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Abstract
Spatial homogeneous regions (SHRs) in tissues are domains
that are homogeneous with respect to cell type composi-
tion. We present a method for identifying SHRs using spa-
tial transcriptomics data, and demonstrate that it is efficient
and effective at finding SHRs for a wide variety of tissue
types. The method is implemented in a tool called con-
cordex, which relies on analysis of k-nearest-neighbor (kNN)
graphs. The concordex tool is also useful for analysis of non-
spatial transcriptomics data, and can elucidate the extent of
concordance between partitions of cells derived from cluster-
ing algorithms, and transcriptomic similarity as represented
in kNN graphs.

Introduction
Spatially resolved transcriptomics (SRT) have enabled highly
multiplexed molecular profiling of cells within a tissue, with
current technologies presenting a range of tradeoffs in ap-
proach and resolution (1). Broadly, in-situ hybridization
based methods, such as seqFISH (2, 3), seqFISH+ (4), and
MERFISH (5), offer cellular or sub-cellular resolution for
capture of hundreds to thousands of genes, while methods
that rely on spatial barcoding and sequencing (e.g. Visium,
Slide-Seq (6), Slide-SeqV2 (7)) offer near-cellular resolution
and measure the expression of genes across the entire tran-
scriptome.

A major goal of spatial trancriptomics data analysis is
the partitioning of assayed tissues into regions that constitute
domains of functional or compositional homogeneity. This
task first relies on abstracting transcriptomic expression into
notions of cell type, whereby cells of the same type have sim-
ilar transcriptomic profiles, but can be morphologically or
functionally distinct. The concept of a spatial region intro-
duces another layer of abstraction and requires aggregation
of cell types into domains with distinct cell type composi-
tion. The cells in these regions are characterized by their lo-
cal cellular environments, and have neighborhoods with sim-
ilar proportions of cell types, which can be a mixture of cell
types or a single type. We therefore refer to regions with this
property as spatial homogeneous regions (SHRs).

Several algorithms have been proposed for identifying
spatial or tissue domains defined by coherent gene expres-

sion, yet in principle, these domains can consist of various
cell types with different expression profiles (8–13). The re-
sult is that these methods implicitly identify SHRs. Broadly,
these approaches rely on neural networks, hidden Markov
random fields (HMRFs), or spatial smoothing to encode spa-
tial dependence. For example, Giotto (11) and BayesSpace
(13) infer domain assignment using an HMRF and rely on the
expression of a cell or spot and its neighbors. BANKSY (8)
uses spatial kernels to encode spatial dependence in the local
and extended environment around a tissue. GASTON (12)
relies on a neural network to represent gene expression and
spatial information as a one-dimensional gradient. SpaGCN
(10) and STAGATE (9) use graph convolutional neural net-
works to integrate gene expression with spatial and/or histol-
ogy information. Although many of these methods consider
local gene expression, their criteria for aggregating cells into
a spatial domain remains ambiguous, and regions are often
defined by the procedure used to generate them rather than
the underlying interpretation of their relationship to the tis-
sue architecture. In some cases, methods generate cell type
labels rather than explicitly defining spatial regions, thus ob-
fuscating the question of what it should mean to partition tis-
sues into spatial regions. The question of how to best identify
SHRs in spatially distinct regions of a tissue remains open.

In non-spatial transcriptomics data analysis, the k-
nearest-neighbor (kNN) graph has become a widely used data
structure for representing similarities between cells. kNN
graphs are used in many clustering algorithms (14, 15) and
for visualization (16). We show that the kNN graph represen-
tation of transcriptomics data is useful for answering ques-
tions about spatial homogeneity in SRT data and develop an
approach using spatial kNN graphs to identify SHRs. The
key to our approach is a method we develop for assessing
the neighborhood composition of nodes in a kNN graph built
from spatial or non-spatial attributes, which we implement
in a tool called concordex. We show that concordex can ef-
ficiently and effectively identify SHRs in spatial transcrip-
tomics data, and also that it is a useful tool for assessing
concordance between partitions of cells derived from cluster-
ing and kNN graphs in non-spatial transcriptomics data. We
demonstrate the utility of concordex in many contexts with
both simulated and publicly available biological datasets that
encompass a range of technologies.
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Fig. 1. The concordex workflow: A kNN graph is constructed from spatial coordinates and associated annotations. For each cell or spot, the entries in the neighborhood
consolidation matrix represent the fraction of neighbors that have the label indicated on the column. SHRs are defined by clustering the neighborhood similarity matrix.

