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Abstract: The sunflower (Helianthus annuus L.) is one of the most essential oil crops in the world.
Several component traits, including flowering time, plant height, stem diameter, seed weight, and
kernel weight, determine sunflower seed and oil yield. Although the genetic mechanisms governing
the variation of these yield-related traits have been studied using various approaches, genome-wide
association studies (GWAS) have not been widely applied to sunflowers. In this study, a set of
342 sunflower accessions was evaluated in 2019 and 2020 using an incomplete randomized block
design, and GWAS was conducted utilizing two complementary approaches: the mixed linear model
(MLM) and the fixed and random model circulating probability unification (farmCPU) model by
fitting 226,779 high-quality SNPs. As a result, GWAS identified a number of trait-associated SNPs.
Those SNPs were located close to several genes that may serve as a basis for further molecular
characterization and provide promising targets for sunflower yield improvement.

Keywords: sunflower; GWAS; flowering time; plant height; stem diameter; seed weight;
kernel weight

1. Introduction

Sunflower domestication likely began over 4000 years ago [1] in the interior mid-
latitudes of eastern North America [2]. Various selection and breeding methods have
contributed considerably to today’s sunflower varieties. Since the sunflower was domesti-
cated, it has been used for multiple purposes in various industries. It is an essential oil crop
that makes a substantial contribution to the world’s supply of edible oil. The sunflower is
currently Europe’s second-most important oil crop, behind rapeseed, and the fourth-most
important oil crop in the world [3], with its high-quality edible oil and dietary fiber being
essential to a balanced human diet [4].

Because of the growing human population and other environmental concerns, the
demand for sunflowers has been rising. To address this need, sunflower breeding and
genetic studies have been conducted to improve sunflowers’ yield and quality parameters.
Different techniques and approaches have been utilized to enhance agronomically impor-
tant sunflower traits. However, the genetic basis for governing the yield traits remains
largely unknown. Therefore, understanding the genetic mechanism of sunflower traits
using GWAS has become one of the major ongoing objectives of many projects.

The sunflower is mostly grown for the seed (achene) production that is used in
oil production. As a quantitatively inherited component of sunflowers, seed yield is
highly influenced by environmental factors. It is dependent on the genetic potential of the
cultivars as well as contributions from other yield-related factors like seed weight, plant
height, head diameter, and so on [5–10]. Flowering time is also another factor affecting
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seed yield. It is mainly because flowering time has a big impact on local adaptation and
reproduction—a fitness trait [11–13]. Sunflower populations exhibit significant variations
in flowering time. Although a late flowering time was targeted in the early domestication
of sunflowers [14], today’s modern sunflowers are flowering relatively early, which is
intended for a high yield since early flowering offers resilience to drought stress [15,16].
Likewise, later flowering hybrids are heavily impacted by dry circumstances because of
infrequent rain and scorching seasons [17]. Kaya et al. (2009) [18] indicated that hybrids
that were earlier in flowering and had a longer physiological maturity length than 107
days promoted seed yield in sunflowers. They also highlighted the fact that plant height
and seed volumes are critical parameters for oil-type sunflower hybrids to perform better
in seed and oil production. Sunflower populations exhibit a wide range of variation in
terms of plant height, with the short (~50 cm) and long (above 3 m) varieties. Many studies
have reported that reduced plant height has many benefits, including increased plant
density, resistance to lodging and certain diseases, etc. Still, it positively affects yield and
is recognized as a precious yield trait [5–7,19–21]. Therefore, plant height is one of the
selection criteria for breeding purposes. The enhanced combining ability of the hybrid
parents and selection for adaptability to particular conditions, such as durable plant stem, is
linked to the critical advancements in enhancing grain production in sunflowers, according
to Fernandez et al. (2009) [22]. As another important yield parameter, the stem diameter
was reported to be related to seed yield in sunflowers. Shankar et al. (2006) [23] and Habib
et al. (2007) [24] reported positive correlations of stem diameter with sunflower seed yield
per plant. Similarly, kernel weight is a well-known trait directly correlated with sunflower
seed and oil yield and has a positive effect on oil yield through seed yield [25].

In this study, we collected five agronomically important sunflower traits, namely
flowering time, plant height, stem diameter, seed weight, and kernel weight, from yield
trials in 2019 and 2020. After combining the genotypic data we previously generated
using the tunable genotyping-by-sequencing (tGBS) method, GWAS was performed by
utilizing MLM and farmCPU methods to associate the SNP markers with traits. As a result,
trait-associated SNPs and candidate genes were identified, which provide valuable targets
for further sunflower improvement.

2. Materials and Methods
2.1. Plant Materials

In this study, a set of 342 sunflower accessions were evaluated for essential yield
components influencing oil and seed production, which were flowering time, plant height,
stem diameter, seed weight, and kernel weight. The accessions were obtained from the
United States Department of Agriculture, Agricultural Research Center (USDA-ARS), North
Central Regional Introduction Station (NCRPIS) in Ames, Iowa, USA. The accessions have
been assembled from diverse locations worldwide, tested, and maintained to be distributed
to researchers or institutions in this gene bank. These 342 sunflower accessions were
selected randomly based on different geographical locations on six continents to create
diversity in the population. Based on the information and GPS coordinates of the collection
associated with individual accessions in the USDA’s Germplasm Resources Information
Network (GRIN) “https://www.ars-grin.gov (accessed on 9 October 2021)”, most of the
genotyped sunflower accessions used in this study originated from North America, Europe,
and Asia, with a small number of accessions from South America, Africa, and Australia.

