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Abstract 1 

We use sensory information in remarkably flexible ways. We can generalize by ignoring task-irrelevant features, 2 

report different features of a stimulus, and use different actions to report a perceptual judgment. These forms of 3 

flexible behavior are associated with small modulations of the responses of sensory neurons. While the existence 4 

of these response modulations is indisputable, efforts to understand their function have been largely relegated 5 

to theory, where they have been posited to change information coding or enable downstream neurons to read 6 

out different visual and cognitive information using flexible weights. Here, we tested these ideas using a rich, 7 

flexible behavioral paradigm, multi-neuron, multi-area recordings in primary visual cortex (V1) and mid-level 8 

visual area V4. We discovered that those response modulations in V4 (but not V1) contain the ingredients 9 

necessary to enable flexible behavior, but not via those previously hypothesized mechanisms. Instead, we 10 

demonstrated that these response modulations are precisely coordinated across the population such that 11 

downstream neurons have ready access to the correct information to flexibly guide behavior without making 12 

changes to information coding or synapses. Our results suggest a novel computational role for task-dependent 13 

response modulations: they enable flexible behavior by changing the information that gets out of a sensory area, 14 

not by changing information coding within it.  15 

 16 

Significance 17 

Natural perceptual judgments are continuous, generalized, and flexible. We estimate the ripeness of a piece of 18 

fruit on a continuous scale, we generalize by judging the ripeness of either a mango or an avocado even 19 

though they look very different, we flexibly judge either the size or the ripeness of the same piece of fruit, and 20 

we can flexibly indicate the same perceptual judgment using a variety of behaviors such as by speaking or 21 

writing any of many languages. Here, we show that the response modulations in visual cortex long associated 22 

with cognitive processes, surround modulation, or motor planning are sufficient to guide all these aspects of 23 

natural perceptual decision-making. We find that across the population, these response modulations reorient 24 

and reformat visual representations so that the relevant information is used to guide behavior via 25 

communication with downstream neurons. Our results are an example of a general computational principle for 26 

flexible behavior that emerges from the coordinated activity of large populations of neurons. 27 

 28 

Introduction 29 

Perceptual, cognitive, and motor processes have long been known to modulate the responses of sensory 30 

neurons. In visual cortex, processes including contrast, adaptation, surround modulation, attention, learning, 31 

task switching, arousal, action planning and more are associated with modest modulations of neural 32 

responses(1–7). These modulations are broadly consistent with multiplicatively scaling (changing the gain of) 33 

relatively stable tuning curves(8). More recently, modulation related to a broad set of perceptual, cognitive, and 34 

motor processes have been observed in essentially every brain area in many species(3, 9, 10).  35 

 36 

Two related frameworks have dominated thinking about the function of these signals. The first is the idea that  37 

these modulations change the information encoded in the population because high gains are associated with 38 

improved signal-to-noise ratio(11–13). The second idea is that mixing perceptual, cognitive, and motor signals 39 

(e.g. ‘mixed selectivity’) benefits the flexible use of those signals(14, 15) because in theory, representations of 40 

different perceptual, cognitive, and motor features could be flexibly decoded from neural activity, typically using 41 

a different weighted combination of neural responses for each variable(14, 16–18).  42 

 43 

We tested a third possibility, that response modulations in visual cortex coordinate across the population to 44 

change how visual features are represented so that the appropriate information is communicated via a fixed 45 

weighted combination of projection neurons. Put another way, we hypothesize that many aspects of population 46 
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responses are fixed, including the information encoded in a population and the weighted combination of 47 

neurons that communicates with downstream areas to guide behavior. Behavioral flexibility comes from 48 

transforming those representations (e.g. by rotating them) such that the information communicated by that 49 

fixed combination of neurons is flexible and task dependent. Using coordinated response modulations as a 50 

substrate for behavioral flexibility is consistent from what we know about the biology and function of neural 51 

circuits. It gives downstream neurons access to the relevant subset of information without requiring synaptic 52 

changes or other circuit level changes that might be costly and time consuming. The notion of fixed output 53 

neurons is consistent with anatomical observations that a stable subset of neurons projects from any area to 54 

each downstream target (19). 55 

 56 

To test this hypothesis, we recorded groups of neurons in visual areas V1 and V4 while monkeys performed a 57 

perceptual estimation task that allows us to strongly link neural responses to choices on a continuous scale 58 

(Figure 1A-B). Our results demonstrate that the tuning and coordinated, task- and stimulus-dependent 59 

modulation of responses of populations of neurons in V4 (but not in V1) contain all the ingredients to support 60 

flexible perceptual decision-making. Both V1 and V4 neurons robustly encode both task-relevant and irrelevant 61 

visual features and a stable linear combination of those responses predicts the monkeys’ perceptual judgments 62 

across stimuli and task conditions. We show that V4 neurons are modulated in a coordinated way such that the 63 

stable combination of neurons reflects the direction of the upcoming eye movement or which of two visual 64 

features would be discriminated. We also demonstrate that these coordinated gain changes are consistent 65 

with, but do not necessarily follow from, the results of past studies that focus on single neurons.  66 

 67 

Results 68 

Gain changes related to attention(1), task-switching(2), arousal(3), visual context(4, 5), and motor planning(6) 69 

have several characteristics: they are typically modest in size(8), they depend on the relationship between the 70 

neuron’s tuning and the specific modulatory process (e.g. the focus of attention, the surrounding stimulus, or 71 

the planned action), and they are heterogeneous, meaning that even simultaneously recorded neurons with 72 

indistinguishable tuning can show different amounts of modulation(20, 21). This heterogeneity means that 73 

single neuron responses are insufficient to infer the impact of modulation on the population representation. 74 

Depending on how those gain changes are coordinated across the population, those modulations could 75 

change information coding by changing the signal-to-noise ratio of neural responses(1, 22), average out and 76 

have minimal impact(23), or, as we propose here, coordinate to fundamentally change the information used to 77 

guide behavior via a fixed combination of readout neurons(24, 25).  78 

 79 

To investigate the relationship between these gain changes and flexible behavior, we measured stimulus and 80 

task-related responses of populations of neurons at multiple stages of visual processing. We designed a 81 

behavioral framework that required monkeys to exhibit many forms of flexibility: they made continuous 82 

perceptual judgments, generalized across stimuli with many task-irrelevant features to make a single judgment, 83 

mapped that single judgment onto one of multiple actions, and switched which visual feature was task-relevant. 84 

We trained two rhesus monkeys to perform a continuous curvature estimation task (Figure 1A-B) while we 85 

recorded neural activity from areas V1 and V4 using chronically implanted multi-electrode arrays (Figure S3A). 86 

After fixating on a central spot, a stimulus was presented in the joint receptive fields of the recorded neurons 87 

(which was always in the lower hemifield; Figure S3B). After the monkeys viewed the stimulus, they indicated 88 

their judgment about the curvature by looking at a corresponding position on an arc presented in the upper 89 

hemifield. A saccade to the leftmost portion of the arc indicated a straight stimulus (curvature = 0), a saccade 90 

to the right rightmost end corresponded to the maximum curve presented to the animals (curvature = 1), and 91 

the monkey could indicate any intermediate value in between. The monkeys were rewarded according to the 92 

accuracy of their estimate (see Methods). We generated the stimuli by randomizing the cross-sectional shape, 93 
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aspect ratio, color, 3D rotation, twist along the axis, gloss, thickness profile, and other features of an oblong 94 

object (Figure 1A and S1). On any given session, stimuli were drawn from three to seven base shapes that 95 

differed in features such as overall shape, color, or orientation, each with 10-20 curvatures. The monkeys 96 

learned to report the curvature of the presented objects while ignoring irrelevant feature changes (Figure 1B 97 

and S2). During training sessions, monkeys were exposed to 10-15 randomly generated shapes which were 98 

repeated during recording sessions with additional changes in color and orientation. In a subset of sessions, 99 

we also presented random shapes that the monkeys had never seen before. Curvature judgement error 100 

patterns between familiar and novel shapes were similar for both monkeys (Figure S2C and S2D). Additionally, 101 

in some sessions, we changed the angular position and length of the target arc (randomly interleaved from trial 102 

to trial), so the monkeys select their specific eye movement after seeing the arc (they were rewarded for 103 

choosing the correct relative position on the arc, which varied according to the position and length of the arc on 104 

that trial).  105 

 106 

V1 and V4 neurons responded to the curvature, color, and orientation of the stimuli (Figure S3C). The 107 

curvature selectivity of neurons was shape-dependent and did not vary systematically with the onset or details 108 

of the arc (Figure S3D-E). While V4 neurons have been shown to support coding transformations that extract 109 

curvature(26–28) and V1 neurons to extract 2D curvature(29, 30), several image-level changes are correlated 110 

with curvature in these shapes. We use ‘curvature’ representation as a shorthand for the representation of the 111 

changing feature that the monkey is trained to report and not the explicit representation of medial axis 112 

curvature. 113 

 
Figure 1: Task and behavior 
 
A. Schematic of the continuous curvature 
estimation task. Stimuli that varied in 
curvature and task-irrelevant features 
were presented in the joint receptive fields 
of V1 and V4 neurons as monkeys fixated 
a central dot. After 550-800ms, a target 
arc was presented in the upper hemifield, 
and monkeys were rewarded for making a 
saccade to a location on the arc that 
corresponded to the stimulus curvature. 
The reward amount was inversely related 
(with a threshold) to the error in curvature 
judgment. In a subset of experiments, the 
radial position, angular position, and 
length of the target arc were varied 
pseudorandomly.  
B. Monkeys report medial axis curvature 
while ignoring other stimulus features. 
Example continuous estimation behavior 
on four sessions during which the 
curvature of one or many shapes was 
estimated on interleaved trials. Shading 
indicates the standard error of the mean 
(SEM).   
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A stable weighted combination of V1 and V4 neurons explains perceptual judgments amid many task-114 

irrelevant stimulus changes. 115 

A key prediction of our hypothesis is that although task-irrelevant visual features might greatly affect the 116 

responses of visual neurons, the representations must enable the animal to use a general strategy (such as 117 

basing choices on a stable linear combination of neural responses) to make a perceptual judgment for any 118 

stimulus. We tested this prediction by assessing the relationship between the V1 and V4 representations of the 119 

curvature of different shapes and the animals’ curvature judgment. 120 

 121 
Both V1 and V4 contain representations of curvature that are strikingly different for different shapes. In both 122 

areas, population responses to shapes that vary from straight to curvy trace out smooth, uninterrupted paths in 123 

neural population space where each dimension is the firing rate of one neuron (Figure 2B, S4). We can 124 

estimate the curvature of each shape by finding the linear combination of neurons that best accounts for 125 

curvature (this traces out an axis in neural population space), and we quantify the “shape-specific” curvature 126 

information as the correlation between the predicted and actual curvature on held out trials (Figure 2C). 127 

