degree, E5) alter this equilibrium in a pro-angiogenic manner, which is confirmed by the
discovery of high levels of VEGF in papillomatous epithelium and underlying endothelial
cells in RRP patients. Moreover, the increased expression of VEGF, along with angiogenic
chemokines CXCL1 and CXCL8, in RRP cells could be a marker of disease severity [58].
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levels of VEGF in HPV-infected cells. E5 induces EGFR expression by reducing its ubiquitination and
degradation, thereby activating COX-2, which induces VEGF production. E6 blocks the interaction of
p53 with E2F, which reduces VEGF transcription; furthermore, E6 directly induces VEGF transcription
in a p53-independent way by binding specific sites on the VEGF promoter. Finally, E7 activates
hTERT, which induces VEGF transcription. The figure was created with BioRender.com.

4. Anti-Angiogenic Molecules in The Treatment of RRP: Present and Future

Based on the observation of the presence of VEGF mRNA and its receptors in the
squamous epithelium of papillomas and endothelial cells, in 2009, Nagel et al. [21] empiri-
cally administered bevacizumab, an anti-genetic agent, to a young patient with RRP, with
excellent results in terms of disease control and improved quality of life.

The patient, a 32-year-old male, had been suffering from recurrent laryngeal papillo-
matosis since the age of 2 years and underwent numerous surgical ablations and tracheal
dilatation surgeries due to frequent recurrences and subsequent tracheal stenosis. De-
spite numerous laser treatments and mechanical endobronchial ablation of the lesions,
placement of tracheal stents, and an attempt at therapy in the form of local application of
30 million IU of Roferon and local instillation of cidofovir, recurrences were appearing
about 8 weeks after each treatment. The authors then decided to put the patient on empiric
therapy with bevacizumab, and after only 8 cycles of treatment, they observed good control
of the disease. The patient remained in prolonged remission, and no further endobronchial
excisions were necessary.

Bevacizumab is a recombinant humanized monoclonal antibody that binds VEGF-A
and inhibits its activity by preventing binding to the receptor VEGF-R and consequently
its activation [59,60]. This causes a decrease in vessel diameter, density, and permeability,
leading to regression of existing microvessels, normalization of the mature vasculature,
and inhibition of neovascularization. This brings about improvement of the metabolic
microenvironment [61–63].

BioRender.com
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To date, bevacizumab has been approved, in combination with chemotherapy drugs,
for the treatment of metastatic colorectal cancer, breast cancer, non-squamous cell lung
cancer, metastatic or advanced renal cell cancer, ovarian cancer, and advanced glioblas-
tomas [62].

Recent studies have hypothesized a role for this therapy not only in oncology but
also in treating all those pathologies characterized by altered angiogenesis, for example,
in retinal capillary hemangiomas, hereditary hemorrhagic telangiectasia or intracranial
arteriovenous malformations, with a good response in terms of control or regression of the
pathology [61–66].

Since the first study investigating its use in RRP, bevacizumab has been considered
a promising therapy in RRP as well, both as monotherapy and as an adjuvant therapy to
surgery, especially in cases of severe disease with invalidating symptoms and frequent
recurrences [67].

Many authors describe an impressive response to therapy, in terms of a reduction
in surgical interventions and lengthening of intersurgical intervals. In most cases, only a
partial response was evident, with a reduction in the exophytic component of papillomas
without their complete elimination. However, this led to an important reduction in airway
obstruction, with marked improvement in quality of life, a reduced number of surgical
procedures required per year, and improvement in voice quality [59,67–69].

Mohr et al. [70] described the resorption of perivascular edema in the absence of
apoptosis of papillomatous tissue after bevacizumab administration. This confirms the role
of the drug in acting on the vasculature without inducing cell apoptosis.

Bevacizumab can be administered either systemically intravenously or intralesionally.
The former is necessary in cases of non-accessible bronchial lesions, involvement of lung
parenchyma, or risk of voice mutilation due to surgery, while the latter is indicated in the
case of laryngeal lesions [60,71].

When therapy is discontinued, progression of the disease has been seen within a
few months. However, resumption of treatment again leads to a good response. To date,
surgical treatment cannot always be completely avoided in patients with severe RRP, but
the interval between surgeries appears lengthened [67,70].