2.2. Field Experiment and Phenotyping

The accessions were planted at the Agronomy and Horticulture Research Station in
Havelock, University of Nebraska-Lincoln, in 2019 (40◦51′15.9′′ N, 96◦36′42.6′′ W) and 2020
(40◦51′26.5′′ N, 96◦36′53.4′′ W) using an incomplete randomized block design. The field
experiment had two main blocks, each with four split plots and three checks (PI 432513) per
split-plot. Each genotype was planted in a 3.6 m long single row with 0.75 m row spacing
and an alleyway of 0.9 m. A density of about 45,000 plants per hectare was achieved by
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planting twelve seeds per row. Phenotypic data collection for the flowering time began with
the flowering of the first accession, and the field was visited every morning throughout the
flowering period of the accessions. Flowering time was determined when 50% of plants in
an accession line bloomed. After the plants’ flowering, phenotypic data for plant height
and stem diameter were collected. Once the plants matured, the seeds were harvested, and
the bulked seeds were dried, counted, and weighed to measure 100 seed weights (in grams).
After removing the hull, 100 kernel weights (in grams) were also noted for further analysis.
The phenotype data was collected from three representative plants per plot, excluding
edge plants.

2.3. Phenotypic Data Processing and Heritability Calculation

Best Linear Unbiased Prediction (BLUP) was performed for all traits by using the lme4
package [26] in R (v 4.2.0) [27] to predict the additive genetic value of each genotype in
the population to be used in GWAS. In the BLUP calculation, genotype, block, split-plot,
year, and genotype-by-year interaction were considered as random effects by fitting the
following model, using phenotype data from 2019 and 2020: Y~(1|genotype) + (1|block)
+ (1|split-plot) + (1|year) + (1|genotype:year) + error, where Y represents the phenotype
(flowering time, plant height, stem diameter, seed weight, and kernel weight). In the model,

yijkrl = µ + qi + tl + qi ∗ tl + bjrl + sjkrl + qrl + ε

where yijkrl refers to the phenotypic value of the ith genotype evaluated in the kth split-plot
of the jth block of rth replicate nested within the lth year; µ is the overall mean; qi is the
random effect of the ith genotype; tl is the random effect of the lth year; qi∗tl is the random
effect of the ith genotype with the lth year interaction; bjrl is the random effect of the jth
block of the rth replicate within the lth year; sjkrl is the random effect of the kth split-plot
of the jth block of the rth replicate within the lth year; qrl is the random effect of the rth
replicates nested within the lth year; ε is the random residual error.

Broad-sense heritability (H2) was calculated based on the equation H2 = VG/VP [28,29],
where VG is total genetic variance, VP is total phenotypic variance (VP = VG + VE), and
VE is phenotypic variance due to environmental factors. Regarding this, the broad-sense
heritability of interested traits was calculated for the combined environments of 2019 and
2020 using the following equation:

H2 =
σ2

g

σ2
g +

σ2
gxy

n
+

σ2
e

nr

where σ2
g is the components of variance for genotype, σ2

e is the components of variance
for the environment, σ2

gxy is the components of variance for genotype by year interaction,
n is the number of years, and r is the number of replications.

2.4. Collection of Leaf Samples and DNA Extraction for Genotyping

Sunflower accessions were planted and grown in a greenhouse to collect leaf samples
for DNA extraction. The accessions were grown in 10 × 10 cm pots, which were filled with
a standard greenhouse mix consisting of 5 gallons of peat, 3 gallons of soil, 2.5 gallons of
sand, and 2.5 gallons of vermiculite. After a growth period of two weeks, two samples of
young leaves were taken at the V4 stage, each weighing 600–700 mg. The samples were
then stored in sterile Eppendorf tubes at a temperature of −80 ◦C to prevent damage to
the leaves and to obtain high-quality DNA. To extract the DNA, the leaf samples were first
freeze-dried using a lyophilization machine. The dried samples were then sent to Freedom
Markers “https://www.freedommarkers.com/” (accessed on 3 February 2021) for DNA
extraction and genotyping. For DNA extraction, the BioSprint MagAttract 96 DNA Plant
Core Kit from QIAGEN was used and then quality-checked using a PicoGreen kit on an

https://www.freedommarkers.com/
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Eppendorf Plate Reader. The accession “PI 490282” was added once to each healthy plate
as a control to ensure genotyping quality.

2.5. SNP Genotyping

The genotyping of 285 sunflower accessions was performed using tGBS genotyping
by sequencing technology. Initially, quality control measures were performed, followed
by the pooling of samples and the generation of tGBS libraries. Subsequently, the raw
sequencing data was de-barcoded, and low-quality base pairs at the beginning and end of
each read were eliminated by quality trimming. The resulting reads were aligned to the
Helianthus Annuus HanXRQr2.0-SUNRISE reference genome [11] to identify genotypes
and polymorphic markers. Due to a high missing rate, 11 of the 285 initially selected
samples were excluded from further analysis. Genotyping was performed by Freedom
Markers using the restriction enzyme Bsp1286I [30], and an Illumina HiSeq X instrument
with 2 × 150 bp paired-end reads, resulting in two sets of SNP sites. The first set comprised
503,188 SNPs (ALL SNPs), while the second set was more stringent and of higher quality,
with 247,008 SNP sites, of which each SNP site was genotyped in at least 50% of the samples
(MCR50 SNPs), with an average of 22 tGBS reads per SNP/genotyped sample. These
criteria were adhered to while filtering ALL SNPs: (1) there must be a minimum calling rate
of 20%; (2) the allele number must equal 2; (3) there should be at least two genotypes; (4) the
frequency of the minor allele must be at least 5%; (5) the range of the heterozygosity rate is
0% (2 × Frequencyallele1 × Frequencyallele2 + 20%). The filtering criteria for the MCR50
SNPs were also the same as the filtering criteria for ALL SNPs except for the minimum
calling rate, which should be more than 50%. Imputation was performed for the MCR50
SNPs within each genotype to close data gaps.

2.6. Processing of Sequence Data

The fastq sequence data were trimmed for quality based on PHRED quality scores [31,32],
removing regions of low quality. The trimming parameters adopted from the “LUCY2 v2.20”
software [33,34] included scanning the reads and removing nucleotides with quality scores
below 15. In addition, all windows with an average PHRED quality score below 15 were
trimmed. Reads were aligned to the HanXRQr2.0-SUNRISE reference genome of sunflowers
using GSNAP [35]. Only readings aligning to a single site in the reference genome were used
for SNP calling. For the subsequent analyses, only securely and unambiguously mapped reads
that met specific criteria regarding mismatches and base tails were used. Then, SAMtools
v1.16 [36] was used to convert the formats of the alignment files. Polymorphic sites that differed
from the reference genome were identified from reads that matched the sunflower reference
genome. SNP markers were genotyped using criteria for homozygous and heterozygous SNPs,
considering read support and quality scores.