Changing the shape (Figure S4B), orientation (Figure S4C), or color (Figure S4D) of the stimulus resulted in 128 

misaligned shape-specific representations, meaning that different weights best decoded the curvature of 129 

shapes with different task-irrelevant features. To quantify this misalignment, we attempted to estimate the 130 

curvature of one shape using the weighted linear combination of neurons that best predicted curvature of a 131 

different shape that was recorded on randomly interleaved trials (Figure 2). For 100 cross-validation folds, we 132 

calculated the weights for one shape using half of the trials and tested it either on the other half (“within shape 133 

curvature decoding” – Figure 2C) or on the responses to a different shape (“across shape curvature decoding” 134 

– Figure 2D). Even though the monkey’s curvature estimation behavior across the two shapes was consistently 135 

shape-independent (Figure S5A), across shape decoding was poor in both V1 and V4 (Figure 2E). Across 136 

sessions, the behavioral estimation of curvature across pairs of stimuli that varied in overall shape, orientation, 137 

or color was highly correlated (Figure S5B), but the across-shape curvature decoding consistently 138 

underperformed within-shape curvature decoding (Figure 2E). 139 

 140 
We reasoned that the monkeys might employ a shape-general strategy, meaning that they use a common 141 
linear combination of neural responses to estimate the curvature of any stimulus. A shape-general strategy 142 
generates three testable predictions: (1) the monkeys’ choices should be better correlated with predictions of 143 
the shape-general decoder than the shape-specific decoder, (2) monkeys should be better at estimating the 144 
curvature of shapes whose representations happen to be better aligned with the shape-general axis, and (3) 145 
between any two shapes, the shape whose representation is better aligned with the shape-general axis should 146 
have lower behavioral estimation errors on average. We tested these predictions by training a shape-general 147 
decoder on V1 or V4 responses to all of the shapes presented in a given session. Consistent with our 148 
hypothesis, the monkeys’ choices were better correlated with curvature decoded along the shape-general than 149 
shape-specific axes in both V1 (Figure 2F top) and V4 (bottom). This result was consistent across sessions in 150 

which the shape-general decoder was trained on objects that varied in overall shape, only orientation or only 151 
color (Figure S6). In addition, shapes with higher average estimation errors by the monkeys were also poorly 152 
decoded by the shape-general decoder (Figure 2G), and between pairs of shapes that were tested on 153 
randomly interleaved trials, the shape for which curvature more poorly aligned with the shape-general axis was 154 
more poorly estimated by the monkeys (higher average behavioral errors; Figure 2H). Together, these results 155 
demonstrate that both V1 and V4 contain stimulus representations that are sufficient to enable shape-general 156 
curvature judgments. 157 
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Figure 2: The monkeys’ behavior 
suggests that a fixed linear 
combination of neural responses 
explains curvature judgments across 
many irrelevant stimulus changes. 
 
A. The representations of curvature for 
different shapes can be misaligned but a 
common shape-general axis can 
represent curvature.  
B. For illustration purposes, V4 population 
responses to three shapes (varying in 
curvature) recorded on interleaved trials 
are projected into the first three principal 
components of the space in which the 
response of each simultaneously recorded 
neuron is one dimension. The points 
indicate the average population response 
to each unique stimulus at each curvature 
value. Luminance of the points (black to 
pink, green, or orange) represents 
increasing curvature. Solid colored lines 
represent best fit lines for each shape 
(shape-specific axis), and the black line 
represents the shape-general axis (see 
Figure S4 for other examples). 
C. Curvature can be linearly decoded 
(cross-validated) from V1 (top) and V4 
(bottom) responses for each shape 
independently for the example session in 
B. Colored labels indicate mean squared 
error (MSE) between the actual and 
predicted curvatures, and colored lines 
depict the linear fit relating predicted and 
actual curvatures. Shading indicates SEM 
across 100 folds of 50% trial splits (see 
Figure S4 for more example decoding 
analyses.) 
D. The representations of curvature are 
not aligned across shapes. Same 
decoders as C, but the linear decoder is 
trained on responses to one shape and 
tested on responses to another in V1 (top) 
or V4 (bottom). 
E. Curvature representations for different 
shapes are typically misaligned. Across 
shape pairs, our ability to decode 
curvature from V1 (top) and V4 (bottom) is 
better when the weights are based on 
responses to the same shape (x-axis) 
than when it is based on responses to the 

other shape in the pair (y-axis); MSE for same shape decoding from V1 responses (left) and V4 responses (right) is 
smaller than for across shapes (Wilcoxon rank sum test; p < 10-10). Each dot indicates a shape pair that is different in 
overall shape appearance (black), orientation only (purple), or color only (teal). The inset is a zoomed in view of the 
indicated area on the plot. The marginal distributions are shown on the top and right. 
F. The monkeys’ choices are more strongly correlated with the prediction of a shape-general linear combination of neural 
responses (as in C) than a shape-specific strategy for V1 (top) and V4 (bottom) (Wilcoxon signed rank tests; p<10-8 V1; 
p<10-14 V4). Each point represents the correlation values (between the decoded curvature and the monkey’s choice) for 
one shape.  
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G. Behavioral choices are more accurate (lower average absolute error) for shapes whose representation is well-aligned 
with the shape-general curvature decoder of V4 (bottom) responses (correlation r= –0.17, vs constant model p=0.003), 
but not significantly for V1 (correlation r= –0.07, vs constant model p=0.261). 
H. For pairs of shapes tested in the same session, average behavioral error was typically bigger for the worse decoded 
shape (using a shape-general decoder; x-axis) than the better decoded shape (y-axis) in V4 (Wilcoxon signed rank test; 
V4: p=0.004), but not significantly for V1 (p=0.19). 
 
Response modulations in V4, but not V1, reformat curvature representations to enable flexible 158 

mapping of one perceptual judgment to many actions 159 

In our task, monkeys can make a perceptual judgment as soon as the stimulus is displayed but must wait to 160 

map that judgment to an action (eye movement) until the arc is displayed. We dissociated the curvature 161 

judgment from the eye movement by varying the angular position and length of the target arc across trials. We 162 

posited that coordinated gain changes associated with the arc onset (attributable to surround modulation, 163 

drawing attention to the arc, or a combination) are coordinated in a way that transforms the curvature 164 

representation in a way that could guide the appropriate eye movement. To test the viability of this idea, we 165 

simulated neurons with curvature tuning functions whose gain is modulated slightly by the presentation of two 166 

different arcs (Figure 3A-B). We chose modest, heterogeneous gains for each neuron by drawing from the 167 

same distribution for each of two simulated arc conditions. Some random draws produced gains that would 168 

transform the curvature representation so that a fixed linear combination of simulated neurons would 169 

communicate the appropriate eye movement for that arc (Figure 3B, dark and light green). However, other 170 

draws from the same distribution did not transform the population response appropriately, meaning that the 171 

specified linear combination of neurons did not produce appropriate actions (Figure 3B, gray). This simulation 172 

demonstrates that the modulations in single neurons observed in previous studies are consistent with, but do 173 

not imply, the idea that they coordinate across the population to transform population responses to enable an 174 

appropriate mapping between a perceptual judgment and the action used to communicate it.  175 

 176 

To test this hypothesis, we compared the neural representations before and after the target arc was displayed. 177 

Since the monkey was required to maintain fixation for a short interval after the onset of the arc and before 178 

making the saccade, we posited that a modest gain change (which might be attributable to any combination of 179 

surround modulation, attention, action planning, or other modulatory processes) should transform the curvature 180 

representation such that we should be able to linearly decode the impending saccade direction from population 181 

responses. This is somewhat counterintuitive for visual cortex, which might be expected to largely encode the 182 

curvature judgment without specific premotor signals (although see (31, 32) about premotor signals in V4). In 183 

the absence of premotor signals, the decoded saccade would not depend on the location or length of the arc 184 

(Figure 3C left).  185 

 186 

We found that V4, but not V1, representations were transformed to encode the direction of the upcoming eye 187 

movement (Figure 3D). Both areas represented the curvature judgment before the onset of the arc (Figure 2 188 

and S4). After the onset of the arc, the small gain changes in V4 transformed the representation so that it 189 

encoded the direction of the upcoming eye movement (Figure 3D, right and S7C). In contrast, V1 continued to 190 

represent the curvature judgment (Figure 3D left and S7B). 191 
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Figure 3: V4, but not V1, population activity is reformatted 
to enable the flexible mapping of curvature to different 
actions. 
 
A. To enable a flexible mapping between curvature judgments 
and eye movement responses, the curvature representation of 
a shape could be transformed to align with a fixed readout axis 
that communicates with eye movement planning areas. In 
other words, the same curvature judgment should be mapped 
to different parts of the saccade direction axis depending on 
the location and length of the arc. 
B. In simulations, we randomly assigned the arc-dependent 
gain modulations to neurons by drawing from a distribution of 
response gains that is consistent with single neuron results 
(see Methods). Only some draws of the same distribution 
enabled the mapping of curvature representations to the 
appropriate portions of the readout axis such that the saccade 
could be decoded from the population (light and dark green). 
Most other draws did not (gray). 
C. Schematic depicting analyses that would reveal whether 
neural population responses reflect only the curvature 
judgment and not the upcoming eye movement used to 
communicate that judgment (left) or whether they also reflect 
the upcoming eye movement (right). Colors represent 
predictions for the different arc locations (top) or lengths 
(bottom).  
D. V4, but not V1, responses reflect the direction of the 
upcoming eye movement in example sessions. The impending 
saccade direction was decoded from V1 (left) and V4 (right) 
responses during the period when the monkeys have not yet 
moved their eyes but after the onset of the arc that allows 
them to plan the eye movement. Shading indicates SEM and 
the correlation between actual and predicted saccade direction 
is labeled on the bottom-right of each panel. 
 
