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Abstract: In recent years, polybenzoxazine aerogels have emerged as promising materials for various
applications. However, their full potential has been hindered by the prevalent use of hazardous
solvents during the preparation process, which poses significant environmental and safety concerns.
In light of this, there is a pressing need to explore alternative methods that can mitigate these issues
and propel the practical utilization of polybenzoxazine aerogels. To address this challenge, a novel
approach involving the synthesis of heteroatom self-doped mesoporous carbon from polybenzox-
azine has been devised. This process utilizes eugenol, stearyl amine, and formaldehyde to create the
polybenzoxazine precursor, which is subsequently treated with ethanol as a safer solvent. Notably,
the incorporation of boric acid in this method serves a dual purpose: it not only facilitates microstruc-
tural regulation but also reinforces the backbone strength of the material through the formation
of intermolecular bridged structures between polybenzoxazine chains. Moreover, this approach
allows ambient pressure drying, further enhancing its practicability and environmental friendliness.
The resultant carbon materials, designated as ESC-N and ESC-G, exhibit distinct characteristics.
ESC-N, derived from calcination, possesses a surface area of 289 m2 g−1, while ESC-G, derived
from the aerogel, boasts a significantly higher surface area of 673 m2 g−1. Furthermore, ESC-G
features a pore size distribution ranging from 5 to 25 nm, rendering it well suited for electrochemical
applications such as supercapacitors. In terms of electrochemical performance, ESC-G demonstrates
exceptional potential. With a specific capacitance of 151 F g−1 at a current density of 0.5 A g−1, it
exhibits superior energy storage capabilities compared with ESC-N. Additionally, ESC-G displayed
a more pronounced rectangular shape in its cyclic voltammogram at a low voltage scanning rate
of 20 mV s−1, indicative of enhanced electrochemical reversibility. The impedance spectra of both
carbon types corroborated these findings, further validating the superior performance of ESC-G.
Furthermore, ESC-G exhibits excellent cycling stability, retaining its electrochemical properties even
after 5000 continuous charge–discharge cycles. This robustness underscores its suitability for long-
term applications in supercapacitors, reaffirming the viability of heteroatom-doped polybenzoxazine
aerogels as a sustainable alternative to traditional carbon materials.

Keywords: polybenzoxazine; aerogel; porous carbon; electrode material; supercapacitor

1. Introduction

Supercapacitors, also called electrochemical capacitors, represent a novel class of en-
ergy storage devices acclaimed for their distinctive attributes. Combining the virtues of
dielectric capacitors and rechargeable batteries, they excel in swiftly delivering substantial
power while surpassing conventional capacitors in energy retention. Their superiority
is underscored by a markedly higher power density relative to batteries, primarily at-
tributed to the utilization of carbon materials [1–5]. Carbon’s ascendancy is fueled by
its superior performance metrics, ecological compatibility, and cost-effectiveness, with
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porous carbons emerging as frontrunners in energy storage endeavors. Their expansive
surface area, commendable electrical conductivity, and inherent stability render them
coveted candidates for electrode material in supercapacitors. Yet, the efficacy of porous
carbons is impeded by sluggish kinetics, chiefly stemming from in-pore ion transport
hindrance and elongated ion diffusion pathways within the electrode matrix. Consequently,
when pore dimensions diminish, the electrode’s potential experiences a notable decline,
impeding ion conveyance particularly at elevated current densities, thus severely curb-
ing overall electrode efficiency [6–10]. Addressing these challenges remains imperative
for advancing supercapacitor technology towards broader applications and heightened
performance thresholds.

Among the myriad materials available, carbon aerogels emerge as a highly promising
option, as these materials possess dense, interconnected networks of pores that are both
continuous and open. This unique structure endows them with exceptional characteris-
tics, including a large surface area, outstanding electrical conductivity, and high porosity.
These attributes make carbon aerogels particularly suitable for supercapacitor applications.
However, despite their impressive properties, the production of carbon aerogels remains
relatively expensive due to the complexity involved in their synthesis process. Thus, devel-
oping cost-effective and straightforward methods for producing multifunctional polymer
aerogels remains a crucial area of research [11–16].