Detecting Polymorphic Sites

SNPs were found using the coordinates of unique and confident alignments that met
the filtering requirements. Following a thorough examination of the polymorphisms at each
putative SNP location, putative homozygous and heterozygous SNPs were independently
identified in each sample. For this purpose, the criteria for homozygous SNPs were used
following those points: (1) at least 80% of all aligned reads covering that site must support
the most prevalent allele; (2) to support the most frequent allele, at least five distinct
readings are required; (3) the initial and final three base pairs of every read were stripped
of polymorphisms; (4) the minimum PHRED base quality value for each polymorphic base
is 20, which corresponds to a 61% error rate. As for the criteria for heterozygous SNPs, it
covered the following: (1) at least 30% of all aligned reads covering that site must support
each of the two most prevalent alleles; (2) for each of the two most prevalent alleles, there
must be a minimum of five distinct readings; (3) at least 80% of all aligned reads covering
that nucleotide location must be accounted for by the sum of reads from the two most
prevalent alleles; (4) each quality-trimmed read’s initial and last 3 bp of polymorphisms
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were disregarded; (5) a minimum PHRED base quality rating of 20 (≤1% error rate) is
required for every polymorphic base. A single nucleotide was considered homozygous at
an SNP site in a diploid sample if at least five reads supported the predominant common
allele at that site and at least 90% of all aligned reads covering that site shared the same
nucleotide. Similarly, in a given diploid sample, a single nucleotide polymorphism (SNP)
was deemed heterozygous if at least two reads supported a minimum of two distinct
alleles, if the sum of the two allele types’ alignment for that site exceeded 20%, and if the
total number of reads supporting those two alleles equals or exceeds five and when those
readings account for at least 90% of all reads that cover the site.

2.7. SNP Analysis

PCA was conducted using TASSEL v5 [37] to test the genetic variations in the dataset.
The scree plot was generated using the eigenvalues of 10 principal components to visualize
the proportion of variance explained by each PC. PLINK 1.9 [38] software, integrated with
R [36], was used to estimate the linkage disequilibrium (LD) with r2 statistics [39], build
LD decay, and perform the minor allele frequency (MAF). Additionally, TASSEL v5 was
used to estimate the individual kinship in the dataset.

2.8. Genome-Wide Association Analysis

In this study, 247,008 SNPs were initially detected and filtered down to 246,671 SNPs by
removing excessive alignments on unplaced genomic scaffolds. For marker–trait association
analysis, the SNP set was further filtered by removing SNPs with an MAF ≤ 0.05 across
274 individuals, resulting in a set of 226,779 SNPs. This marker set was used for GWAS
analysis with two models: MLM (Q + K) [40] and farmCPU [41]. Both models were run
using the R package “rMVP” (v1.0.6) [42]. In the MLM model, the kinship matrix [43] and
the first three principal components were fit as covariates to control for the confounding
effects of population structure. The significant association threshold was 2.2 × 10−7 (0.05/n,
n = 226,779) following a previous study [44]. For the farmCPU model, the kinship matrix
calculated internally by the algorithm was fitted as random effects in addition to the first
three PCs as covariates. GWAS results were plotted in rMVP using Manhattan plots and
Q-Q plots.

3. Results
3.1. Correlation, Heritability, and BLUP Value Calculation

We obtained 342 geographically dispersed sunflower accessions from the North Cen-
tral Regional Introduction Station (NCRIS) of the United States Department of Agriculture.
Using an incomplete block design, these accessions were planted on the Havelock Re-
search Farm at the University of Nebraska-Lincoln in 2019 and 2020. The phenotypic data
for various traits were manually collected from three representative plants per plot. A
correlation analysis (Pearson’s correlation) was conducted to determine the relationships
between these traits. Results suggested strong correlations between some characteristics
(Figure 1 and Table A1). It was observed that while the seed and kernel weights were not
correlated with flowering time, the head diameter assessed in another study [45] was found
to be significantly associated with a p < 0.05. All other correlations between traits were
statistically significant (p < 0.001).

Estimates of broad-sense heritability (H2), an essential parameter in the breeding
process, give information on the ratio of genetic and additive effects on phenotypic variance.
After analyzing the data for two years, we estimated the broad-sense heritability of the
five traits, and the estimated H2 values were 0.94, 0.89, 0.88, 0.63, and 0.61 for flowering
time, plant height, stem diameter, seed weight, and kernel weight, respectively. Further, we
combined the data from two years to calculate the Best Linear Unbiased Predictions (BLUP)
values for these traits. The BLUP values for flowering time, plant height, stem diameter,
seed weight, and kernel weight ranged from 55.7 to 91.7 with a mean of 66.7, from 88.8 to
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281.7 with a mean of 167.1, from 10.9 to 31.7 with a mean of 20.6, from 1.25 to 14.81 with a
mean of 7.06, and from 1.02 to 8.83 with a mean of 4.87, respectively.
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Figure 1. Correlation plot of yield component traits. The six traits are flowering time (FT), plant
height (PH), stem diameter (SD), head diameter (HD), seed weight (SW), and kernel weight (KW).
Asterisk indicates statistical significance level, with *** < 0.001, and * < 0.05.