 
 
 
 
 
 
 
 

 
V4 is one of many areas in the monkey brain that encode the direction of an upcoming eye movement. To test 192 

the hypothesis that transforming a representation from a curvature judgment to an action plan could be a 193 

plausible substrate for this sort of flexible behavior, we created a model that has only one brain area. We 194 

trained a recurrent neural network (RNN) to map a stimulus curvature to a saccade given an arc condition with 195 

the same trial structure (Figure S8). Like the V4 neurons, the RNN hidden units represented the stimulus 196 

curvature and then, after arc onset, transformed the representation based on the arc condition to align with an 197 

axis encoding the direction of the upcoming saccade (Figure S8E). This model demonstrates that transforming 198 

the representation in an arc-dependent manner is a viable computational substrate for mapping one perceptual 199 

judgment onto many actions. We also extended this model by adding a pre-trained convolutional neural 200 
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network (CNN) front-end that supplied the RNN its “visual inputs” in the form of hidden layer activations (Figure 201 

S9A). Like V1 and V4 neural populations, the RNN learned a shape-general curvature axis from CNN 202 

activations and transformed the representation to align with a saccade direction axis (Figure S9B). Our results 203 

demonstrate that small gain changes in visual cortex are sufficient to enable behavioral generalization by 204 

mapping many visual features to one judgment (Figure 2), and behavioral flexibility by the mapping of one 205 

judgment onto multiple actions (Figure 3).  206 

 207 

Response modulations enable a fixed combination of V4 neurons to reflect choices about curvature or 208 

color 209 

The strongest test of our hypothesis that we could think of is the case when choices can be based on either of 210 

two visual features (e.g. curvature and color) that are represented in the same group of neurons. In this 211 

scenario, gain changes consistent with task switching, feature attention, and/or surround modulation must 212 

rotate the population representation so that information about the relevant feature is communicated to decision 213 

neurons. We therefore extended our hypotheses (Figure 4A) and simulations (Figure 4B) to incorporate neural 214 

tuning to two features and corresponding gain changes consistent with the single neuron modulations 215 

observed in studies that require task-switching or feature attention. These studies find that while there is 216 

substantial neuron-to-neuron heterogeneity, neurons tend to have higher gains when monkeys perform a task 217 

for which they are better tuned(22). We therefore simulated tuning functions (Figure S11A) to two features and 218 

assigned each neuron small selectivity-dependent gains (Figure 4B).  219 

 220 

Our simulations demonstrated that these small gain changes can, but do not necessarily, transform the neural 221 

representations to enable different features to guide choices using a fixed, task-general decision axis. We 222 

found that some random draws from the same distribution of gain changes (Figure 4B, left) transformed the 223 

population such that we could decode the value of the task-relevant feature on a fixed decision axis (Figure 4B, 224 

right, black line) while many draws did not (gray line).  225 

 226 

We tested this hypothesis experimentally using a simplified two-alternative forced choice task where either the 227 

color (gray to blue) or the curviness (triangle to circle) of the displayed shape (Figure 4C) predicted the correct 228 

answer. The monkey was rewarded for selecting the bluer stimulus (color task) or the more circular one 229 

(curvature task; Figure 4D-E). We placed one stimulus in the joint receptive fields of recorded V4 neurons 230 

(Figure 4D and S10B) and the other in the opposite hemifield. The recorded neurons had a range of tuning 231 

preferences (Figure S10C) and displayed similar patterns and magnitudes of task-dependent gain modulation 232 

as previously published (Figure 4F; (22)). The V4 populations we recorded contained smooth and 233 

uninterrupted population representations of both shape and color (Figure 4G).  Our hypothesis and simulations 234 

predict that the monkey’s choices will be based on, and therefore decodable from, the representation of the 235 

task-relevant visual feature, but not the irrelevant one (Figure 4H; left). We tested this prediction by identifying 236 

the axes in neural space that best encode shape and color and then determining whether we could decode 237 

choices from projections along those axes. There was plenty of information about both the relevant and 238 

irrelevant stimulus features when the monkey performed both the shape and color tasks, but choices were only 239 

aligned with the task-relevant feature (Figures 4H, middle and right, and Figure S12B-C). These results 240 

demonstrate that task- or stimulus-specific modulations can transform visual representations to enable flexible 241 

discrimination of any visual feature to which the neurons are tuned.  242 
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Figure 4: Small gain changes 
consistent with feature attention or 
surround modulation enable different 
visual features to guide choices. 
 
A. Schematic of the hypothesis that gain 
changes will reformat stimulus 
representations to align with a fixed 
readout axis depending upon the relevant 
feature.  
B. Small gain changes can, but do not 
necessarily transform the population 
response to enable different features to 
guide choices. Similar to Figure 3, we 
simulated neurons tuned to two features 
and assigned small gains to each neuron 
by drawing from a distribution similar to 
the distribution of gains that have been 
reported for feature attention(22). Some 
random draws transform the population 
such that the representation of the task-
relevant feature is aligned with the 
readout axis (black). As in the previous 
simulation, many random draws from the 
same distributions (black vs gray points; 
left) do not (gray; right).  
C. Stimuli varied in color/luminance (blue 
to gray) and curviness/shape (triangle to 
circle). Background colors allow 
comparison to neural results in G and H.  
D. Schematic of the two-feature 
(curvature/color) discrimination task. The 
monkey was rewarded for making a 
saccade to one of the stimuli (one in the 
joint receptive fields of the recorded V4 
neurons and one in the opposite 
hemifield). During the curvature task, the 
colors of the two stimuli were the same 
(selected from the same row in C) and the 
more circular stimulus was rewarded. 
During the color task, the stimuli were the 
same (selected from the same column in 
C) and the bluer stimulus was rewarded. 
E. Example psychometric curves for the 
curvature (black) and color (blue) task. 
The plot depicts the proportion of trials in 
which the monkey chose the stimulus in 
the receptive fields of the recorded V4 
neurons as a function of the relevant 
feature of the stimulus that was in that 
receptive field. These data are from a 

single experimental session (314 total trials, 89% correct overall; 176 color task trials, 89% correct; 138 shape task trials, 
90% correct). Across the 23 sessions that were used for further analysis, during which curvature and color task trials were 
randomly interleaved, the monkey performed at 85.45% correct overall (~ 610 trials on average per session), 79.54% on 
the color task, and 91.65% on the shape task. 
F. Replication of previous results showing a relationship between the modulation of neural responses associated with the 
different tasks and the selectivity of the neuron to the two features. The linear fit (R2=0.032; intercept=0.007 (p<10-11); 
slope=0.19 (p<10-8)) and 95% confidence intervals are indicated by black line and gray shaded region. 
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G. Population representation of the two stimulus features using PCA (left) and QR decomposition (right) to visualize the 
representations of color (blue to yellow gradient) and shape (black to gray gradient) of the image in the population RF. 
Each point is the V4 population response on one trial.  
H. Evidence that task-dependent gains reformat neural representations to enable flexibility in which feature guides 
choices (left). The middle and right plots depict correlations between the values predicted by the linear combination of V4 
responses that best predicts color (left) or curvature (right) and the actual values of shapes, colors, and choices in the 
color (y-axes) or curvature task trials (x-axes). Across both tasks, shape and color are decoded well on the shape and 
color axes respectively, but not vice versa, suggesting that the two features are approximately orthogonally represented in 
neural population space. As predicted by the simulations (square markers), on color task trials, we could decode the 
animal’s choices significantly better on the color than on the shape axis (Wilcoxon signed rank test, p<10-4), and on shape 
trials, we could decode choices significantly better on the shape than the color axis (Wilcoxon signed rank test, p<10-4). 
Marginal histograms with arrows indicating means are shown at the top and right of both panels (black line and the 
number indicate the experiment count). 
 
Discussion 243 

Together, our results show that long-known response modulations of V4 neurons coordinate in precise ways 244 

that would allow them enable flexible visually guided behavior. We demonstrated four ways that V4 populations 245 

are well suited to enable flexible behavior: 246 

1) The representations of the relevant feature for each shape (curvature), while strongly modulated by 247 

task-irrelevant features, were smooth and continuous (Figure 2 and S4) and therefore well positioned to 248 

mediate continuous perceptual judgments. 249 

2) The monkeys’ perceptual judgments were most closely associated with a fixed, shape-general strategy 250 

(Figure 2, S5, and S6), which is well positioned to enable the rapid estimates of even novel stimuli in 251 

novel scenes that are characteristic of natural behavior. 252 

3) Modulations at the onset of the target arc transformed the neural representations in a way that could 253 

map a single judgment to many possible actions via a fixed combination of neurons (Figure 3 and S7).  254 

4) Modulations associated with different task-relevant stimulus features (shape vs. color) transformed the 255 

population representation such that neural information about the task-relevant feature could be 256 

communicated via a fixed combination of neurons (Figure 4 and S12). 257 

These results provide broad support for the idea that well-known, small modulations of visual neurons provide 258 

a computational substrate for cognitive and behavioral flexibility via relatively fixed communication or readout 259 

strategies. These results suggest the tantalizing possibility that the reformatting of neural population 260 

representations could be a brain-wide substrate for flexible behavior. 261 

 262 

Flexible reformatting of population representations is consistent with observations about the stability 263 

of the tuning of single neurons and with known biological processes 264 

Across different tasks, cognitive states, stimuli, and motor plans, neurons in visual cortex largely retain their 265 

tuning to visual features and undergo modest task-specific modulations(1). Because of this tuning stability, 266 

cognitive flexibility is typically attributed to flexible interactions between neural populations(25, 33). The implied 267 

neural mechanism passes off the computational burden of inferring the task-relevant stimulus features and 268 

mapping to behavioral choices to the modulation or gating of synapses between different neurons that 269 

communicate with each other via dedicated channels or communication subspaces.  270 