Polybenzoxazine (PBz), representing an aromatic thermosetting polymer, stands out
as a promising material due to its unique properties, such as low water absorption, minimal
curing shrinkage, and superior thermal and mechanical characteristics. The synthesis of
PBz involves ring-opening polymerization of the benzoxazine (Bz) monomer, which can
be initiated through heating or the use of chemical initiators. The Bz monomer itself is
derived from a phenolic compound, a primary amine, and formaldehyde, enabling the
design of aerogel materials through precise molecular selection and chemical modification.
Despite these advancements, the production of PBz aerogels often requires the use of
environmentally harmful solvents such as DMF (dimethylformamide) or NMP (N-methyl-
2-pyrrolidone) to achieve homogeneous monomer dissolution. The reliance on these
solvents raises significant environmental and health concerns, highlighting the need for the
development of more sustainable and safer processing methods [17–21].

The ongoing challenge is to optimize these materials and reduce production costs,
thereby making supercapacitors a more viable and widespread solution for energy stor-
age needs. Expanding upon prior discussions, this research introduces an innovative
method for producing nitrogen-doped carbon aerogel known as ESC-G. This approach,
characterized by its simplicity, cost-effectiveness, and efficiency, involves polymerizing
a multifunctional benzoxazine monomer. The resulting aerogel exhibits high specific
surface area and porosity, making it ideal for various applications. The advantages of
both hetero-atom doped carbon and increasing the surface area through gel formation
have been utilized in synthesizing ESC-G. Specifically, ESC-G was investigated as an elec-
troactive material for constructing working electrodes tailored for supercapacitors. This
study meticulously assessed the electrochemical properties of supercapacitors employing
ESC-G compared with those utilizing ESC-N, elucidating the advantages and potential
enhancements in performance.

2. Results and Discussion
2.1. Characterizations of the Synthesized Benzoxazine Monomer

Schematic illustration of the preparation processes of E-St-Bz and Pbz-based porous
carbons are shown in Figure 1a and Scheme 1. The chemical structure of the E-St-Bz
benzoxazine monomer was meticulously confirmed using Fourier-transform infrared spec-
troscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy techniques. In the
FT-IR analysis (Figure 1b), distinct peaks revealing the benzoxazine ring structure were
identified. Notably, peaks at 1236 and 1028 cm−1 represented the asymmetric and symmet-
ric stretching of the C-O-C bond, respectively, while the peak at 936 cm−1 indicated the
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fusion of a benzene ring with an oxazine ring [22]. Further examination unveiled peaks at
1147 and 1224 cm−1, corresponding to C-N-C stretching and methoxycarbonyl stretching,
respectively. Additionally, intense peaks at 2924 and 2854 cm−1, denoting C-H stretching
vibrations of the alkyl side chain of stearylamine were notable [23,24].
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In concurrence with the FT-IR findings, 1H-NMR analysis also provided further struc-
tural insight, represented in Figure 1c. Peaks at 4.0 and 4.9 ppm were associated with
Ar-CH2-N and O-CH2-N protons of the oxazine ring, while a singlet at 3.8 ppm confirmed
the presence of -OCH3 protons. Doublets at 3.2, 5.9, and 5.1 ppm were attributed to allyl
protons, and multiplets at 2.67, 1.2 and 0.8 ppm indicated the long aliphatic chain attached
to the oxazine ring. Furthermore, the presence of the solvent (CDCl3) was indicated by a
peak at 7.2 ppm [25,26]. Subsequent 13C-NMR spectra, as shown in Figure 1d, supported
these findings, exhibiting characteristic carbon resonances relevant to the oxazine ring,
-OCH3 group, and allyl carbons. In summary, both the FT-IR and NMR spectroscopy
techniques provided robust confirmation of the E-St-Bz monomer’s chemical structure,
elucidating crucial molecular intricacies essential for understanding and application.