3.2. SNP Genotyping and Population Structure Analysis

The tGBS approach was used for genotyping a subset of 285 out of 342 sunflower
accessions. After SNP calling, the SNPs with a minimum calling rate of less than 50% were
removed, and 11 out of 285 accessions were eliminated due to a high individual missing
rate (i.e., >90%). This resulted in 247,008 SNPs being retained for 274 sunflower accessions.
The average number of reads per SNP site per sample was 22, and the average missing rate
for this SNP set was 32.3% (Figure 2).
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After removing unnecessary alignments on 147 unplaced genomic scaffolds, the SNP set
was filtered to collect 246,671 SNPs. An MAF of less than 0.05 was filtered, resulting in 226,779
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SNPs. These SNPs were evenly distributed among the 17 chromosomes of sunflowers (as
shown in Figure A1). The k-means algorithm was used to identify three groups, indicating
that our sunflower accessions probably comprise three subpopulations (Figure 3A). The
principal component analysis showed that the first principal component (PC) accounted for
approximately 5% of the variance, and the top 10 PCs explained 25% overall.

Figure 3. Principle component analysis and LD decay. (A) PCA plot. The accessions were clustered by
using the simple k-means algorithm with the three groups. (B) LD decay. The red solid line indicates
a threshold of 0.1.

Using the filtered SNP set, it was found that the linkage disequilibrium (LD) decayed
quickly in the population, with LD decreasing from r2 = 0.2 to 0.15 as the average pairwise
SNP distance increased from 18 kb to 30 kb. When the LD was r2 = 0.1, the average physical
distance between two SNPs was approximately 220 kb (Figure 3B), which aligns with the
previous research [46]. The principal component analysis indicated that the first principal
component (PC) accounted for approximately 5% of the variance, and the top 10 PCs
explained 25% overall.

3.3. Genome-Wide Association Study

The GWAS analysis was conducted using a set of 226,779 SNPs with two different
statistical methods, MLM and farmCPU. The quantile-quantile (Q-Q) plots suggested that
the population structure was well controlled for GWAS analyses in both models. As a
result, significant trait-associated SNPs were identified and represented in red by setting
the threshold as −log10(p) = 5.

3.3.1. Flowering Time

A total of six and thirteen significant SNPs were detected for the flowering time trait
using the MLM and farmCPU methods, respectively (Tables S1 and S2). In the MLM
method, the SNPs were found on chromosomes 2 and 5, while in the farmCPU method,
they were found on ten different chromosomes (Figure 4). Notably, a significant SNP
accumulation on chromosome 5 was identified in the MLM method, with p-values ranging
from 7.89 × 10−7 to 6.40 × 10−6. The p-values of the significant SNPs detected by the
farmCPU method also ranged from 8.60 × 10−12 to 8.81 × 10−6. The most significant SNPs
identified by MLM and farmCPU were NC_035437.2-108607891 on chromosome 5 and
NC_035433.2-148595823 on chromosome 1, respectively.
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Figure 4. Manhattan plots and Q-Q plots for flowering time. (A) Manhattan plot for MLM. (B) Manhat-
tan plot for farmCPU. (C) Q-Q plot for MLM. (D) Q-Q plot for farmCPU. The vertical and horizontal
axes in the Manhattan plots indicate the p-values on the −log10 scale and the chromosome numbers,
respectively. The points represent the SNPs; the horizontal lines are the significance thresholds. The
Q-Q plots on the right side of the Manhattan plots illustrate the deviation of the p-values from the
null hypothesis; the vertical and horizontal axes are observed and expected p-values, respectively,
with the red lines representing the null hypothesis.

After examining gene annotation information, four and thirty-eight genes were identi-
fied as closely located to the significant SNPs identified by the MLM and farmCPU methods,
respectively (See Tables S3 and S4 for more details). Herein, a significant SNP ‘NC_035434.2-
129219774’ on chromosome 2 was detected by both models, MLM and farmCPU. According
to the MLM method, this SNP was closely located in the two uncharacterized genes, which
are LOC118486721 and LOC110920267. In addition, some genes detected by trait-associated
SNPs using the MLM method were functionally annotated as follows: membrane-associated
kinase regulator 2, regulating root gravitropic bending and TMK-dependent rapid auxin
signaling (LOC110920267); CADH6, biosynthesizing lignin (LOC110941024); and extensin-
like, playing a role on physical characteristics of the plant cell wall (LOC110943450). The
others detected by farmCPU were as follows: aquaporin PIP2-7, leading the transport
of water across membranes, as well as signaling and stress reactions (LOC110925968);
O-fucosyltransferase 28, glycosylating numerous substrates and regulating protein–protein
interactions involved in cell adhesion and cell–cell communication (LOC110865320); L-type
lectin-domain containing receptor kinase VIII.1, participating in a range of developmental
processes and plant defense reactions (LOC110944662); auxin-repressed 12.5 kDa protein,
responsive to auxins—a hormone that controls plant growth and development—as well
as hormones involved in defense response to biotic stress (LOC110935339); and DI193,
playing significant role in abiotic stress (LOC110944327).

3.3.2. Plant Height

It was found that after conducting GWAS, six and twelve significant single-nucleotide
polymorphisms (SNPs) were identified by the MLM and farmCPU methods, respectively



Genes 2024, 15, 950 9 of 21

(Tables S1 and S2). The considerable SNPs of the MLM method were observed on chromo-
somes 5, 11, and 16, whereas those of the farmCPU method were placed on nine different
chromosomes (Figure 5). The p-values of the significant SNPs ranged from 1.48 × 10−6

to 8.83 × 10−6 in the MLM method and from 1.65 × 10−9 to 9.05 × 10−6 in the farm-
CPU method. The MLM and the farmCPU methods found the most significant SNPs,
which were NC_035443.2-174467720 and NC_035440.2-60042510, respectively. Additionally,
12 and 40 genes were detected for the plant height that were placed close to the signifi-
cant SNPs identified by the MLM and farmCPU methods, respectively (Tables S3 and S4).
Based on the GWAS results of both methods, a considerable SNP, NC_035443.2-174467720,
on chromosome 11 was identified as being related to the plant height of the sunflower.
This SNP was closely located to three genes, namely LOC110888769, LOC110888770, and
LOC118484155, regarding the farmCPU method. When we evaluated the MLM method,
the genes ‘LOC118484414’, ‘LOC118484415’, and ‘LOC110888776’ were closely located to
this SNP.
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Figure 5. (A) Manhattan plot for MLM. (B) Manhattan plot for farmCPU. (C) Q-Q plot for MLM.
(D) Q-Q plot for farmCPU. The vertical and horizontal axes in the Manhattan plots indicate the
p-values on the −log10 scale and the chromosome numbers, respectively. The points represent the
SNPs; the horizontal lines are the significance thresholds. The Q-Q plots placed on the right side of
the Manhattan plots illustrate the deviation of the p-values from the null hypothesis; the vertical and
horizontal axes are observed and expected p-values, respectively, with the red lines representing the
null hypothesis.