Regarding adverse effects, intralesional administration of bevacizumab seems to be
devoid of complications [71]. With regard to systemic administration, even fatal adverse ef-
fects, such as bleeding, intestinal perforation, proteinuria, and neutropenia, are described in
the literature when bevacizumab is used in cancer patients in combination with chemother-
apy drugs. However, these adverse effects appear to depend on some specific factors,
such as the histologic type of tumor, the associated chemotherapy drug and the dose of
bevacizumab administered [72–74].

In contrast, adverse effects in the case of systemic treatment with bevacizumab in RRP
are described as mild and self-limiting. This could indicate the safety of the treatment, but
long-term follow-up and a shared therapeutic protocol for RRP are still lacking [22].

In addition, some concerns have been raised about the costs of using Avastin in
clinical practice. An option to reduce the economic impact of this therapy could be the
use of biosimilars (like SB8 and ABP 215) [75,76], which some authors have shown can
significantly reduce treatment costs and improve cost-effectiveness. However, the specific
cost-effectiveness of biosimilars in RRP patients has not been investigated yet and could be
an additional aspect to be explored in future research [77].

In addition to bevacizumab, the use of other anti-angiogenic drugs is described in the
literature.

Although there are many molecular mechanisms involved in angiogenesis, research
has mainly focused on the VEGF/VEGFR signaling pathway, which is most involved in
this process [19].

Anti-angiogenic drugs approved by the FDA for clinical treatments include mon-
oclonal antibodies, which are characterized by high binding specificity (in addition to
bevacizumab, this class also includes ramucirumab, which binds the extracellular do-



Curr. Issues Mol. Biol. 2024, 46 6765

main of VEGFR-2, preventing its binding to VEGF, and ranibizumab, which binds VEGF),
anti-angiogenic recombinant fusion proteins (such as aflibercept, which binds VEGF by
preventing its binding to the receptor), and small-molecule kinase inhibitors. The latter are
competitive non-covalent ATP inhibitors that inactivate VEGFR; included in this category
are imatinib, sorafenib, sunitinib, pazopanib, vandetanib, axitinib, regorafenib, and many
others [19,78].

These drugs are already in use, as monotherapy or in combination with chemother-
apeutics, for advanced gastric metastatic carcinoma, colorectal carcinoma, kidney, liver,
thyroid, pancreatic cancers, gastrointestinal solid tumors, and non-small cell lung cancer.
In addition to neoplastic diseases, they are also used for angiogenic age-related macular
degeneration, diabetic retinopathy, and other oculopathies [19,78].

Regarding RRP, the only drug used so far in the literature is bevacizumab, which has
shown promising results. However, the application of other anti-angiogenic drugs that act
on the VEGF/VEGRF pathway could also be studied in RRP in the future.

Furthermore, given the importance that is being attributed in recent years to VEGFR-3
in regulating the angiogenesis process [79], it can be hypothesized that this could become
a target of anti-angiogenic therapy in the future, alone or in combination with selective
inhibitors of the HPV-infected cell cycle.

5. Conclusions

VEGF seems to be an important actor in the pathophysiology of many viral dis-
eases, including RRP, in which angiogenesis plays a crucial role, especially in more severe
cases. Overexpression of VEGF is surely part of the genetic dysregulation in the papilloma
microenvironment, with patterns unique to every patient. The mechanisms of this upregu-
lation are several, and the viral oncoproteins E5, E6, and E7 are directly involved in many
of them.

After the successful use of bevacizumab as an adjuvant therapy for RRP in reducing
the number of recurrences, few papers have studied the mechanisms underlying the pro-
angiogenic shift in RRP. However, the literature on this specific topic is still limited and
future research could investigate more specifically the genomics and proteomics in every
cellular lineage in the papilloma microenvironment, since not every patient shows increased
expression of proteins involved in VEGF signaling, suggesting that other pathways could
be involved. The final aim is the creation of a tailored combination therapy for each patient,
which can block multiple pathological pathways at the same time. The reduced tumor
escape could decrease the number of recurrences and surgical procedures performed,
promoting a better quality of life for these patients.
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