 271 

Here, we tested the alternative, but not mutually exclusive, hypothesis that flexibility comes from reformatting 272 

neural representations such a fixed subset of readout neurons could selectively reflect the perceptual, 273 

cognitive, and motor information necessary to guide behavior. Only a subset of neurons in any brain area 274 

project to a given downstream target(19), which is consistent with the idea that the readout strategy (e.g. by 275 

downstream decision neurons) is largely stable. Attempts to identify the subset of information that is 276 

functionally shared between any two neural populations (i.e. the ‘communication subspace’(33)) have shown 277 

that those interactions are largely stable(34), even though the information shared via that stable subspace can 278 
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vary(25). While our results suggest that relevant information is identified in visual cortex and communicated to 279 

downstream areas to guide decisions, they do not preclude channels for additionally communicating task-280 

irrelevant information to downstream decision areas (35). Together, these results and those presented here 281 

are consistent with the idea that at least for forms of behavioral flexibility that can change on the timescale of a 282 

single trial, the output channels (defined loosely as projection neurons, communication subspaces, and/or 283 

readout strategies) are largely fixed. An interesting question for future work is whether flexible processes that 284 

evolve on longer timescales, such as perceptual or motor learning, might involve synaptic changes that modify 285 

the output channels.  286 

 287 

Role of distinct brain areas in flexible behavior 288 

If modulations to visual neurons contain all the ingredients for flexible, visually guided behavior, why does the 289 

monkey have so many other brain areas? An emerging body of evidence, including that presented here, is that 290 

the formatting of different information sources (e.g. visual features, cognitive signals, and other task-relevant or 291 

irrelevant information; sometimes called the representational geometry(36, 37)) places important constraints on 292 

the role a neural population plays in a particular computation. Area V4 is particularly well-suited to the kinds of 293 

decisions and flexibility we studied here because it contains representations of the visual features we 294 

varied(28, 38), it is modulated by processes like feature attention, task switching, motor planning, attention, 295 

and surround modulation(5, 22, 31), and our core tasks required judgments about stationary visual stimuli. 296 

Tasks that require subjects to integrate across time or space to perform sequences of decisions or actions 297 

might rely more on areas with more complex dynamics(39–41) and fundamentally different formatting of task-298 

relevant information.  299 

 300 

Origin of reformatting signals  301 

While the hypothesis tested here predicts how response modulations transform neural population responses, it 302 

is agnostic on the origins of those modulations. In our RNN modeling, signals about the task (for example, the 303 

location and size of the response arc) are fed into the network explicitly (Figure S8 and S9). These inputs 304 

rotate population representation such that both the stimulus curvature and the appropriate eye movement can 305 

be decoded linearly. In the brain, such explicit input to V4 is a possible mechanism could originate from a 306 

combination of sources, including 1) long-range feedforward connections between early visual areas and V4 307 

across hemifields (since the arc is presented in the upper hemifield)(42), 2) recurrent surround modulation 308 

within V4(43–45), 3) direct or indirect feedback from either visual areas with larger receptive fields (like 309 

inferotemporal cortex) or from association areas that remap visual inputs to guide eye movements (e.g. the 310 

lateral interparietal area or area 7a)(46, 47).  311 

 312 

In the future, causal experiments like those used to establish the origins of modulations related to spatial 313 

attention(48–50) will be important for establishing the origins of signals related to other forms of cognitive 314 

flexibility. Similarly, theoretical work investigating the properties of control signals related to these functions will 315 

be important for establishing the feasibility of unified mechanisms for a broader range of flexible behaviors.  316 

 317 

Implications and applications of gain-based reformatting 318 

Together, our results establish the feasibility of a computational mechanism for behavioral flexibility that is rapid, 319 

low-cost, robust, and consistent with previous observations about how cognition affects single neurons. We 320 

demonstrated that well-known, modest modulations of neural activity can dramatically change the information 321 

that is communicated via stable mechanisms. This mechanism may comprise a substrate for the remarkable 322 

flexibility inherent to many species and systems. It could provide inspiration for future neuroscientific studies in 323 

many species and systems, translational efforts to enhance and repair cognitive flexibility in human patients, and 324 

efforts to create biologically inspired artificial systems that mimic the remarkable flexibility of the human brain.  325 
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Methods 346 

Experimental Subject Details 347 

Continuous curvature report experiments 348 

Two adult male rhesus monkeys (Macaca mulatta, 8 and 9 kg) were implanted with a titanium head post before 349 

behavioral training. After training, we chronically implanted an 8x12 microelectrode array in each of cortical 350 

areas V1 and V4 of the right hemisphere. (Blackrock Neurotech, Salt Lake City, UT). The arrays were 351 

connected to a percutaneous pedestal which allowed for recording. Each electrode within the array was 1mm 352 

long, and the distance between adjacent electrodes was 400 μm. Areas V1 and V4 were identified in by 353 

visualizing the sulci during array implantation and using stereotactic coordinates. All animal procedures were 354 

approved by the Institutional Animal Care and Use Committees of the University of Pittsburgh and Carnegie 355 

Mellon University where the electrophysiological and psychophysical data were collected. 356 

Shape-color experiments 357 

One adult male rhesus monkey (Macaca mulatta, 10 kg) was similarly implanted with a titanium head post 358 

before behavioral training. An 8x8 multielectrode array was implanted in V4 in the left hemisphere. All animal 359 

procedures were approved by the Institutional Animal Care and Use Committees of the University of Chicago 360 

where the electrophysiological and psychophysical data were collected. 361 

 362 

Experimental Methods 363 

Experimentation Apparatus 364 

We presented visual stimuli on a 24” ViewPixx monitor (calibrated to linearize luminance using X-Rite 365 

calibrator; 1920 × 1080 pixels; 120 Hz refresh rate) placed 56-60 cm from the monkey. The onset of stimuli was 366 

coincident with the onset of a marker on the screen which was captured by a photodiode and recorded (at 367 

30KHz) to synchronize the display with data acquisition. We monitored eye position using an infrared eye 368 

tracker (EyeLink 1000 Plus; SR Research) and recorded eye position and pupil diameter (at 2Khz). Neuronal 369 

responses were acquired (at 30KHz) using a CerePlex E headstage and CerePlex amplifier (Blackrock 370 

Neurotech, Salt Lake City, UT). Reward was delivered using a gravity-based solenoid system (Crist 371 

Instruments, Hagerstown, MD)/ Behavioral monitoring, reward delivery, and stimulus rendering were controlled 372 

by custom MATLAB software and the Psychophysics Toolbox (v.3; (51)).  373 

 374 

Shape stimulus generation 375 

We used a custom generative algorithm to build and render shape stimuli. Details of generation parameters 376 

are schematized in Figure S1. Briefly, random closed loop b-splines (with parameterized complexity) were 377 

used to create the 2D cross-sectional shape. These shapes were stacked in the 3rd dimension along the 378 

curved medial axis while being scaled and rotated (the length, curvature, thickness profile, and helical twist 379 

profile were all randomly generated per shape). This generated the vertices of the 3D shape which were 380 

connected with edges and smoothed. The global shape parameters (x, y position on the screen, in-plane and 381 

out-of-plane rotation, color, and gloss) were then randomly selected and applied. The shape was rendered in 382 

perspective view with the rendering camera directly in front and the light source directly above the camera to 383 

create the appropriate shading and specularity cues for the 3D shape. The image was saved and displayed on 384 

the screen during the experiment. For the shape-color task, the intermediate/homeomorph shapes between an 385 

equilateral triangle and its circumcircle were generated using linear interpolation and displayed on the screen 386 

in five colors sampled equally between blue to white or gray. 387 

 388 

Behavioral Task and Training 389 

Curvature Estimation Task: The monkeys were trained to perform the continuous curvature estimation task 390 

schematized in Figure 1. The lengths of each epoch during each trial were sampled from uniform distributions 391 

with the following ranges. Monkeys fixated a central fixation point (within a 0.5° fixation window) for 200-250 392 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602774
http://creativecommons.org/licenses/by-nc-nd/4.0/


ms before the shape stimulus was displayed for 500-800 ms. A thin, white arc that usually subtended 140° at 393 

the center and a radius of about 3.7° of visual angle was then displayed in the upper hemifield between -70° 394 

and 70°. In subsets of sessions, the arc was rotated around the center subtending either between -90°—50°, -395 

70°—70°, -50°—90° (arc length 140°), or -70°—30°, -50°—50°, -30°—70° (arc length 100°). The radius of the 396 

arc was also varied between 3.67-7.3° of visual angle in some sessions. Since the medial axis of the shape 397 

was a circular arc, the curvature value the monkey had to guess was the inverse of the radius of the circle. 398 

This curvature was linearly mapped to the target arc. After 180-220 ms, the fixation point was turned off which 399 

served as the go cue for the monkeys to saccade to the correct portion of the target arc to make a continuous 400 

report of the curvature of the stimulus. After the monkeys maintained fixation on the selected arc location for 401 

200 ms, a juice reward was delivered the magnitude of which depended on the angular error in the curvature 402 

report. The reward amount varied from 0.2-0.1 cc up to an error of 10% of the arc length. After the reward was 403 

or was not delivered, the monkeys were given feedback: the contrast of the target arc was lowered to reveal a 404 

2° bright spot over the correct target location. Monkeys were rewarded with a small amount of juice to saccade 405 

to and fixate the correct location. This second saccade served only as an error correction signal and was not 406 

analyzed as an additional or corrected choice. A full trial took between 1.4-2s and all trials in which the 407 

monkeys successfully completed the trial (rewarded or unrewarded) were analyzed. Trials with breaks in 408 

fixation during any task epoch were not analyzed. The reward strategy was consistent across training, only 409 

varying in amount across sessions. Details of session and neuron counts are specified in each figure and 410 

analysis. Comparisons of behavioral performance across shapes, orientations, colors, and across trained vs 411 

novel shapes are highlighted in Figure S2. 412 

 413 

Shape-Color Task: The monkeys were trained to select one of two displayed stimuli based on two rules 414 