2.2. Thermal Behavior of E-St-Bz and Poly(E-St-Bz)

The polymerization behavior of E-St-Bz was analyzed using differential scanning
calorimetry (DSC) under nitrogen, with a heating rate of 10 ◦C/min from 30 to 350 ◦C. As
observed via the DSC thermogram (Figure 2a), the benzoxazine monomer (E-St-Bz) started
to melt at 49 ◦C, marked by a distinct endothermic peak. The curing process began around
218 ◦C, with an exothermic peak maximum at 230 ◦C, indicating the maximum curing
process. This curing process between 200–250 ◦C signifies ring-opening polymerization, a
trend that can generally be observed in all sorts of benzoxazine monomers [27,28]. Notably,
E-St-Bz exhibited a processing window of 169 ◦C, indicating favorable processability.
Additionally, an exothermic peak at 335 ◦C was observed, indicating the degradation of
aliphatic chains in the E-St-Bz monomer. Confirmation of the curing process of the E-St-Bz
monomer was achieved through FT-IR analysis (Figure 2b). FT-IR spectra obtained from
the monomer heated incrementally at 100, 150, 200, and 230 ◦C for 1 h each illustrated
the curing progression. Curing involved cleavage of the C-O-C bond within the oxazine
ring, resulting in decreases in peak intensity around 936, 1012, 1147, 1224, and 1352 cm−1,
corresponding to stretching vibrations of the oxazine ring (C-O-C) and -CH2 of the benzene
ring. At higher temperatures (200 ◦C), involvement of the allyl group within the eugenol
moiety in curing was evident, as seen by the disappearance of the peak at 1636 cm−1,
indicative of stretching vibrations associated with the allylic moiety [29–31].
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Thermogravimetric analysis (TGA) was utilized to evaluate the thermal stability
of poly(E-St-Bz), and the results are depicted in Figure 2c,d. This provided essential
parameters including initial degradation temperature (Ti), temperatures at 5% (T5) and 10%
(T10) weight loss, and char yield (CY) at 800 ◦C. Notably, poly(E-St-Bz) exhibited superior
thermal stability, displaying Ti = 284 ◦C, T5 = 324 ◦C, and T10 = 353 ◦C. Furthermore, a
char yield of approximately 23.9% was obtained at 800 ◦C. This thorough analysis sheds
light on the complex polymerization behavior and thermal properties of E-St-Bz, hinting at
its potential applications across various fields requiring resilient and thermally enduring
polymers [32,33].

2.3. Structural Analysis of the Prepared Carbon Samples

The benzoxazine monomer underwent two different processes: (i) curing, carboniza-
tion, and activation to produce ESC-N; and (ii) gelation, carbonization, and activation
to produce ESC-G. To gain a deeper understanding of the structural characteristics and
graphitic properties of the synthesized carbon samples, ESC-N and ESC-G, Raman spec-
troscopy and wide-angle X-ray diffraction (XRD) techniques were employed. The Raman
spectra presented in Figure 3a offer valuable insights into the chemical composition and
degree of graphitization in the carbon materials. Both ESC-N and ESC-G exhibited two
prominent peaks: The D band at 1351 cm−1 signified the presence of disordered carbon
structures, while the G band at 1594 cm−1 denoted the more ordered, graphitic carbon do-
mains. The intensity ratio of these bands (ID/IG) served as an indicator of the graphitization
level. For ESC-N, a pronounced D band was observed, suggesting a higher concentration
of defects within the carbon structure [34]. This could be attributed to the incorporation
of nitrogen and oxygen atoms during processing. The calculated ID/IG value for ESC-N
was found to be 0.96, which is higher compared with the ID/IG value of ESC-G (0.85). This
signified that the ESC-N possessed a more disordered structure with a higher prevalence of
defects compared with the ESC-G. Interestingly, despite the difference in ID/IG values for
both the samples, they had relatively similar chemical composition and structure, being
produced via either the aerogel method or chemical activation. Further details regarding
the graphitic domains within the carbon aerogels were obtained through XRD analysis
(Figure 3b). Both ESC-N and ESC-G exhibited two broad diffraction peaks at approximately
2θ = 24◦ and 45◦. These peaks corresponded to the (002) and (100) planes of hexagonal
graphitic carbon, confirming the presence of graphitic domains within both samples [35].