Results

Neighborhood consolidation with concordex. The con-
cordex framework can be used to interrogate the neighbor-
hood composition of the nodes of a kNN graph, G = (V,E),
where V is a set of cells and E is the set of edges in the graph.
The edges of the graph are determined by some metric on V ,
usually by computation of transcriptomic or spatial distance,
and the nodes are assigned predetermined discrete or contin-
uous labels. When discrete labels are available, assessment
with concordex proceeds first by computation of the neigh-
borhood consolidation matrix K, with one row for each cell
i and one column for each label j (Figure 1). The entries Kij

can be interpreted as the fraction of neighbors of cell i that
are assigned label j.

The neighborhood consolidation matrix provides a start-
ing point for identification of SHRs and revealing within-

region heterogeneity. When K is built from a spatial adja-
cency graph, the rows describe the local neighborhood com-
position around a spatial location. Clustering the rows in K
assembles cells into SHRs, where cells within a region can
be thought of as having similar neighborhood composition.
In the non-spatial context, the matrix K can reveal cells with
non-homogeneous neighborhoods, thereby identifying sub-
populations that can be important to follow-up on. Assessing
cluster boundaries is straightforward and proceeds with com-
putation of the d × d similarity matrix, S, by aggregating the
rows of K. The similarity matrix is obtained by grouping
cells with the same label and averaging the fractions down
the columns of each sub-matrix. Qualitative assessment of
the similarity matrix provide direct visualization of between-
cluster relationships and within-cluster heterogeneity.

In the sections below, we apply concordex in spatial
contexts to identify SHRs, and in non-spatial contexts to as-
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sess clustering results and validate data integration methods
on simulated and real data. By default, we use k-means clus-
tering to identify SHRs in the spatial context, but similar re-
sults can be obtained from graph-based clustering algorithms
such as Leiden (14) or Louvain (15).

Prediction of periportal and pericentral regions in the
mouse liver. We evaluated the ability of concordex to par-
tition a dataset into biologically meaningful SHRs. We used
data from the Vizgen MERFISH mouse liver map which mea-
sured the expression of 347 genes in more than 300,000 cells
across 1,791 fields of view (17). MERFISH profiles gene
expression at subcellular resolution and relies on highly mul-
tiplexed in situ hybridization to target a limited set of genes.
The cell type labels were obtained from a companion anal-
ysis published by Vizgen which emphasized organization of
cells around the portal and central blood vessels (17). The in-
tervening tissue is composed of regions of functional hepato-
cytes and immune related cells. We use concordex to identify
these broad regions and compared the results to the known ar-
chitecture of the tissue.

The periportal and pericentral blood vessel regions can
be readily identified by concordex (Figure 2A). As in the Viz-
gen tutorial, these regions are composed mostly of hepato-
cytes and there is a stark imbalance between the hepatocyte
clusters that localize to either region. We used the expression
of the genes Aldh1b1 and Cyp1a2 to identify periportal and
pericentral hepatocytes, respectively. The expression of these
genes decreases with increasing distance from the blood ves-
sel which is consistent with these genes marking the region
nearest to the vessel. Figure 2B shows that the expression of
these genes correlates strongly with SHR regions identified
by concordex (Figure 2A). The periportal and pericentral re-
gions are largely composed of hepatocyte clusters 0 and 6,
similar to the results from the Vizgen analysis.