(schematized in Figure 4). (1) If the color of the stimuli was the same, then the monkey selected the more 415 

circular stimulus (shape rule). (2) If the shape of the stimuli was the same, then the monkey selected the bluer 416 

stimulus (color rule). Stimuli were sampled from a 5x5 grid of stimuli (5 homeomorphic shapes between a circle 417 

and a triangle and five colors between white/gray to blue). Shape and color rule trials were interleaved and the 418 

comparison between the two displayed stimuli was the only cue for the relevant rule. The monkeys fixated a 419 

central fixation point for 150-250 ms before the stimuli were displayed. The fixation point turned off after 200-420 

250 ms which served as a go cue for the monkey. The monkey made a saccade to one of the stimuli and 421 

maintained fixation for 100 ms before receiving a reward for selecting the correct answer. 422 

 423 

Electrophysiological Recordings and Response Epochs 424 

We filtered the recorded activity (bandpass 250-5000Hz) and detected timestamps where the activity crossed a 425 

channel-specific threshold (set to 2-3x RMS value). The raw electrical signal, waveforms at each crossing, and 426 

local field potential activity filtered with 2-200Hz were also saved. The timestamps were chunked by trial start 427 

and stop times and aligned to stimulus onset determined based on the photodiode signals. To allow for the 428 

latency of responses in visual cortex, stimulus-evoked firing rate of each channel was calculated between 50-429 

550 ms (curvature task) and 50-200 ms (Curvature-color task). The baseline firing rates were calculated based 430 

on the spike counts in the 200 ms time period prior to the onset of the stimulus. Across 124 sessions, stimulus 431 

evoked firing rates ranged from 0-403 (mean 107) spikes/s for V1 units and 0-358 (mean 109) spikes/s for V4 432 

units calculated between 50-550ms after stimulus onset. During the arc presentation duration (0-200ms after 433 

arc onset) firing rates ranged from 0-349 (mean 88) spikes/s for V1 units and 0-344 (mean 91) spikes/s for V4 434 

units. Mean baseline firing rates were 59 (V1) and 68 (V4) spikes/s. Analyses comparing single and multiunits 435 

in previous work(52, 53), did not find systematic differences between single neurons and multiunits for the 436 

types of population analyses presented here. For that reason, we did not sort spikes, and the term ‘unit’ refers 437 

to the multiunit activity at each recording site.  438 

 439 
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Unit and trial exclusion 440 

In both tasks, we opted for a generous criterion for units and trials. We included units for analysis if the 441 

average stimulus-evoked firing rate across all trials in an experimental session was 1.1x the average baseline 442 

firing rate (calculated before the stimulus onset while the monkey was maintaining fixation). Only trials in which 443 

the monkeys maintained fixation throughout the stimulus period and made a successful selection were 444 

included. 445 

 446 

Receptive Field (RF) Mapping 447 

The receptive fields of the populations of V1 and V4 neurons were mapped using the same procedure. The 448 

monkey fixated a central spot while 2D and 3D object, and texture images were flashed in a grid of locations in 449 

the relevant visual quadrant for 200-250ms with a 200-250ms inter-stimulus interval. Monkeys were rewarded 450 

to maintain fixation for 6-8 flashes. The images were sampled from a diverse set of random 2D closed-loop b-451 

spline objects, 3D objects generated using the same procedure as for the curvature task (but not used in the 452 

curvature task), 2D silhouettes of those objects, and natural texture patches. The images were flashed in at 453 

least two sizes to ensure sufficient overlap between locations. For each unit, we calculated a stimulus-triggered 454 

average image and an ellipse that fit the RF envelopes. The centers and average sizes of the V1 and V4 455 

receptive fields are shown in Figures S3 and S10. We did not exclude units on the basis of RF location or size. 456 

 457 

Statistical Analysis and Quantification 458 

Behavioral performance and psychometric curves 459 

Curvature task: The monkeys’ choice was taken as the angular location on the arc where the monkey entered 460 

the arc-shaped window and maintained fixation. The angular location was linearly mapped onto curvature. 461 

Psychometric curves in Figure 1 and Figure S2 were plotted by binning actual curvatures across sessions and 462 

calculating the mean and standard error of the mean of monkey choices. 463 

 464 

Curvature-color task: Since the monkey was rewarded for choosing the more circular (curvature task) or bluer 465 

(color task) of the two presented stimuli, each shape stimulus could be compared to four other stimuli in either 466 

task. The psychometric curve was calculated as the proportion of trials in which the monkey selected the 467 

stimulus in the receptive field as a function of the difference between the stimuli (ranging from -4 to +4, 468 

excluding 0).  469 

 470 

Simulations of decoding performance with fixed readout 471 

To test if typical gain modulations could transform neural population activity to align with a fixed readout axis, 472 

we simulated tuning functions to either one (Figure 2-3) or two features (Figure 4 and Figure S11). We 473 

simulated 100 neurons with Gaussian tuning functions (results are similar for different numbers of neurons 474 

provided n >> 2 to ensure a sufficiently large response space compared to the feature manifold). The tuning 475 

width, amplitude, and preferred feature value were randomized. We then calculated the response of these 476 

neurons to 2000 stimuli that varied in both features. We selected a random readout axis and then searched for 477 

neuron-specific gains such that (1) the neural responses could be transformed to arbitrary sections of the fixed 478 

readout axis to resemble flexible alignment to an output axis in the curvature task based on the arc condition, 479 

or (2) either of the two feature representations could be aligned to the fixed readout axis to resemble the 480 

flexible color- or shape-based decisions in the shape-color task. The gains were strictly constrained to small 481 

values such that the gain modulation was similar to previously reported modulations associated with surround 482 

modulation or feature attention ((22, 43, 45); between -20 to 20% difference in firing rates across task 483 

conditions), and, like modulations associated with attention, depended on the feature selectivity of the neuron 484 

(Figure 4B). After the gains were found, we determined whether the modulated responses for the two arc 485 

conditions (Figure 3B) or the two feature conditions (Figure 4B right) aligned with the output axis. To determine 486 
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whether a similar transformation was a simple consequence of the distributions and feature-dependence of the 487 

gain changes, we shuffled the gains such that selectivity-dependence was preserved and recalculated the 488 

alignment with the output axis.  489 

 490 

Curvature selectivity 491 

We calculated the shape-specific curvature selectivity of each unit by first calculating the presentation-492 

averaged curvature response function (Figure S3D) and then calculating the selectivity as (rMax-493 

rMin)/(rMax+rMin) where rMax and rMin were the maximum and minimum response (Figure S3E-F). We 494 

calculated this using the stimulus-evoked response (50-500 ms after stimulus onset) or using the response 495 

during the arc presentation period (while the monkey was still fixating; 0-200 ms after arc onset). For each 496 

shape, the curvature values that corresponded to the maximum and minimum responses were maintained 497 

while calculating the selectivity during the arc presentation period. So the selectivity during the stimulus period 498 

has a range of 0-1 but not during the arc period. 499 

 500 

Principal components analysis, curvature representation, and shape-specific decoding 501 

We used Principal components analysis (PCA) primarily for visualizing the population activity and 502 

demonstrating a smooth representation of the relevant continuous feature, curvature. We also typically 503 

reduced the dimensionality of the population responses to 20-25 before performing decoding or cross-504 

decoding analyses (details below) to prevent rank deficiency. In the population response visualizations (Figure 505 

S4, Figure 4G), we plotted each stimulus presentation, where feasible, and the presentation-average 506 

responses and color-coded it based on the feature value (curvature, color, or shape). We also fit a 3D 507 

polynomial or linear space curve to highlight the relevant variation axis. 508 

 509 

For shape-specific curvature decoding (Figure S4), we linearly decoded the curvature values of the presented 510 

stimulus from V1 and V4 responses. For display, we binned curvature values and plotted the mean and 511 

standard error of the mean (SEM) of decoded curvature values. Unless otherwise mentioned, all decoding 512 

analyses were performed with leave-one-out cross-validation (10- and 20-fold cross-validation were also 513 

performed with qualitatively similar results; not shown). We typically used the correlation (r) between the 514 

decoded and actual feature values as an indicator of decoding performance. We obtained qualitatively similar 515 

results using r2, mean squared error, and other measures of similarity. 516 

 517 

Cross-shape curvature decoding 518 

To evaluate whether two shape-specific curvature axes were typically aligned, we split each shape response 519 

into equal numbers of trials. We trained a linear decoder using the shape responses for one shape and 520 

predicted either the held-out trials of the same shape (Figure 2C) or the other shape (Figure 2D) controlling for 521 

trial numbers. We did this in both directions for all pairs of shapes yielding 844 shape pairs across 83 recording 522 

sessions. We calculated the mean squared error of self- and cross-decoding and plotted them for shape pairs 523 

that differed in overall shape, orientation only, or color only (Figure 2E). For each shape pair, we also 524 

calculated the correlation between the choices for the same curvature values and plotted those correlations 525 

across the same sessions (Figure S5). 526 

 527 

Shape-general curvature decoding and behavior correlations 528 

To decode curvature using a shape-general strategy, we trained a linear decoder on responses across 529 

different shape stimuli within the same recording session. Since the curvature axes are demonstrably non-530 

aligned, we selected a number of trials to train the shape-general decoder such that the shape-specific and 531 

shape-general decoders both have equal curvature decoding performance. To do this, we gradually increased 532 

the number of training trials by randomly sampling trials across shapes (across 100 folds) and then comparing 533 
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curvature decoding performance with the specific decoder of that shape. It took about 40% more trials to train 534 

a shape-general decoder to match the curvature decoding performance of the shape-specific decoder. We 535 

then compared the decoded curvature values from both decoders to the monkey’s curvature estimation 536 

behavior. This yielded two correlation values which are plotted in Figure 2F. We also compared the curvature 537 

decoding performance of the shape-general decoder with the monkey’s average curvature estimation error 538 

(Figure 2G), and the curvature estimation errors of pairs of shapes within a recording session (Figure 2H). All 539 

comparisons were tested for significance using Wilcoxon Signed Rank test. 540 

 541 

Saccade decoding and intercept analysis 542 

We calculated the spike rate of each unit in V1 and V4 during the arc presentation duration (0-200 ms after arc 543 

onset) and linearly decoded (using leave-one-out cross-validation) the actual saccade locations on the arc in 544 

arc degrees. We then compared the actual saccade and the decoded saccade split between arc conditions. 545 