Many of the genes detected by both models were annotated as coding proteins. Some of
those proteins encoded by the genes detected by the MLM method were as follows: BAHD
acyltransferase, BIA1, which acylates primary and specific secondary metabolites in plants
(LOC110888776); E3 ubiquitin-protein ligase AIRP2, acting in abscisic acid (ABA) and dehydra-
tion stress (LOC110915864); NAC domain-containing protein 75-like, controlling abiotic and
biotic stress reactions in plants (LOC110916982); heterogeneous nuclear ribonucleoprotein Q,
which engages in the response of the plant immune system (LOC110918080); CADH6, partic-
ipating in the biosynthesis of lignin (LOC110941024); extensin-like (LOC110943450), having
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an impact on the physical properties of the plant cell wall. Some other proteins of the genes
identified by farmCPU method were as follows: cold-responsive protein kinase 1, effecting the
plant’s response to cold stress (LOC110883118); villin-5, contributing significantly to the control
of actin dynamics in eukaryotic cells as well as the assembly of higher-order structures from actin
filaments (LOC110886186); peroxidase 16 functioning elimination of H2O2, oxidation of harmful
reductants, lignin production and degradation, suberization, auxin catabolism, and reaction
to environmental stressors (LOC110886188); NOP53 playing role on ribosome biogenesis and
nuclear stress (LOC110886190); NAC domain-containing protein 7, promoting the expression
of genes linked to secondary wall biosynthesis, xylem development, and transcription factors
related with the secondary walls (LOC110897930); extensin-like, acting on physical characteris-
tics of the plant cell wall (LOC110900877); F-box/FBD/LRR-repeat protein At1g13570-like with
various functions including growth and development of plants, in addition to physiological
and biochemical responses (LOC110920226, LOC110920484, LOC110920485, LOC110920486,
LOC110920487, LOC110920488, LOC110920489, LOC110920490, LOC110920491, LOC110920492,
LOC110920493, and LOC110920494); importin-4, controlling gene delivery by improving nu-
clear retention and polyplex chromatin deposition (LOC110929478); DRM1 that is responsive to
auxins, a hormone that controls plant growth and development, as well as hormones involved
in defense response to biotic stress (LOC110935339); DI193, playing significant role in abiotic
stress (LOC110944327).

3.3.3. Stem Diameter

The results of the GWAS analysis revealed that the MLM method detected one signifi-
cant SNP, while the farmCPU method detected twelve significant SNPs (Tables S1 and S2).
The SNP detected (NC_035442.2-10938079) by the MLM method was located on chromo-
some 10, with a p-value of 5.07 × 10−6. On the other hand, the significant SNPs detected by
the farmCPU method were located on nine different chromosomes, with p-values ranging
from 3.18 × 10−11 to 8.48 × 10−6. The most significant SNP identified by farmCPU was
NC_035434.2-127341479 on chromosome 2 (Figure 6). Regarding the GWAS results, the
significant SNPs detected by both methods were not shared.

Following gene annotation, it was discovered that four genes situated close to the
essential SNPs uncovered by the MLM technique were linked to the sunflower stem
diameter trait. Comparably, it was found that 36 genes related to the same characteristic
were situated close to the critical SNPs that the farmCPU technique had identified. For
further information, please see Tables S3 and S4.

The characterized genes detected by the MLM and farmCPU methods functioned in
coding essential proteins. Those proteins are as follows: NPGR2, calmodulin-binding pro-
tein, acting in pollen germination (LOC110883981); endoglucanase 6, enabling hydrolase ac-
tivity and carbohydrate binding (LOC110921587); bidirectional sugar transporter SWEET4,
acting as sugar transporter in plant development (LOC110930262, LOC110928153); cy-
tochrome c oxidase subunit 5C-2, which is a terminal oxidase involved in electron transport
within the mitochondria (LOC110930263); transcription factor bHLH68, contributing to the
regulation of ABA homeostasis and drought stress tolerance (LOC110940444); copper trans-
port protein ATX1-like, acting in maintaining copper homeostasis by providing resistance
to excess copper and subclinical copper deficit during the vegetative stage (LOC110870432);
GDSL esterase/lipase CPRD49, participating in the control of morphogenesis, defense
response, synthesis of secondary metabolites, and plant development (LOC110872698);
UDP-glycosyltransferase 84B1, which has minimal in vitro activity with quercetin 7-O-
glucosyltransferase, responsible for the plant’s IAA-glc formation, and plays role in auxin
homeostasis and plant development (LOC110885124); and proline-rich protein 36-like,
functioning in developmental stages and stress responses (LOC110919168).
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Figure 6. (A) Manhattan plot for MLM. (B) Manhattan plot for farmCPU. (C) Q-Q plot for MLM.
(D) Q-Q plot for farmCPU. The vertical and horizontal axes in the Manhattan plots indicate the
p-values on the −log10 scale and the chromosome numbers, respectively. The points represent the
SNPs; the horizontal lines are the significance thresholds. The Q-Q plots on the right side of the
Manhattan plots illustrate the deviation of the p-values from the null hypothesis; the vertical and
horizontal axes are observed and expected p-values, respectively, with the red lines representing the
null hypothesis.