To quantify the interlayer spacing within these graphitic domains, Bragg’s equation
was employed. This equation relates the wavelength of the incident X-rays (λ = 1.5418 Å),
the diffraction order (n = 1), the measured angle (θ), and the interlayer spacing (d) within
the crystal lattice. Applying this equation revealed a d-spacing (d002) of 0.40 nm for each
graphite lamella in both the carbons. This value was slightly higher than that observed in
conventional graphite (0.33 to 0.34 nm). This enlarged interlayer spacing within the carbon
framework could offer a significant advantage for supercapacitor applications [36–40].

Nitrogen sorption measurements were performed on the synthesized samples, ESC-N
and ESC-G, to thoroughly investigate their porosity and textural characteristics. These
analyses provided crucial insights into specific surface area, pore size distribution (PSD),
and pore volume, all of which are key factors influencing the electrochemical performance
of supercapacitor electrodes. The N2 physisorption isotherms, shown in Figure 3c, included
a combined pattern of type I and type IV isotherms for both ESC-N and ESC-G. The type
I isotherm, indicative of microporous materials, displayed a sharp rise in N2 adsorption
at low relative pressures (P/P0), which in ESC-G suggested a significant presence of
micropores, providing numerous adsorption sites for electrolyte ions. Additionally, both
samples showed hysteresis loops at high relative pressures (P/P0 close to 1.0), indicating
the presence of mesopores with relatively uniform sizes. These mesopores are essential
pathways for electrolyte transport within the electrode structure [41–43].

Figure 3d further reveals the pore size distribution (PSD) of ESC-N and ESC-G. Both
samples exhibited pore diameters less than 2 nm and between 2 to 50 nm, indicating
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the presence of microporous and mesoporous materials. However, a distinct difference
was observed between the two: ESC-N obtained via calcination had a broad mesopore
distribution, whereas ESC-G derived from the aerogel featured a narrower mesopore
distribution along with a significantly higher pore volume. This specific mesopore structure
in ESC-G was attributed to the unique properties obtained through the aerogel process.
Moreover, the specific surface area obtained from BET was found to be 289 m2 g−1 for
ESC-N and 673 m2 g−1 for ESC-G. This substantial difference underscores the effectiveness
of the aerogel approach in creating a highly porous material, along with increased surface
area [44].
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Scanning electron microscopy (SEM) revealed intricate details about the morphology
of the synthesized carbon materials, ESC-N and ESC-G. Unlike an ideal supercapacitor
electrode, ESC-N features an irregular microparticle structure. These particles, which
vary in size from several hundred nanometers to a few micrometers, aggregate to form
bulky, porous clusters. Interestingly, these clusters displayed a dual nature, exhibiting
both sheet-like and three-dimensional bulk characteristics. The SEM images in Figure 4a–c
highlight the disparity between the largest and smallest particles, emphasizing this non-
uniformity. Notably, ESC-N exhibited a complete absence of pores, presenting a rough,
unbroken surface without visible cavities or macropores. This lack of porosity suggests
a limited surface area, which could potentially hinder its performance in supercapacitor
applications.
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In contrast, the surface morphology of ESC-G, derived from the activation of carbon
aerogel, underwent a remarkable transformation. SEM images revealed numerous micro-
pores and mesopores embedded on the surface of the carbon, along with very few voids
in the macropore range with a pore diameter of 0.5 mm (Figure 4d–f). These macropores
are likely to have been formed by the expulsion of residual solvent during the gelation
process. Such extensive porosity is highly advantageous for supercapacitors, as it signif-
icantly increases the surface area, offering more sites for electrolyte ion interaction and
enhancing capacitance.