Given the size of the dataset and for ease of compari-
son to other tools, we focused on a limited number of fields
of view around the central portal blood vessel. With the ex-
ception of GASTON, all methods can identify the periportal
and pericentral regions around the vessels (Figure 2C). The
results from GASTON do not seem to correspond to known
organization of the tissue. Additionally, we found that other
methods require significant time to complete on a machine
with 260 GB RAM and using default parameter settings. In
contrast, concordex is much faster, taking only a few min-
utes with the longest step typically being computation of the
adjacency matrix (Figure 2D).

Architecture of the mouse cerebellum. We next applied
the method to mouse cerebellum data that was generated us-
ing Slide-Seq V2 (7). Though this method has near cellular
resolution (10µm), spatial capture spots can contain infor-
mation from more than one cell. We therefore used the cell
type labels that were published with the original manuscript
and determined by the spot deconvolution method RCTD
(18). This tissue is known to contain well-defined domains
(18) namely the molecular, Purkinje-Bergmann, Granule, and
white matter layers. Since these regions also have distinct cell

type composition, we reasoned that concordex should be able
to detect the boundaries between each layer.

Inspection of the neighborhood consolidation matrix
highlights that SHRs do not need to be dominated by a single
cell type (Figure 3A). Qualitative assessment of the predicted
SHRs show agreement with the expected morphology of the
tissue and contain cell types in proportions similar to canon-
ical expectations (Figure 3B). Notably, the performance of
concordex is comparable to more complex methods that rely
on neural networks (Supplementary Figure S1). In each SHR,
we compared the prediction to the RCTD weights of the most
dominant cell types in the region (Figure 3D). All regions
predicted by concordex correspond strongly to the cell type
localization, even in areas of low cell density.

The SHRs predicted by concordex share the most agree-
ment with the regions predicted by GASTON (Supplemen-
tary Figure S1). Visual inspection of the regions predicted
by STAGATE and SpaGCN visually resemble the expected
arrangement in the cerebellum, but inspection of the cell type
proportions in each region reveals a failure to resolve the
canonical layers (Supplementary Figure S1). In particular,
STAGATE does not distinguish between the molecular and
Purkinje layers. This is most evident in the bar graphs show-
ing the cell type composition of each layer where there is
little difference between the composition predicted Purkinje
and molecular cell layers.

To demonstrate that concordex can produce meaningful
results when discrete labels are not available, we used the top
50 PC loadings to label each spot. We averaged the load-
ings of the neighbors of each cell to create the neighborhood
consolidation matrix and used this as input to clustering al-
gorithms as above. Using this labelling approach, each row
of the matrix is a spot, each column is a PC, and the entries
are the average loadings of the PCs across neighbors. The
resulting SHRs are qualitatively similar to the results using
discrete labels (Figure 3C) and most spots receive the same
assignment with either labeling scheme.

Since concordex should only aggregate spots into a SHR
if they share similar neighborhood composition, we tested
whether concordex could detect manipulations to the cell
type identity of a subset of spots. We chose a subset of spots
in the molecular layer and randomly reassigned their cellular
identity by swapping cell labels (Supplementary Figure S2).
This created an artificial, heterogeneous region that was dis-
tinct from the organized layers in the remaining tissue (Sup-
plementary Figure S2). We observed that concordex was able
to distinguish the heterogeneous region from the remaining
molecular layer and the organization of the unaltered tissue
remained largely unchanged. Notably, this alteration signif-
icantly altered the regions predicted by GASTON (Supple-
mentary Figure S2), resulting in an organization that did not
correspond to the known tissue structure. Altogether, these
results reveal that concordex is sensitive to varying cell type
composition and can reliably distinguish regional differences
in a tissue.