3.3.4. Seed Weight

Significant SNPs were identified using the MLM and farmCPU methods. The MLM
method detected four significant SNPs on chromosomes 11 and 16, with p-values ranging
from 2.62 × 10−6 to 6.90 × 10−6 (Figure 7A). The farmCPU method identified 13 significant
SNPs on 12 different chromosomes, with p-values ranging from 1.45 × 10−8 to 9.77 × 10−6

(Figure 7B). Tables S1 and S2 provide additional details on the SNPs identified by both meth-
ods. By utilizing the MLM method, the two most significant SNPs (NC_035448.2-178302291
and NC_035448.2-178302300) with the exact p-values were detected on chromosome 16. The
most significant SNP in the farmCPU method was NC_035440.2-60042510 on chromosome
8. As a result of the GWAS, both MLM and farmCPU methods identified significant SNPs
associated with seed weight; however, no significant SNPs were shared. After gene anno-
tation, eight and thirty-eight genes associated with sunflower seed weight were located
close to the significant SNPs detected by the MLM and farmCPU methods, respectively
(Tables S3 and S4).
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Figure 7. (A) Manhattan plot for MLM. (B) Manhattan plot for farmCPU. (C) Q-Q plot for MLM.
(D) Q-Q plot for farmCPU. The vertical and horizontal axes in the Manhattan plots indicate the
p-values on the −log10 scale and the chromosome numbers, respectively. The points represent the
SNPs; the horizontal lines are the significance thresholds. The Q-Q plots on the right side of the
Manhattan plots illustrate the deviation of the p-values from the null hypothesis; the vertical and
horizontal axes are observed and expected p-values, respectively, with the red lines representing the
null hypothesis.

The proteins coded by the characterized genes that we detected in this study by MLM
and farmCPU methods were as follows: BAHD acyltransferase BIA1, involving in plant
growth (LOC110888776); NAC domain-containing protein 75-like, controlling abiotic and
biotic stress reactions (LOC110916982); heterogeneous nuclear ribonucleoprotein Q, en-
gaging in the response of the plant immune system (LOC110918080); ethylene-responsive
transcription factor WIN1, promoting the development of cuticles by expressing the en-
zymes necessary for the creation of wax providing tolerance to drought (LOC110884445);
auxin-repressed 12.5 kDa protein, responsive to auxins controlling plant growth and devel-
opment (LOC110935339); protein dehydration-induced 19 homolog 4, enhancing drought
tolerance (LOC110944327); probable membrane-associated kinase regulator 2, acting in the
regulation of plant development (LOC110920267); and probable 2-oxoglutarate-dependent
dioxygenase At5g05600, initiating the first stage of the flavonoid biosynthesis pathway that
produces anthocyanins and flavanols (LOC110885674), respectively.

3.3.5. Kernel Weight

Following GWAS, three and fourteen significant SNPs were found using the two
separate approaches, farmCPU and MLM (Figure 8; Tables S1 and S2). The SNPs found on
chromosomes 1, 9, and 10 were detected using the MLM approach with p-values ranging
from 1.57 × 10−6 to 9.12 × 10−6. Conversely, the SNPs identified by the farmCPU tech-
nique were found on ten distinct chromosomes, with p-values ranging from 2.53 × 10−13

to 4.49 × 10−6. Following gene annotation, it was discovered that, concerning the criti-
cal SNPs reported by the MLM and farmCPU approaches, four and forty-six genes were
linked to sunflower kernel weight (see Tables S3 and S4). When we compared the re-
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sults, we found that three significant SNPs, NC_035433.2-12278968, NC_035441.2-99824358,
and NC_035442.2-73212433, on chromosomes 1, 9, and 10 were shared by both models.
The SNP ‘NC_035433.2-12278968’ was closely located to two genes (LOC110863868 and
LOC110863881) in the results of both methods. Similarly, another SNP, NC_035441.2-
99824358, was closely located to two genes, LOC110875903 and LOC110875902.
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Figure 8. (A) Manhattan plot for MLM. (B) Manhattan plot for farmCPU. (C) Q-Q plot for MLM.
(D) Q-Q plot for farmCPU. The vertical and horizontal axes in the Manhattan plots indicate the
p-values on the −log10 scale and the chromosome numbers, respectively. The points represent the
SNPs; the horizontal lines are the significance thresholds. As for the Q-Q plots placed on the right
side of the Manhattan plots, they illustrate the deviation of the p-values from the null hypothesis;
the vertical and horizontal axes are observed and expected p-values, respectively, with the red lines
representing the null hypothesis.

The genes that were identified by the MLM method functioned in protein coding.
Those proteins were the cationic amino acid transporter 1 (LOC110863868) and 30S ribo-
somal protein S13, chloroplastic (LOC110863881). The others detected by farmCPU were
as follows: ethylene-responsive transcription factor WIN1, promoting the development
of cuticles by expressing the enzymes necessary for the creation of wax that contributes
abiotic stress response (LOC110884445); protein JINGUBANG, which is a negative pollen
germination regulator playing a role in proper tube growth (LOC110941472); protein far-red
elongated hypocotyl 3-like, promoting floral meristem determinacy, regulates chlorophyll
biosynthesis, increases leaf longevity (LOC110918945); serine/threonine-protein phos-
phatase 7 long form homolog, functioning in the control of light, stress, hormone signal-
ing, and the metabolism, cell cycle, and development (LOC110918946); thermospermine
synthase ACAULIS5, supporting accurate xylem specification by controlling the xylem
elements’ lifespan and keeps the components of the xylem vessel from premature death
(LOC110885237); glyceraldehyde-3-phosphate dehydrogenase, cytosolic and has a signifi-
cant impact on the cellular synthesis of energy, carbohydrate metabolites, and reductants
(LOC110885235); putative nuclease HARBI1, a transposase-derived protein that may have
nuclease activity (LOC110881343); phosphatidylinositol 4-phosphate 5-kinase 8, controlling
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a variety of cellular functions (LOC110884744); phosphatidylinositol/phosphatidylcholine
transfer protein SFH9, facilitating the movement of phosphatidylcholine and phosphatidyli-
nositol across membranes in vitro (LOC110915404); transmembrane protein 258-like, which
engages in a variety of physiological processes in plants, such as energy conversion, sub-
stance transport, and signal transduction (LOC110893221); BRCA1-associated RING do-
main protein 1-like, functioning in DNA repair (LOC110892343); and ubiquitin carboxyl-
terminal hydrolase 12, which is a positive regulator of root meristem growth that, in
conjunction with UBP13, inhibits the RGF1 hormone peptide-induced ubiquitination and
turnover of RGFR1 (LOC110893946).