Transmission electron microscopy (TEM) provided a deeper, high-resolution view of
the internal morphology of ESC-G. The TEM images of ESC-G (Figure 5a–d) revealed an
open-pore network, a crucial feature for efficient supercapacitor performance. This nano-
architecture offers several benefits: it shortens the diffusion pathways for ions, enabling
their rapid movement within the electrode, and provides a continuous electron pathway,
improving electrical conductivity. Additionally, ESC-G displayed a higher abundance of
pores arranged in a more orderly manner. This suggests the presence of sp2-bonded carbon
in ESC-G, which is highly desirable for its superior electrical conductivity.

X-ray photoelectron spectroscopy (XPS) was employed as a potent analytical method
to delve into the chemical composition and bonding environment of nitrogen and oxygen
species present on the surface of the synthesized carbon materials, ESC-N and ESC-G. As
shown in Figure 6, the XPS spectra displayed distinct peaks for C 1 s, N 1 s, and O 1 s for
both the samples. This confirmed the incorporation of nitrogen and oxygen atoms into the
carbon framework, attributable to the use of a benzoxazine monomer as the initial carbon
precursor. Additionally, the XPS results verified the absence of impurities in the nitrogen
self-doped carbon materials. The XPS survey scan for ESC-N and ESC-G highlighted the
characteristic photoelectron peaks for carbon (C), nitrogen (N), and oxygen (O) at binding
energies around 281, 401, and 533 eV, respectively [45–47]. To gain a deeper understanding
of the surface chemistry, deconvolution analyses were performed on the individual C 1 s,
N 1 s, and O 1 s peaks, and the results are presented in Figure 6b–d and Table 1.
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Table 1. Elemental composition of ESC-N and ESC-G.

Type of Atom
Atomic %

ESC-N ESC-G

C 89.35 87.62

N 2.37 3.13

O 8.27 9.25

The deconvoluted C 1 s spectrum shown in Figure 6b revealed four distinct peaks.
The first peak, located at 284.7 eV, is attributable to hydrocarbon chains involving C=C
and C–C bonds. The second peak at 285.6 eV corresponds to carbon atoms bonded in C–N
configurations. The third peak at 286.5 eV signifies the presence of O–C=O, C=N, and
C–OH functionalities. The fourth peak at 288.9 eV is indicative of carbon atoms bonded
with both oxygen and nitrogen groups (HN–C=O).

Examining the nitrogen environment, the deconvoluted N 1 s spectrum shown in
Figure 6c exhibited three distinct peaks, each representing different nitrogen functional
groups. The peak at 398.6 eV corresponds to pyrrolic nitrogen, while the peak at 400.8 eV
indicates graphitic nitrogen. The third peak at 406.2 eV is associated with pyridine N-oxide,
suggesting possible interactions with oxygen-containing species on the surface. The O 1 s
spectrum shown in Figure 6d provided additional insights into the oxygen functionalities
present on the carbon surface. Deconvolution revealed four peaks at binding energies
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of 531.3, 533.1, 533.6, and 537.1 eV, corresponding to hydroxyl (C–OH), epoxy (C–O–C),
carbonyl (C=O)/carboxyl (COO-), and chemisorbed oxygen or water functional groups,
respectively [48–50]. This confirmed the presence of oxygen-containing functionalities
and possibly entrapped water molecules within the carbon matrix. The XPS analysis
unequivocally confirmed the presence of nitrogen and oxygen functionalities within the
structure of the synthesized carbon materials.
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2.4. Electrochemical Characterizations of ESC-N and ESC-G Electrodes