(Note that we did not fit separate decoders for each arc condition; we instead used an arc-general saccade 546 

decoding strategy.) We tested the hypothesis that V1 and V4 responses would transform to encode the 547 

curvature and the saccade simultaneously by realigning/rotating to have an explicable projection on the 548 

saccade axis. The null hypothesis would be that V1 and V4 responses would continue to only represent the 549 

stimulus in their RFs. If the null hypothesis was true, the relationship between the actual and decoded 550 

saccades would mimic the relationship between the actual saccade and the stimulus curvature and therefore 551 

be arc dependent. We tested this by calculating the intercept of this relationship across different arc conditions 552 

per stimulus shape both before and after arc onset. In many cases, we tested several arc conditions (variations 553 

in both arc length and position) for the same shape and several shapes in the same experiment therefore 554 

yielding curvatures x shapes x arc location x arc position trial conditions. 555 

 556 

Recurrent neural network (RNN) modeling of saccade outcomes 557 

We trained an RNN using PsychRNN(54) to understand the possible computational mechanisms of the 558 

transformation between stimulus and saccade representations. We input the fixation as a one-hot variable, the 559 

curvature as a continuous variable between 0 and 1, and the arc condition as two variables that represented 560 

the arc location and length (Figure S8A). Three arc angular positions and two arc lengths were tested. The 561 

RNN was trained to calculate the correct saccade for the input variable combination. The timing of the different 562 

inputs was randomized and sequenced to replicate the monkey task (schematized in Figure S8B). The RNN 563 

had 50 hidden units and was trained on noisy, random inputs. The network learned to do the task (compare 564 

Figure S8D and S8F) by first representing the curvature during the stimulus epoch and, after arc onset, rotating 565 

the representation to align with a saccade axis such that both the curvature and the saccade can be read out. 566 

 567 

Decoding curvature from convolutional network (CNN) activations 568 

Since the veridical curvature was supplied as input to the RNN above, we next tested whether a pre-trained 569 

convolutional neural network (VGG-16) could be used as a front-end to extract the 3D curvature from image 570 

inputs. To do that, we rescaled the input images to the appropriate size and the shape stimulus in the image to 571 

the size of the RF of the pooling layer neurons in layer 4 of VGG-16. We generated either 1000 fully random 572 

shapes with random curvatures (image set 1), or 50 unique shapes with 20 curvatures each (image set 2). We 573 

trained a linear decoder using the activations of the central units (since the stimulus image was scaled and 574 

placed in the middle of the image) and tested it on a testing set of 5 shapes with 20 curvatures each. We 575 

reduced the dimensionality of the response space to 256 dimensions to prevent rank deficiency. The 576 

curvatures of the test set were successfully decoded by shape-general decoders trained on either of the image 577 

sets (Figure S9A). 578 

 579 

RNN saccade modeling using CNN inputs 580 
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We then supplied an RNN with the dimensionality-reduced CNN inputs and trained it using the same method 581 

described above. We used a larger network (512 hidden units) to compensate for the high dimensional input 582 

but otherwise kept the training regimen and trial timing the same as above. We trained separate RNNs of the 583 

two image sets and both were able to generate the correct saccades (Figure S9B; network behavior) by first 584 

representing the curvature on the stimulus axis and then rotating the representation in an arc-dependent 585 

manner to the saccade axis (Figure S9B; network state). 586 

 587 

Shape-color tuning, selectivity, and task gain 588 

We calculated the stimulus-evoked spike rate of each V4 neuron 50-200 ms of stimulus onset to account for 589 

spike latency to V4. We plotted the trial-averaged responses for each of the 25 stimuli to find that neurons 590 

across the array had a variety of tuning peaks and widths (Figure S10C). We quantified the feature selectivity 591 

of each neuron as (rMaxColor-rMaxShape)/(rMaxColor+rMaxShape) where rMaxColor and rMaxShape were 592 

the maximum responses along the color and shape dimensions across both task conditions. We also 593 

calculated the task gain for each neuron as the same modulation ratio except where rMaxColor (or 594 

rMaxShape) was the maximum response across stimuli during the color (shape) task. The selectivity and gain 595 

were calculated for 23 recording sessions (41-48 neurons each, median 45) yielding 1033 points. 596 

 597 

Shape-color-choice representation and decoding 598 

We first visualized the shape and color responses of the V4 neurons by either reducing the dimensionality 599 

using PCA and plotting the projection of each trial on the first three principal components or by identifying the 600 

shape and color decoding axes using linear regression and using QR decomposition to find orthogonal bases 601 

(Figure 4G). To find the feature and choice decoding axes, we used the same decoding procedure as the 602 

cross-decoding results described above. Briefly, we randomly split the trials from the shape and color tasks 603 

equally into training and testing groups. We used the training group to linearly decode the shape or color of the 604 

stimulus and tested it by using the same weights to predict the shape, color, or choice on the testing trials. We 605 

trained separate shape and color decoders each for the shape and color task trials and one for both tasks 606 

combined (totaling six decoders) and tested each of them on shape, color, and choice decoding (Figure 4H 607 

and Figure S12).   608 
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Supplementary Figures 
 

Figure S1: Stimulus 
generation details and 
parameters 
 
A: To build a random 3D 
stimulus shape, we first 
generate a cross-
sectional 2D shape by 
randomizing a closed-
loop cubic b-spline with 
arbitrary complexity 
(number of control points 
and randomization). We 
also generate a curved 
axis with a randomized 
length and curvature, a 
thickness profile along 
the axis (by randomizing 
a 5-point Bezier curve), 
and a helical twist profile 
along the axis. We then 
scale the cross-sectional 
shape by the thickness 
profile and stack it along 
the axis. Once the 
vertices are in place, we 
join them with edges to 
create a closed 3D 
object. We render the 
object with a randomized 
color, position, in-plane 
orientation, and surface 
specularity/gloss. 
B: Example renders of 
the same object with 
changes in different 
features. Wherever 

possible, the ranges spanned the parameter space (orientation, color, curvature, twist, etc.) and were otherwise chosen 
manually (length, gloss, thickness profile). 
C: The lighting and camera were held in the same positions across all images – the camera was directly in front of the 
object and the light was an omnidirectional source above the camera. On the right, for demonstration, the object is shown 
being rendered along three camera positions. 
D: The shape colors were chosen from 25 random values which were generated by permuting three absolute R, G, and B 
values – 0.4, 0.7, 0.9. The swatches and average luminance values thus generated are shown at the top and the example 
stimulus rendered in those values are shown below. 
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Figure S2: Curvature estimation behavior across all tested shapes 
 

 
 
A. Curvature estimation behavior shown as psychometric curves for the two monkeys (blue and orange lines, 
respectively) for all unique shapes tested (the medial axis of each shape, shown in red in the icons, was not presented to 
the monkeys and is shown for illustration). Each panel shows the comparison between the actual curvature and reported 
curvature in solid lines (in nine bins across the curvature range). Shading indicates SEM within each bin. For each shape 
tested, 10 or 20 curvature values are presented as shown in the icons in the exploded view (in B) for shape 4 as an 
example. Each column represents a unique shape. The first four rows represent orientation variations as shown in the 
icons on the left and in the exploded view. The last two rows similarly represent color variations. Both monkeys tended to 
underestimate high curvature values and overestimate low curvature values. This might be a result of the bounded nature 
of the curvature report and/or anisotropies in curvature representations across the range of curvatures tested. 
B. An exploded view showing all stimuli tested for a single shape. In the text, we use the term ‘shape’ to refer to a full set 
of curvatures with no other parameter changes. Across shapes, the orientation only, the color only, or the entire shape 
(including many other parameters) could change. 
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C. Comparison of absolute behavioral error on the first presentation of a shape (one of 10 shapes used during behavioral 
training) during a recording session and the mean absolute error across the whole session. For both monkeys, the 
distribution of errors (marginal histograms on the right and top) tightens across the session and settles at a median value 
of ~ 0.12. 
D. Same as C but for shapes never seen before during recording or training. The distribution of errors for both monkeys is 
similar to the one seen in C for the first trial and across the session. 
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Figure S3: Recording locations, 
receptive fields, example responses 
to curved shapes, and neuron-wise 
curvature selectivity across shapes. 
 
A. Locations of the multielectrode array 
implantations for the two monkeys.  
B. Locations (dots) and mean size 
(dotted circle) of V1 and V4 receptive 
fields. The black circle indicates the 
stimulus location for an example 
session.  
C. Raster plot and peri-stimulus time 
histogram for a single example trial. 
Each row corresponds to a V1 or V4 
multiunit site. The baseline, stimulus, 
and arc periods (during which spikes are 
counted toward the response) are 
labeled in gray.  
D. Trial-averaged responses for an 
example site in V1 and in V4 for three 
shapes as a function of curvature. 
Solid/dotted lines indicate responses 
during the stimulus/arc period, and 
shading indicates SEM.  
E. Comparison of selectivity (defined as 
how much curvature modulates 
responses of a single shape for one unit; 
see Methods) during stimulus and arc 
periods for all shapes and each V1 and 
V4 site recorded in an example session. 
F. The curvature selectivity shown for all 
shapes tested for all neurons across all 
sessions. The selectivity for curvature 
does not change systematically after the 
onset of the arc in either visual area. 
This was calculated for each shape (2-5; 
mean 3.55), for each recording site (51-
96 for V1, 55-95 for V4), and for each of 
124 sessions, totaling 34827 points for 
V1 and 35537 points for V4. Curvatures 
that elicited the maximum and minimum 
firing during the stimulus epoch were 
kept consistent while calculating 
selectivity during the arc period. Mean 
selectivity is shown in black + symbols; 
V1 selectivity changes from 0.13 to 
0.142, and V4 selectivity changes from 
0.134 to 0.156 after arc onset on 
average. Marginal distributions are 
plotted on the top and right of both 
panels. Gray line indicates the unity line. 
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Figure S4: Curvature is 
robustly encoded in V1 
and V4 population activity. 
(see Figure 1 for choice 
behavior during the same 
sessions) 
 