4. Discussion

Detecting genetic variations that are statistically linked to a specific trait is accom-
plished through the use of the GWAS research methodology. The two standard techniques
for GWAS are MLM and farmCPU. They employ a mixed model framework with different
computational approaches, population structure management tactics, false-positive rate
balancing procedures, and power strategies. MLM is the most often used model for associa-
tion research, taking into consideration population structure and family relatedness [40,47].
Adjusting association tests to control false positives involves compromising true positives,
which is why population structure and family relatedness are included in MLM models [41].
However, this model can potentially provide false-negative results because it overfits to
the point where potentially significant connections are overlooked [48]. Another method,
farmCPU, was created to consider both familial relatedness and population structure in
GWAS. Fixed and random influences are integrated to overcome the confounding effects of
population structure and familial relatedness. It resolves false positives efficiently while
maintaining the integrity of true positives [41]. Based on the assumption of an even distri-
bution of quantitative trait nucleotides, FarmCPU divides MLM into a computationally
expensive REM (random effect model) and a computationally efficient FEM (fixed effect
model) [41]. Both models have some advantages and disadvantages. FarmCPU is ap-
propriate for investigations involving many markers or genotypes because it manages
large-scale genetic information quickly. However, compared to MLM, it might not be as
flexible because it is meant for particular dataset types and might not be appropriate for all
genetic analyses. Similarly, MLM can handle various genetic data formats, such as markers
with varying allele frequencies and quantitative and categorical features. However, signifi-
cant computational power may be needed while dealing with big datasets or complicated
models. Some studies indicate that the farmCPU method performed better than the MLM
method [48–50], though MLM was also used successfully in many genome-wide association
studies for various plant species [51–53]. In summary, choosing the method for GWAS
analysis depends on the dataset’s specifics and the research’s goals.

The Q-Q plot analysis is a widely used method for assessing whether models control
for false positives and false negatives, which displays the observed negative-log association
probability values (Y-axis) against the expected negative-log association probability (X-axis)
for all markers [49,54–56]. When we evaluated the two models used in this study, the
farmCPU model performed better than the MLM model in controlling false positives and
false negatives, exhibiting sharp upward deviated tails for all GWAS results of the studied
traits (Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8C,D).

Our study contributes significantly to the ongoing efforts to unravel the genetic de-
terminants of key agronomic traits in sunflowers. Through a comprehensive analysis
encompassing GWAS, we aimed to deepen our understanding of the genetic architec-
ture underlying flowering time, plant height, stem diameter, seed weight, and kernel
weight. Our findings reinforce and extend previous research, shedding light on the intricate
interplay between these traits and their collective impact on sunflower yield.
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Herein, many significant SNPs associated with the studied traits were identified. We
detected the same significant SNPs related to seed weight, plant height, and flowering
time in the farmCPU method, which were NC_035433.2-19748244, NC_035434.2-129219774,
and NC_035440.2-60042510. The significant SNP, NC_035434.2-129219774, was also de-
tected by the MLM method associated with flowering time. Another significant SNP,
NC_035437.2-108607891, was also detected related to plant height and flowering time
when the MLM method was utilized. Similarly, three significant SNPs (NC_035448.2-
178302291, NC_035448.2-178302300, and NC_035448.2-178302303) and two significant SNPs
(NC_035445.2-16635243 and NC_035447.2-123860647) were found to be shared by the
MLM and the farmCPU methods, respectively. The shared significant SNP, NC_035448.2-
178302303, related to seed and plant height detected in the MLM method, was also identified
as associated with flowering time by the farmCPU method. In addition, the significant
SNPs, NC_035433.2-148595823 [kernel weight (farmCPU), seed weight (farmCPU), and
flowering time (farmCPU)], NC_035443.2-174467720 [seed weight (MLM) and plant height
(farmCPU-MLM], and NC_035446.2-130491893 [seed weight (farmCPU and flowering time
(farmCPU)], were shared. We may conclude that those phenotypes are somehow related to
each other, as shown in the correlation test based on the phenotypic data.

Previous studies have highlighted the importance of flowering time in sunflower
production, with numerous quantitative trait loci (QTLs) identified across different chro-
mosomes [57–64]. Our GWAS analyses corroborate these findings, revealing significant
associations between specific genomic regions and flowering time variation. Identify-
ing candidate genes proximal to these loci provides valuable insights into the molecular
mechanisms governing this critical trait.

Plant height and stem diameter are essential to sunflower architecture, influencing
agronomic performance and mechanical stability. Previous studies have elucidated the
genetic basis of these traits [57,59,60,64], revealing a complex network of QTLs distributed
throughout the sunflower genome. Our GWAS expands upon these findings by uncover-
ing novel genomic regions associated with variations in plant height and stem diameter.
Identifying candidate genes linked to these traits provides valuable insights into the under-
lying genetic pathways, offering potential targets for breeding programs to optimize plant
architecture for improved resource utilization and yield stability.

Similarly, studies focusing on plant height and stem diameter have elucidated the genetic
basis of these traits, uncovering QTLs distributed across the sunflower genome [57,59,60,64].
Our GWAS expands upon these findings by pinpointing additional genomic regions associated
with plant height and stem diameter variation. Identifying candidate genes linked to these
traits enhances our understanding of the underlying genetic pathways and potential targets
for breeding programs to optimize plant architecture.

Seed weight and kernel weight are critical determinants of sunflower yield, with
previous studies highlighting the genetic complexity underlying these traits [57,59,60,64].
Our GWAS analyses reveal novel associations between specific genomic regions and seed
weight/kernel weight variation, providing valuable insights into the genetic control of
these economically important traits. Identifying candidate genes associated with seed
development and nutrient accumulation offers opportunities for targeted breeding efforts
to enhance yield potential and nutritional quality.