ESC-N and ESC-G are nitrogen-enriched porous carbons derived from biomass, ex-
hibiting distinct microstructures that hint at their potential for use as supercapacitor elec-
trode materials. To validate this potential, a comprehensive electrochemical evaluation was
conducted using a three-electrode system with 1 M H2SO4 aqueous electrolyte. A pivotal
technique in this assessment was cyclic voltammetry (CV), which gauged the capacitive
properties of the electrode materials. Figures 7 and 8 display the electrochemical properties
of the ESC-N and ESC-G electrodes. Figures 7a and 8a present the CV curves for ESC-N and
ESC-G electrodes across a range of scan rates (5 to 100 mV s−1) within a potential window
of 0–1 V. Remarkably, even at the highest scan rate of 100 mV s−1, the CV curves retained a
near-rectangular shape. Moreover, the CV curve area of ESC-G was larger compared with
ESC-N. This characteristic suggests an impressive capacitive performance for the ESC-G
electrode, indicative of efficient charge storage and release processes.
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Galvanostatic charge–discharge (GCD) measurements further elucidated the charge
storage and delivery capabilities of supercapacitors. Figures 7b and 8b illustrate the GCD
curves for ESC-N and ESC-G electrodes, revealing nearly perfect triangular shapes with
minimal IR drop. The slight deviations from perfect triangularity point to some degree of
pseudocapacitive behavior. This phenomenon is linked to the presence of nitrogen atoms on
the carbon surface, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis [51–53].
The presence of nitrogen functionalities enhances pseudocapacitance by creating an elec-
trochemically active interface between the electrolyte ions and the electrode surface. An
important performance metric for supercapacitors is specific capacitance, which varies
with current density. As depicted in Figures 7c and 8d, the specific capacitance values
calculated from the GCD data showed a decline with increasing current density for both
the electrodes. Specifically, at current densities ranging from 0.5 to 10 A g−1, the specific
capacitance decreased from 82 to 52 F g−1 for the ESC-N electrode and from 151 to 63 F g−1

for the ESC-G electrode. This trend highlights the rate limitations of the electrode material,
as higher charging/discharging rates reduce its efficiency.

Electrochemical impedance spectroscopy (EIS) offered additional insights into the
interfacial dynamics, diffusion processes, electronic conductivity, and charge transfer
resistance within the electrode–electrolyte system. Figures 7d and 8d show the Nyquist
plots for the ESC-N and ESC-G electrodes. The plotted intercept on the real axis denotes
the solution resistance (Rs), and the diameter of the semicircle denotes the charge transfer
resistance (Rct). Notably, ESC-G exhibited a very low Rct value of 0.95 Ω, compared with the
ESC-N electrode (Rct = 1.45 Ω), signifying excellent electronic conductivity—a vital trait for
high-performance supercapacitor electrodes. This low Rct value significantly contributed
to ESC-G’s impressive rate capability.

Obviously, the reduced performance of the ESC-N electrode was attributed to its poorly
developed porosity, leading to a lower surface area and uneven nitrogen atom distribution
throughout the material. In summary, this study underscores the exceptional potential of
ESC-G electrode, a biomass-derived nitrogen-containing porous carbon, as a supercapacitor
electrode material. The near-rectangular CV curves, triangular GCD profiles, and low Rs
and Rct underscore its outstanding capacitive behavior and robust rate capability [54]. This
research advances the development of high-performance supercapacitors using sustainable,
biomass-derived materials, promoting environmental sustainability while achieving high
efficiency in energy storage applications.