Identification of Spatially Homogeneous Regions in
Simulated Data Using concordex. To better understand
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Fig. 2. Evaluation of methods on mouse liver. A) Results of concordex displaying partioining of mouse liver into spatially homogeneous regions corresponding to pericentral
and periportal regions. B) Expression of two marker genes for pericentral (Cyp1a2) and periportal (A1dh1b1) regions. C) Performance of Banksy, GASTON, SpaGCN, and
STAGATE on a portion of the mouse liver (red rectangle in panel A. D) Runtime of methods on the mouse liver portion shown in panel C.

the utility of our approach, we simulated control datasets in
various patterns. First, we designed a synthetic dataset con-
taining two cell types and distributed the cells on a checker-
board grid in different proportions (Figure 4A, Methods).
This scenario is useful because it allows analysis of whether
a method can detect regions of varying cell type composition,
even when a cell type is present throughout the entire spatial
field of view. We assessed whether region prediction methods
BANKSY (8), Giotto (11), and neural network (NN)-based
methods SpaGCN (10), STAGATE (9), and GASTON (12)
could perform the same region segmentation task. Ideally,
methods should detect the checkerboard as a macropattern
rather than the exact positions of the individual cell types.

We find that concordex is able to effectively represent
the distinct checkerboard squares (Figure4B), and moreover,
each detected region contains the expected proportion of the
simulated cell types. The concordex predictions were most
similar to STAGATE, with both methods producing recog-
nizable checkerboards and correctly assigning grid points
with high accuracy. Conversely, other methods failed to per-

form this task in notable ways. Two methods, BANKSY and
SpaGCN, reproduced the cell type assignment rather than ag-
gregating the points into regions even when using parameters
that should prefer region identification over cell type iden-
tification. On the other hand, Giotto and GASTON do not
produce a recognizable checkerboard (Figure 4B). This re-
sult highlights that concordex specifically aggregates loca-
tions with similar neighborhood composition and also does
not require similar regions to be spatially contiguous.

We also arranged the simulated cell types in sequential
layers and used concordex to predict the layers (Figure 4C).
This simulation produced results consistent with the checker-
board simulation. The predicted SHRs from concordex reveal
a continuous gradient along the field of view (Figure 4D).
Again, BANKSY and SpaGCN failed to identify distinct re-
gions. Both methods identify cell types, but do not imply
boundaries between regions (Figure 4D). Predicted regions
from GASTON and Giotto neither reveal the cell type distri-
bution nor the layer pattern in the simulated data (Figure 4D).
Importantly, concordex captures the expected organization of
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Fig. 3. Results of concordex on a slice of mouse cerebellum. A) A heatmap showing for each cell in each region, the fraction of neighbors of each cell types. B) Identification
of spatial homogeneous regions with concordex based on cell type annotations. C) Identification of spatial homogeneous regions with concordex based on 50-dimensional
PCA coordinates. D) Comparison of RCTD weights to distinct concordex spatial homogeneous regions.

the simulated tissue across an array of gene expression pat-
terns and relies on compositional changes, not expression, to
determine regional boundaries.

Using concordex to Evaluate Cell type Clustering and
Integration Effects. We also evaluated the ability of con-
cordex to assess the fidelity of cell type clustering and dataset
integration on data generated from in-utero and ex-utero
mouse embryos at the E10.5 developmental stage (19). We
evaluated the data in the 15-dimensional PCA space and 2-

dimensional UMAP embedding by computing the neighbor-
hood consolidation and similarity matrices using cell type or
growth condition as the label.

Using cell type labels, we found that the concordex simi-
larity matrix can readily visualize distinct clusters in both the
PCA and UMAP embeddings. In the log-normalized PCA
data, concordex suggests an relationship between some cell
type clusters (Supplementary Figure 3A). For example, the
neighborhoods of cells in cluster 0 are composed of cells
from clusters 5, 7, 10, and 13. We observed that simply
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Fig. 4. Evaluation of methods on synthetic datasets. A) A control experiment in which a chessboard pattern consists of two regions, each comprising two cell types, one with
80% of one cell type, and 20% of another, and the other region with a 20% / 80% mix. B) Performance of concordex and five other methods on the control experiment from
panel A. C) A control experiment consisting of a gradient of regions, each with two cell types, and with increasing proportion of one cell type across the gradient. D)
Performance of concordex and five other methods on the control experiment from panel C.

changing the random state improves the qualitative appear-
ance of the cluster separation in the UMAP embedding, re-
flecting the arbitrary nature of otherwise equivalent embed-
dings. While tuning the hyperparameters can alter how well
the UMAP embedding preserves the structure of the PCA
space, concordex directly visualizes the cluster relationships
in the PCA-embedded data and reduces the need to embed
the data in fewer dimensions.