A. (left) V1 stimulus-evoked 
population response from 77 
neurons recorded during an 
experimental session 
projected onto the first three 
principal components of the 
population space where 
each dimension represents 
the response of one neuron. 
The principal component 
analysis (PCA) is for 
visualization rather than 
formal analysis. Each dot 
represents population 
responses during a single 
stimulus presentation, and 
the dot luminance (black-to-
blue gradient) represents 
the curvature of the stimulus 
(also shown as 
superimposed icons for a 
subset of the presented 
curvatures). The dimmer 
dots represent all 
presentations and brighter 
dots are trial-averaged 
responses of stimuli with 
unique curvature. The solid 
curve represents a 
polynomial fit along the 
curvature representation. 
After training a linear 
decoder to predict curvature 
using neural responses, we 
binned trials by curvature 
and plotted their average 

decoded curvature and SEM (middle left); decoding performance was calculated as the correlation between the actual 
and decoded curvature (here, r=0.89). The same analysis is shown for a simultaneously recorded V4 population of 86 
neurons on the right. 
B. Same as A, for three unique shapes shown on randomly interleaved trials in the same session. The decoding 
performance for each shape is shown under the shape icons in the relevant plots. 
C. Same as A, for the same shape presented in two different orientations. 
D. Same as A, for the same shape presented in three different colors. 
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Figure S5: Quantifying the similarity in curvature estimation 609 
behavior across pairs of shapes. 610 
 611 
A. While the representations of curvature in visual cortex 612 
responses are not typically aligned, the monkey’s curvature 613 
estimation behavior is similar across shapes in the same session. 614 
Each dot is a unique curvature value, and horizontal and vertical 615 
error bars indicate SEM for the two shapes shown as icons. All 616 
behavioral biases are consistent across these shapes (correlation 617 
coefficient, r=0.944). Compare with curvature decoding in V1 and 618 
V4 for the same session in Figure 2. 619 
B. Monkeys’ curvature estimation behavior for any pair of shapes 620 
(unique, orientation-change, and color-change) is consistently 621 
correlated across sessions (mean 0.89, SEM 0.01, 844 shape 622 
pairs). 623 
 624 
  625 
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Figure S6: Shape-general decoders trained on 
responses to shapes differing in color only, orientation 
only, or overall shape are correlated with choices. 
 
Curvature decoded using shape-general or shape-specific 
decoders (calculated in Figure 2D) split by sessions where 
only color, only orientation, or overall shape were varied 
across trials (same splits as in Figure 2F). Curvature 
decoded with shape-general decoders is more correlated 
with the monkey’s choices than curvature decoded with 
shape-specific decoders for all training set variations 
(Wilcoxon signed rank test; p<0.001). 
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Figure S7: Analyzing intercepts of the linear relationship between the actual and decoded saccade reveals that 
V4, but not V1 responses reformat to encode the upcoming saccade. 
 
A. We quantify the extent to which each population reflects the direction of the upcoming eye movement by evaluating the 
intercept of the line relating the decoded to the actual saccade. If the population does not reflect the direction of the 
upcoming eye movement, the intercepts will erroneously depend on the arc location (top left). In this scenario, rightward 
arc shifts will produce a negative intercept (green) and leftward shifts will produce a positive intercept (dark blue). When 
the arc length is varied, the intercepts will be zeros for centrally presented arcs (blues) but will be different negative values 
for rightwards shifted arcs (greens) (bottom left). If the population responses reflect the direction of the upcoming eye 
movement, all intercepts will be zero (top right and bottom right.).  
B. Across experiments, V1 responses reflect the curvature judgment, not the direction of the upcoming eye movement. 
The intercept of the line relating the decoded and actual saccade direction depends on the arc location both before (left) 
and after the onset of the arc (right). Each point represents one combination of shape and arc condition.  
C. Across experiments, V4 responses reflect the direction of the upcoming eye movement. Conventions as in B. Before 
the arc onset, the results are qualitatively similar to V1. Unlike in V1, the saccade direction can be decoded from V4 
responses after the arc onset (as indicated by zero intercepts across arc conditions; right panels). 
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Figure S8: Recurrent neural 
networks (RNNs) can be trained to 
represent continuous variables 
and reformat those 
representations based on 
stimulus-extrinsic inputs in ways 
that could produce saccade-like 
outputs. 
 
A. Schematic of RNN layout. Four 
time-varying signals that indicate the 
fixation spot (“fix”), stimulus 
curvature (“k”), and the two arc 
conditions – arc location (“mid”) and 
arc length (“len”) – are input to the 
network. The network is trained to 
produce saccade outputs (“sac”) 
(shown in D) appropriate for each 
arc condition (shown in C). 
B. The time course and values of 

input and expected output signals. Notably, the fixation, stimulus, and arc conditions are staggered to mimic the timing in 
the monkey task. The relative onsets are also randomized using the same timing distributions. 
C. Legend for the various arc conditions tested. 
D. The expected outputs for each arc condition as trained using backpropagation. 
E. The network states (as visualized by a low dimensional embedding of the hidden layer activations using PCA and QR 
decomposition) before (red line) and after (colored lines) arc onset. We found the curvature and saccade axes by finding 
the linear decoding axes for curvature (before arc onset) and for saccades (after arc onset). Black-to-red dots each 
correspond to increasing curvatures of the stimulus and the projection of this curvature representation on the curvature 
axis is shown in the black-to-red line along the x-axis. The network activations after arc onset are projected onto the same 
dimensions and then used to decode the output/saccade. The projection of network states after arc onset (but before 
fixation offset) for each arc condition is shown in black-to-color lines along the y-axis. The layout of these projections 
recapitulates the expected output of the network (also shown in F). Importantly, the network does not lose the ability to 
read out stimulus curvature while encoding the output before the saccade. 
F. The output of the trained network compared with the stimulus curvature for each arc condition. Compare with D and 
note intersecting points across arc conditions. 
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Figure S9: Convolutional Neural 
Network (CNN) activations can be 
used to extract visual features and 
train RNNs to flexibly align 
representations to behaviorally 
relevant readout axes. 
 
A. We extract visual responses from an 
intermediate layer of a pre-trained 
convolutional neural network (VGG-16). 
We use these responses (picked 
because that layer has been shown to 
be representationally similar to V4) to 
train RNNs as in Figure S3. Visual 
stimuli are created using the same 
methods as described in Figure 1 and 
rendered in the central 91 pixels (RF of 
layer 4 units in VGG16) of the image, 
and visual responses are extracted. The 
dimensionality of activations is reduced 
to 256 to aid in RNN training and linear 
decoding. Two types of training image 
sets were created – 1000 unique shapes 
with randomly varying curvatures (top), 
or 50 unique shapes each with 20 
curvature values (bottom). The testing 
stimuli in both conditions comprised of 
five unique shapes with 20 curvature 

values each. To show that curvature is represented in VGG16 layer 4, we trained a linear decoder using those activations 
in a leave-one-out cross-validated fashion using training images and tested it on the held-out test images. The same 
activations, reduced to 256-dimensions, were used to train RNNs instead of the one-dimensional stimulus input in Figure 
S8. 
B. The trained RNN’s hidden layer activations and output behavior are shown in the two pairs of panels. The top two are 
for the training set with 1000 unique shapes, bottom two are for the training set with 50 unique shapes. In both cases, the 
hidden layer represents the stimulus before arc onset, and the representation reformats to align with the saccade-like axis 
after arc onset. After this realignment, the curvature information is not lost but is still decodable, as in V4 (compare with 
Figure 3 and Figure S8). 
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Figure S10: Recording locations, receptive fields, 
example responses to images used in two-feature 
2AFC task 
 
A. Locations of the multielectrode array implantations for 
the third monkey.  
B. Locations (dots) and mean size (dotted circle) of V4 
receptive fields. The array location yielded relatively 
eccentric RFs and the stimulus (black circle) was chosen 
to overlap with the receptive fields of a majority of the 
recorded units. 
G. Normalized responses of four example multiunits 
recorded simultaneously. The black-red saturation of the 
background of the shape image indicates the normalized 
firing rate of that neuron. Across the array, the shape and 
color selectivity of the neurons varied considerably. 
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Figure S11: Simulations of tuning functions for two 
features can result in very different representational 
geometries. 
A. Gaussian functions for two arbitrary parameters had 
identical distributions of Gaussian amplitude (0.5-1sp/s), 
tuning width/standard deviation (0.1-0.4), and preferred 
value/gaussian mean (0-1). The parameters were drawn 
from uniform distributions. 
B. Two example population geometries created using 
different instantiations of the simulation. Here, varying the 
distribution of tuning widths gives rise to a planar 
representation or a saddle-shaped representation. In both 
cases, the bounded nature of the two features causes 
anisotropies at the edges of the representations causing 
linear decoders to underestimate higher feature values and 
overestimate lower values. 
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Figure S12: Breakdown of accuracies for the color and curvature 
decoders trained on either color task or shape task or all trials 
while decoding color, curvature, or choices 
Decoding accuracies (correlation between actual and decoded values) 
for decoders trained on color (left) and curvature (right) while decoding 
curvature, color, and choice trained and tested across subsets of (A) 
all trials, (B) color task trials, and (C) curvature task trials. Points in B 
and C are identical to those plotted in the scatter diagram in Figure 4H. 
To illustrate that the shape and color axes are consistent across the 
two tasks, we decoded curvature, color, and choice across trials from 
both tasks together (shown in A). Curvature and color decoding 
accuracies were comparable to the accuracies of those trained using 
the individual task trials and choice decoding accuracy was 
approximately halfway between. The open circles/dashed lines depict 
model predictions.  
 
 626 

  627 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602774
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
 
1.  J. H. R. Maunsell, Neuronal Mechanisms of Visual Attention. Annu. Rev. Vis. Sci. 1, 373–391 (2015). 

2.  C. Xue, L. E. Kramer, M. R. Cohen, Dynamic task-belief is an integral part of decision-making. Neuron 110, 
2503-2511.e3 (2022). 

3.  C. Stringer, M. Pachitariu, N. Steinmetz, C. B. Reddy, M. Carandini, K. D. Harris, Spontaneous behaviors 
drive multidimensional, brainwide activity. Science 364, eaav7893 (2019). 