2.5. Comparison of the Electrochemical Performance of ESC-N and ESC-G Electrodes

Figure 9a–d provide a comparative visualization of the two electrodes. The CV curve
for the ESC-G electrode, evaluated at a scan rate of 20 mV s−1, enclosed a noticeably larger
area than that of the ESC-N. This indicated a higher capacitance for ESC-G. Similarly, the
GCD curves at a current density of 0.5 A g−1 revealed a longer discharge time for ESC-G,
implying its superior ability to store and release charge. The enhanced performance of
ESC-G can be attributed to its unique microporous structure, further complemented by
additional micro-, meso-, and macropores. This hierarchical porosity offers numerous
advantages. Micropores provide a large surface area essential for efficient ion adsorption,
contributing to pseudocapacitance. Meanwhile, meso- and macropores facilitate the smooth
infiltration of the electrolyte throughout the electrode, thus maximizing the accessible
surface area for ionic interactions. The synergy between pore size and distribution is
pivotal in achieving high capacitance [55,56].

Figure 9c quantifies the significant improvement in specific capacitance (Cs) achieved
by incorporating a gel network into the ESC-G electrode. At a current density of 0.5 A g−1,
the ESC-N electrode exhibited a Cs of 82 F g−1. Remarkably, this value escalated to
151 F g−1 for the ESC-G electrode. This substantial enhancement was directly linked to
the optimized porous structure. The interconnected network of pores in ESC-G allows
efficient electrolyte penetration, maximizing the electrode surface area available for ion
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interaction. This effectively meets a key requirement for high capacitance, positioning
ESC-G as a promising candidate for supercapacitor applications [57–62].

To further explore the practical viability of these electrodes, their cycling stability was
evaluated through a GCD study over 5000 charge–discharge cycles (Figure 9d). Notably,
the Cs of the ESC-G electrode exhibited exceptional stability throughout the test at a current
density of 0.5 A g−1, although a slight decrease from 151 to 117 F g−1 was observed after
5000 cycles and the capacitance retention ratio maintained at 89%. This outstanding stability
underscores the long-term durability of ESC-G electrodes, rendering them highly suitable
for real-world supercapacitor devices.
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3. Conclusions

An efficient, adaptable, cost-effective, and highly time-efficient approach was utilized
to synthesize heteroatoms containing activated porous carbons, ESC-N and ESC-G, from
fully bio-based benzoxazine. This method employed a non-templating technique combined
with KOH activation. By utilizing polybenzoxazines as organic precursors, we successfully
created a carbon aerogel using ethanol (an ecofriendly solvent), featuring an optimal pore
size, making it ideal for electrochemical applications, particularly as an electrode material.
This process not only simplifies the synthesis but also enhances the functional properties of
the resulting carbon aerogel, broadening its potential applications in various electrochem-
ical devices. The findings from this study clearly demonstrate that the biomass-derived
ESC-G electrode, characterized by its hierarchical pore structure and the presence of het-
eroatoms, offers superior electrochemical performance compared with the ESC-N electrode.
The efficient electrolyte penetration and maximized accessible surface area of 673 m2 g−1

for ESC-G translate into a significant improvement in specific capacitance and cycling
stability. These characteristics make ESC-G a promising candidate for the development
of high-performance supercapacitors. The advanced structural design of ESC-G, with its
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well-distributed micropores, mesopores, and macropores, effectively enhances ion trans-
port and storage capabilities. This structural advantage, combined with the presence of
heteroatoms, not only boosted the capacitance (Cs = 151 F g−1) but also ensured remarkable
stability (89% capacitance retention) over extended cycling, fulfilling key requirements for
practical supercapacitor applications. This research paves the way for further exploration
and optimization of biomass-derived materials in energy storage technologies, highlighting
the potential of sustainable resources in developing next-generation supercapacitors.

4. Materials and Methods

Details relating to the materials, instrumentation methods, synthesis of eugenol-
stearylamine-based benzoxazine monomer—E-St-Bz, preparation of porous carbon—ESC-
N, preparation of porous carbon via aerogel—ESC-G, fabrication of working electrodes,
and electrochemical measurements are given in the Supporting Information.
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