Consistent with (20), we observed that the UMAP em-
bedding can be a poor representation of the kNN graph in
general. For example, inspection of the clusters in the scaled-
stabilized data UMAP embedding indicates a close relation-
ship between several clusters even though this structure is
not apparent in the kNN graph generated from the PCA-
embedded data (Supplementary Figure 3B). The neighbor-
hood consolidation matrix allows for the assessment of the
degree to which clusters overlap; e.g., it can show which clus-
ter has the greatest number of cells where more than half of
their neighbors have a different label. We found that the num-
ber of cells with mixed neighborhoods is often greater in the
UMAP embedding (Supplementary Figure 4), showing that
clusters are more mixed in the UMAP embedding than they
are in the PCA space. These relationships are especially diffi-
cult to glean from the UMAP embedding alone, where over-
lapping clusters can appear indistinguishable, whereas con-
cordex provides an exact assessment of the extent of mixing
between clusters. Moreoover, the concordex similarity ma-
trix is sufficient to visualize the global structure of the kNN
graph when combined with the concordex measures.

Discussion

Efforts to characterize the expression and functional similar-
ities of cells in their tissue context rely on accurate meth-
ods to identify regions with compositional similarity. We de-
veloped concordex to explicitly aggregate cells into regions
based on the compositional similarity of their local neigh-
borhoods. This approach enables long-range identification of
regions and broad characterization of tissues. Our method is
fast and flexible, leveraging research that has resulted in op-
timized algorithms for computing the kNN graph. On simu-
lated data, concordex readily identifies global organization,
even when the same cell types are represented throughout
the spatial field. Using concordex, we were able to identify
the well-described laminar structure of the mouse cerebellum
and regions of functional importance in the mouse liver.

Importantly, we have demonstrated the utility of using
local neighborhood compositional similarity as a marker of
SHRs. Other methods aim to detect regions within a tis-
sue where gene expression is consistent. The assumption is
that the organization of tissues is related to the spatial de-
pendence of gene expression. However, this approach for re-
gion identification often overlooks the cell type heterogene-
ity within a region and confounds the biological interpreta-
tion of spatial domains with the procedure used to gener-
ate them. For example, the notion of a ‘tissue domain’ in
the Banksy paper (8), is defined as the result obtained when
‘building aggregates with neighborhood kernel[s] and spatial
yadstick[s]’. Similarly, in the GASTON paper (12), ‘spa-
tial domains’ are described in terms of topographic maps,
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that result from isodepth which the GASTON method infers.
Again, the notion of a ‘spatial’ or ‘tissue’ domain is tauto-
logical with the algorithm used to produce it. In the con-
cordex framework, we prioritize the biological definition of
spatial homogeneous regions, and our approach to identify
SHRs follows from the definition, not the other way around.
Thus, while other methods can, at times, produce similar re-
sults to concordex, concordex reliably distinguishes between
cell type and region assignment and is particularly adept at
identifying SHRs that recur in spatially distant parts of the
tissue.

Many SRT studies aim to identify the relative position
of cell types in space. Implicit in these analyses is that
cell types are organized into SHRs, and efforts to identify
region-specific variation largely rely on alignment to previ-
ously characterized anatomical structures (21). On the other
hand, computational approaches for identifying SHRs vary
in their scalability and interpretability. Spatial smoothing ap-
proaches often increase the dimension of SRT data, usually
by concatenating information from spatial neighbors into a
single matrix as input to dimension reduction and clustering
algorithms (8, 22). These approaches are computationally
burdensome as k (the number of neighbors) and n (the num-
ber of observations) becomes large, and can be intractable
even for current datasets. As spatial transcriptomics tech-
nologies continue to improve, not only in terms of resolution,
but also throughput, computational efficiency will become in-
creasingly important.