The identified SNPs associated with flowering time, plant height, stem diameter,
seed weight, and kernel weight were closely located in several protein-coding genes. The
shared SNP ‘NC_035434.2-129219774’ associated with flowering time was detected by
both methods. This SNP was closely situated to the gene ‘LOC110920267’ functioning in
coding probable membrane-associated kinase regulator 2 functioning in regulating plant
development [65]. The SNP ‘NC_035443.2-174467720’, identified by both methods and
associated with the plant height, was placed close to the gene ‘LOC110888776’ that codes
BAHD acyltransferase BIA1 acting in the stimulation of the flavonoid biosynthesis, acy-
lating primary and specific secondary metabolites, and involving in plant growth [66,67].
There was no significant SNP shared by MLM and farmCPU methods for the stem diameter
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trait of sunflowers. However, regarding the MLM method, four genes were found close
to the most significant SNP, NC_035442.2-10938079. Among those genes, ‘LOC110883981’
encodes the protein NPGR2, identified as a calmodulin-binding protein acting in pollen
germination [68]. Similarly, the most significant SNP, NC_035434.2-127341479, detected
by farmCPU and associated with stem diameter, was located close to five genes. One of
those genes, LOC110921587, enabled hydrolase activity and carbohydrate binding [69]. For
the seed weight, the SNP ‘NC_035448.2-178302291’ was the most important one regarding
the MLM method, which was close to five genes. Two of those genes, LOC110916982 and
LOC110918080, encoded NAC domain-containing protein 75-like, controlling abiotic and bi-
otic stress reactions in plants [70] and heterogeneous nuclear ribonucleoprotein Q, acting in
the response of the plant immune system [71], respectively. When we compared the results
of the MLM and farmCPU methods, we found that three significant SNPs, NC_035433.2-
12278968, NC_035441.2-99824358, and NC_035442.2-73212433, on chromosomes 1, 9, and
10, were shared by both models. Among these genes, the gene ‘LOC110863868’ was func-
tioning in coding cationic amino acid transporter 1, which is an amino acid transporter that
plays a significant role in nitrogen distribution throughout the plant, which is necessary to
maintain development and growth [72]. As our research findings indicate, we identified es-
sential SNPs closely located to the genes, which play significant roles in plant development,
influencing sunflower yield and regulating some other activities.

4.1. Heritability Estimate of the Traits

Success in the breeding process largely depends on heritability, a proportion of genetic
variance in total phenotypic variance. After two years of data analysis, we assessed the
broad-sense heritability of the five characteristics. For flowering time, plant height, stem
diameter, seed weight, and kernel weight, the estimated H2 values were 0.94, 0.89, 0.88, 0.63,
and 0.61, respectively. The results indicate that most phenotypic expression for the studied
traits is influenced by genetic factors, which could be a good indicator of the selection
success to be used in the breeding programs. The studies on heritability estimates also
reported similar results on those traits. Many studies have reported that flowering time in
sunflowers is highly heritable, with high values of H2. Supporting the result of our research,
Farooq et al. (2021) [73] detected an H2 of 0.98, and Memon et al. (2014) [74] found it to be
0.67–0.88. For the plant height, Sridhar et al. (2006) [75], Milan et al. (2013) [76], and Komel
& Razzaq (2019) [77] estimated high values of H2 (>0.70), which entirely support our result.
Similarly, the heritability estimates for the stem diameter and seed weight that we report in
this study were also supported by several reports [73,78–80].

4.2. Integration of Genomic Knowledge into Breeding Programs

Our study fills a notable gap in sunflower research by leveraging the power of GWAS
to decipher the inheritance of complex traits. By integrating advanced genomic methods,
we are improving our understanding of sunflower genetics and laying the foundation for
more effective breeding strategies. Incorporating GWAS insights into breeding programs
promises to develop sunflower varieties tailored to specific environmental conditions,
thereby increasing yield potential and resilience to biotic and abiotic stresses. In addi-
tion, functional validation of the identified candidate genes and exploration of genotype-
environment interactions represent important avenues for future research to enable the
development of high-performance sunflower cultivars capable of meeting the changing
challenges of global agriculture.

5. Conclusions

In summary, our study contributes to sunflower genetics and breeding. Through
GWAS, we have deepened our understanding of the genetic determinants underlying
vital agronomic traits, paving the way for improved sunflower varieties with higher yield
potential, better nutritional quality, and greater resilience to environmental stresses. Future
research efforts should focus on translating these genomic insights into concrete breeding
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outcomes to support global efforts to achieve food security and promote sustainable
agricultural practices in sunflower cultivation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/ydelen2/SigSNPs_Genes, Table S1: Significant SNPs detected by MLM; Table S2:
Significant SNPs identified by farmCPU; Table S3: Gene Annotation for MLM; Table S4: Gene
Annotation for farmCPU.
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Appendix A

Table A1. Pairwise p-values for the Six Sunflower Traits Evaluated.

PH FT HD SD SW KW

PH 0 2.77 × 10−25 1.59 × 10−30 1.55 × 10−63 3.23 × 10−15 9.95 × 10−10

FT 3.08 × 10−25 0 0.060962 2.67 × 10−14 0.101359 0.777435

HD 1.33 × 10−31 0.020321 0 2.53 × 10−62 8.43 × 10−29 2.02 × 10−27

SD 1.11 × 10−64 5.35 × 10−15 1.94 × 10−63 0 1.14 × 10−22 1.12 × 10−16

SW 5.39 × 10−16 0.05068 7.66 × 10−30 1.43 × 10−23 0 3.53 × 10−97

KW 2.49 × 10−10 0.777435 2.02 × 10−28 1.60 × 10−17 2.35 × 10−98 0

https://github.com/ydelen2/SigSNPs_Genes
https://github.com/ydelen2/SigSNPs_Genes
https://github.com/ydelen2/Sunflower_important_traits/tree/main/Genotype_data
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