4.  S. Treue, Neural correlates of attention in primate visual cortex. Trends Neurosci. 24, 295–300 (2001). 

5.  B. Hayden, J. Gallant, Working Memory and Decision Processes in Visual Area V4. Front. Neurosci. 7 
(2013). 

6.  J. X. Brooks, K. E. Cullen, Predictive Sensing: The Role of Motor Signals in Sensory Processing. Biol. 
Psychiatry Cogn. Neurosci. Neuroimaging 4, 842–850 (2019). 

7.  J. C. Martı́nez-Trujillo, S. Treue, Attentional Modulation Strength in Cortical Area MT Depends on Stimulus 
Contrast. Neuron 35, 365–370 (2002). 

8.  J. H. Reynolds, L. Chelazzi, ATTENTIONAL MODULATION OF VISUAL PROCESSING. Annu. Rev. 
Neurosci. 27, 611–647 (2004). 

9.  S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, A. K. Churchland, Single-trial neural dynamics are 
dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019). 

10.  J. A. Hennig, E. R. Oby, M. D. Golub, L. A. Bahureksa, P. T. Sadtler, K. M. Quick, S. I. Ryu, E. C. Tyler-
Kabara, A. P. Batista, S. M. Chase, B. M. Yu, Learning is shaped by abrupt changes in neural 
engagement. Nat. Neurosci. 24, 727–736 (2021). 

11.  E. Salinas, P. Thier, Gain Modulation: A Major Computational Principle of the Central Nervous System. 
Neuron 27, 15–21 (2000). 

12.  K. A. Ferguson, J. A. Cardin, Mechanisms underlying gain modulation in the cortex. Nat. Rev. Neurosci. 
21, 80–92 (2020). 

13.  M. R. Daliri, V. Kozyrev, S. Treue, Attention enhances stimulus representations in macaque visual cortex 
without affecting their signal-to-noise level. Sci. Rep. 6, 27666 (2016). 

14.  S. Fusi, E. K. Miller, M. Rigotti, Why neurons mix: high dimensionality for higher cognition. Curr. Opin. 
Neurobiol. 37, 66–74 (2016). 

15.  K. M. Tye, E. K. Miller, F. H. Taschbach, M. K. Benna, M. Rigotti, S. Fusi, Mixed selectivity: Cellular 
computations for complexity. Neuron 0 (2024). 

16.  M. Alleman, J. W. Lindsey, S. Fusi, Task structure and nonlinearity jointly determine learned 
representational geometry. arXiv arXiv:2401.13558 [Preprint] (2024). 
https://doi.org/10.48550/arXiv.2401.13558. 

17.  M. T. Kaufman, M. K. Benna, M. Rigotti, F. Stefanini, S. Fusi, A. K. Churchland, The implications of 
categorical and category-free mixed selectivity on representational geometries. Curr. Opin. Neurobiol. 77, 
102644 (2022). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602774
http://creativecommons.org/licenses/by-nc-nd/4.0/


18.  M. Rigotti, O. Barak, M. R. Warden, X.-J. Wang, N. D. Daw, E. K. Miller, S. Fusi, The importance of mixed 
selectivity in complex cognitive tasks. Nature 497, 585–590 (2013). 

19.  S. P. Brown, S. Hestrin, Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. 
Nature 457, 1133–1136 (2009). 

20.  M. R. Cohen, A. Kohn, Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 
(2011). 

21.  G. Buzsáki, K. Mizuseki, The log-dynamic brain: how skewed distributions affect network operations. Nat. 
Rev. Neurosci. 15, 264–278 (2014). 

22.  J. H. R. Maunsell, S. Treue, Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 
(2006). 

23.  A. Kohn, R. Coen-Cagli, I. Kanitscheider, A. Pouget, Correlations and Neuronal Population Information. 
Annu. Rev. Neurosci. 39, 237–256 (2016). 

24.  D. A. Ruff, M. R. Cohen, Simultaneous multi-area recordings suggest that attention improves performance 
by reshaping stimulus representations. Nat. Neurosci. 22, 1669–1676 (2019). 

25.  R. Srinath, D. A. Ruff, M. R. Cohen, Attention improves information flow between neuronal populations 
without changing the communication subspace. Curr. Biol. 31, 5299-5313.e4 (2021). 

26.  A. Pasupathy, C. E. Connor, Population coding of shape in area V4. Nat. Neurosci. 5, 1332–1338 (2002). 

27.  G. Okazawa, S. Tajima, H. Komatsu, Gradual Development of Visual Texture-Selective Properties 
Between Macaque Areas V2 and V4. Cereb. Cortex 27, 4867–4880 (2017). 

28.  R. Srinath, A. Emonds, Q. Wang, A. A. Lempel, E. Dunn-Weiss, C. E. Connor, K. J. Nielsen, Early 
Emergence of Solid Shape Coding in Natural and Deep Network Vision. Curr. Biol. 31, 51-65.e5 (2021). 

29.  S. Tang, T. S. Lee, M. Li, Y. Zhang, Y. Xu, F. Liu, B. Teo, H. Jiang, Complex Pattern Selectivity in 
Macaque Primary Visual Cortex Revealed by Large-Scale Two-Photon Imaging. Curr. Biol. 28, 38-48.e3 
(2018). 

30.  C. M. Ziemba, R. L. T. Goris, G. M. Stine, R. K. Perez, E. P. Simoncelli, J. A. Movshon, Neuronal and 
behavioral responses to naturalistic texture images in macaque monkeys. bioRxiv [Preprint] (2024). 
https://doi.org/10.1101/2024.02.22.581645. 

31.  N. A. Steinmetz, T. Moore, Changes in the Response Rate and Response Variability of Area V4 Neurons 
During the Preparation of Saccadic Eye Movements. J. Neurophysiol. 103, 1171–1178 (2010). 

32.  B. E. Burrows, M. Zirnsak, H. Akhlaghpour, M. Wang, T. Moore, Global Selection of Saccadic Target 
Features by Neurons in Area V4. J. Neurosci. 34, 6700–6706 (2014). 

33.  A. Kohn, A. I. Jasper, J. D. Semedo, E. Gokcen, C. K. Machens, B. M. Yu, Principles of Corticocortical 
Communication: Proposed Schemes and Design Considerations. Trends Neurosci. 43, 725–737 (2020). 

34.  J. D. Semedo, A. Zandvakili, C. K. Machens, B. M. Yu, A. Kohn, Cortical Areas Interact through a 
Communication Subspace. Neuron 102, 249-259.e4 (2019). 

35.  V. Mante, D. Sussillo, K. V. Shenoy, W. T. Newsome, Context-dependent computation by recurrent 
dynamics in prefrontal cortex. Nature 503, 78–84 (2013). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602774
http://creativecommons.org/licenses/by-nc-nd/4.0/


36.  N. Kriegeskorte, X.-X. Wei, Neural tuning and representational geometry. Nat. Rev. Neurosci. 22, 703–718 
(2021). 

37.  G. Okazawa, C. E. Hatch, A. Mancoo, C. K. Machens, R. Kiani, Representational geometry of perceptual 
decisions in the monkey parietal cortex. Cell 184, 3748-3761.e18 (2021). 

38.  A. Pasupathy, D. V. Popovkina, T. Kim, Visual Functions of Primate Area V4. Annu. Rev. Vis. Sci. 6, 363–
385 (2020). 

39.  M. N. Shadlen, R. Kiani, Decision Making as a Window on Cognition. Neuron 80, 791–806 (2013). 

40.  H. Sohn, N. Meirhaeghe, R. Rajalingham, M. Jazayeri, A Network Perspective on Sensorimotor Learning. 
Trends Neurosci. 44, 170–181 (2021). 

41.  M. M. Churchland, K. V. Shenoy, Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 
25, 213–236 (2024). 

42.  L. G. Ungerleider, T. W. Galkin, R. Desimone, R. Gattass, Cortical Connections of Area V4 in the 
Macaque. Cereb. Cortex 18, 477–499 (2008). 

43.  J. J. Nassi, S. G. Lomber, R. T. Born, Corticocortical feedback contributes to surround suppression in V1 of 
the alert primate. J. Neurosci. 33, 8504–8517 (2013). 

44.  M. R. Krause, C. C. Pack, Contextual modulation and stimulus selectivity in extrastriate cortex. Vision Res. 
104, 36–46 (2014). 

45.  C. A. Henry, A. Kohn, Feature representation under crowding in macaque V1 and V4 neuronal populations. 
Curr. Biol. 32, 5126-5137.e3 (2022). 

46.  J. W. Bisley, M. E. Goldberg, Attention, Intention, and Priority in the Parietal Lobe. Annu. Rev. Neurosci. 
33, 1–21 (2010). 

47.  R. F. Squire, B. Noudoost, R. J. Schafer, T. Moore, Prefrontal Contributions to Visual Selective Attention. 
Annu. Rev. Neurosci. 36, 451–466 (2013). 

48.  T. Moore, K. M. Armstrong, M. Fallah, Visuomotor Origins of Covert Spatial Attention. Neuron 40, 671–683 
(2003). 

49.  M. R. Cohen, W. T. Newsome, What electrical microstimulation has revealed about the neural basis of 
cognition. Curr. Opin. Neurobiol. 14, 169–177 (2004). 

50.  M. H. Histed, A. M. Ni, J. H. R. Maunsell, Insights into cortical mechanisms of behavior from 
microstimulation experiments. Prog. Neurobiol. 103, 115–130 (2013). 

51.  D. H. Brainard, The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997). 

52.  M. R. Cohen, J. H. R. Maunsell, Attention improves performance primarily by reducing interneuronal 
correlations. Nat. Neurosci. 12, 1594–1600 (2009). 

53.  E. M. Trautmann, S. D. Stavisky, S. Lahiri, K. C. Ames, M. T. Kaufman, D. J. O’Shea, S. Vyas, X. Sun, S. I. 
Ryu, S. Ganguli, K. V. Shenoy, Accurate Estimation of Neural Population Dynamics without Spike 
Sorting. Neuron 103, 292-308.e4 (2019). 

54.  D. B. Ehrlich, J. T. Stone, D. Brandfonbrener, A. Atanasov, J. D. Murray, PsychRNN: An Accessible and 
Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks. eNeuro 8 
(2021). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602774
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
.CC-BY-NC-ND 4.0 International licenseavailable under a

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602774doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602774
http://creativecommons.org/licenses/by-nc-nd/4.0/