Aggregation of cells and spots into neighborhoods based
on the compositional similarity of their local neighborhoods
enables long-range SHR identification of regions and broad
characterization of the tissue. As we showed in simulation,
existing methods that are based on gene expression or at-
tributes derived from gene expression can fail to differentiate
cell type variation from regional variation. By using infor-
mation about cell neighborhoods, concordex naturally allows
for cells of the same type to be assigned to different regions.
When cell type labels are used with concordex, one possible
limitation is that densely populated cells with identical neigh-
borhoods may be identified as a single SHR, which may not
correspond to a histological feature. We believe that this re-
sult is important for what it reveals about the tissue organiza-
tion, such as varying cell density and type homogeneity.

We also demonstrated that concordex has non-spatial
applications when the neighborhood consolidation matrix is
constructed from principal components or expression vec-
tors. A typical use case of concordex in this context includes
assessing the existence of and relationships between prede-
fined groups or clusters. In contrast to UMAP, the similarity
matrix can be used to visualize distinct clusters without dis-
torting the global relationships between them. The neighbor-
hood consolidation matrix is especially useful for estimating
the proximity of clusters and presents a more natural interpre-
tation of the biological relationship between them. Given that
UMAP plots are also used to visualize gene expression data
within a cluster, we note that gene expression can be readily
plotted as a heatmap grouped by pre-defined clusters without

loss of information present in the UMAP visualization.
In summary, concordex provides an accurate and effi-

cient framework for identifying SHRs across a variety of spa-
tial scales and technologies, furthering the understanding of
complex spatial regionalization patterns. Future work should
focus on identifying genes with regionally restricted expres-
sion and distinguishing this pattern from cell type localiza-
tion. We believe that the SHRs identified by concordex can
offer substantial insight in future analyses and will facilitate
further efforts to characterize complex tissues.

Methods
concordex: k-nearest neighbor concordance index.
The k-nearest neighbor (kNN) graph G = (V,E) can be gen-
erated from a scRNA-seq or SRT dataset where V , the set of
cells or spots, and E, the set of edges, are determined accord-
ing to some metric on V . The number of cells in the dataset
is denoted |V | = n.

The concordex workflow requires coloring the nodes of
G from a finite set C with |V | = j distinct labels. The col-
ored graph is used to create the n × j neighborhood consol-
idation matrix, K. In the scRNA-seq or SRT context these
labels can represent quantities such as cluster assignment or
batch. However, these quantities are not always available and
can instead be replaced by continuous vectors such as prin-
cipal components projections. We conceptualize the case for
continuous labels by considering the k nearest-neighbors of
a node as a (k − 1)-simplex whose vertices can be described
in Rm for m ≥ k.

When continuous vectors are used to color the nodes in
G, this amounts to assigning those vectors to the vertices of
the neighborhood simplex. This approach is easily amenable
to discrete labels, where each discrete label is assigned to a
unique element of a vector in Rm. The vertices can then be
mapped to the standard vectors in Rm. In either case, the n
rows of K can be interpreted as the center of mass of each
simplex. The columns of K represent each of discrete labels
or the non-zero elements of the vectors in Rm. For discrete
labels, the entries Kij can be interpreted further and represent
the fraction of neighbors of cell i that are assigned label j.

To assemble cells or spots into spatial homogeneous re-
gions (SHRs), we use the matrix K and the k-means clus-
tering algorithm when there is prior information for the ex-
pected number of domains. However, when the number of
SHRs is not known, unsupervised clustering algorithms such
as Leiden (14) can be used to generate assignments. In dis-
crete cases, we define a concordex metric by generating a
j ×j similarity matrix, S. Since the rows of K can be mapped
to a distinct label, we average the fraction of neighbors in
each cell down the rows of the same color and so that the
rows and columns are in the same order.

The concordex metric is computed by averaging the
fractions on the main diagonal of K. That is,

concordex = 1
j

j∑
i=1

Sii.
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Datasets and pre-processing.

Slide-Seq V2 Mouse Cerebellum. We downloaded the count
matrix, spatial locations, and cell type labels for replicate 1
from reference (18). The dataset contains counts for 11,626
spatial locations and 23,096 genes. The pixels were filtered
to include only spots with a minimum of 100 UMIs detected
and those that were not labeled ‘reject’. This left a total of
9,985 pixels available for analysis. A detailed description of
the preprocessing steps is available (18).

MERFISH Mouse Liver. For the mouse liver dataset, we down-
loaded the gene count matrix, spatial cell metadata, and cell
boundary polygons from the Vizgen data portal. We pro-
cessed the data from a single replicate (“Liver1Slice1”) ac-
cording to the example Colab notebook provided from (17).

As in the tutorial, “Blank” genes were removed from the
count matrix. Each cell was normalized by the total count
over all remaining genes and counts were log-transformed
with a pseudocount of 1. After processing, there were a total
of 347 genes, 367,335 cells, and 1,791 fields of view (FOVs)
remaining in the dataset. The mean-centered, normalized
count matrix was used to compute the first 50 principal com-
ponents. Cell types were identified with leiden clustering us-
ing a resolution of 1.5.

Where indicated, we subsetted the dataset to include
only FOVs 500 to 1000 leaving 100,742 cells and 347 genes
for analysis. For the runtime comparisons, we used the sub-
setted dataset and default parameter values for each method.

10x Chromium Mouse Ex-Utero Embryo. The datasets used
in this study were derived from reference (19). A detailed
description of the pre-processing steps are described else-
where (20). Briefly, two transformed count matrices were
provided by the authors. The ‘Log-Normalized’ dataset con-
sisted of log-transformed counts and the ‘Stabilized-Scaled’
dataset had been variance stabilized using Seurat and subse-
quently mean-centered and scaled. Both datasets were inte-
grated using Seurat. The count matrices were mean-centered
and scaled before principal component analysis (PCA). PCA
analysis was performed using sklearn TruncatedSVD to 15
dimensions to agree with the analysis performed by the orig-
inal authors. We used the findkNN function from the Bioc-
Neighbors package in R to find the exact 30 nearest neighbors
for each cell in the dataset.

The UMAP algorithm was applied to the 15-
dimensional PCA embeddings with default settings except
where noted. The subsequent visualizations were colored us-
ing labels provided by the authors.

Simulated Datasets. For the checkerboard simulation in Fig-
ure 4A, we created a square lattice with 120 rows and
columns. Each individual checker box had a dimension of 15
rows and columns so that the grid resembled a true checker-
board. Each square in the lattice represents a ‘cell’ for a total
of 14,400 cells.

We used the splatter simulation software (23) to gener-
ate a count matrix containing 14,400 cells and 10,000 genes.
We updated the ‘group.prob’ parameter to generate 2 cell

types with distinct gene expression profiles. All other pa-
rameters were kept at their default settings. A total of [num-
ber] cells were labeled ‘Type 1’ and the remaining cells were
labeled ‘Type 2’. In the white regions of the checkerboard,
we assigned 80% of the squares ‘Type 1’ and in the black
regions, 20% of the squares were assigned ‘Type 1’.

For the results in Figure 4D, we generated a laminar pat-
tern in the grid by grouping squares every 30 columns to cre-
ate 4 layers. In the layered configuration, each stripe had
approximately 25%, 40%, 60%, and 75% of the locations
within the group assigned to ‘Type 1’, respectively.

Data availability
Data and code to reproduce the figures in this manuscript
are available at the following Github repository: https:
//github.com/pachterlab/JBMMCKP_2023/
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