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Abstract
Epistasis, or interactions in which alleles at one locus modify the fitness effects of alleles at other loci, plays a

fundamental role in genetics, protein evolution, and many other areas of biology. Epistasis is typically quantified
by computing the deviation from the expected fitness under an additive or multiplicative model using one of several
formulae. However, these formulae are not all equivalent. Importantly, one widely used formula – which we call the
chimeric formula – measures deviations from a multiplicative fitness model on an additive scale, thus mixing two
measurement scales. We show that for pairwise interactions, the chimeric formula yields a different magnitude, but
the same sign (synergistic vs. antagonistic) of epistasis compared to the multiplicative formula that measures both
fitness and deviations on a multiplicative scale. However, for higher-order interactions, we show that the chimeric
formula can have both different magnitude and sign compared to the multiplicative formula — thus confusing neg-
ative epistatic interactions with positive interactions, and vice versa. We resolve these inconsistencies by deriving
fundamental connections between the different epistasis formulae and the parameters of the multivariate Bernoulli
distribution. Our results demonstrate that the additive and multiplicative epistasis formulae are more mathemati-
cally sound than the chimeric formula. Moreover, we demonstrate that the mathematical issues with the chimeric
epistasis formula lead to markedly different biological interpretations of real data. Analyzing multi-gene knockout
data in yeast, multi-way drug interactions in E. coli, and deep mutational scanning (DMS) of several proteins, we
find that 10 − 60% of higher-order interactions have a change in sign with the multiplicative or additive epistasis
formula. These sign changes result in qualitatively different findings on functional divergence in the yeast genome,
synergistic vs. antagonistic drug interactions, and and epistasis between protein mutations. In particular, in the yeast
data, the more appropriate multiplicative formula identifies nearly 500 additional negative three-way interactions,
thus extending the trigenic interaction network by 25%.

1 Introduction
A key problem in biology is deriving the map from genotype to fitness, or the average reproductive success of a
genotype. This map is often referred to as the fitness landscape [1]. In the simplest fitness landscape, the fitness
of alleles at one locus are independent of the fitness of alleles at every other loci, making fitness either an additive
or multiplicative function of the allele at each genetic locus. However, the fitness landscape is complicated by the
presence of epistasis, or genetic interactions where alleles at one locus modify the fitness effects of alleles at other loci.
Epistatic interactions reveal potential functional relationships between genes, as the sign of the interaction (positive
or negative) may indicate genetic suppression or functional similarity [2]. The accurate measurement of epistasis is
thus crucial for many biological tasks including understanding how genes are organized into genetic pathways [3, 4],
modeling protein function and evolution [5, 6, 7, 8, 9, 10, 11], understanding antibiotic resistance [12, 13, 14, 15], and
interpreting genome-wide association studies (GWAS) [3, 16, 17, 18, 19].

Over the past few decades, many studies have aimed to measure epistatic interactions from experimental fitness
data (reviewed in [3, 4, 5]). Most of these studies measure the simplest type of epistasis: pairwise epistasis, or
interactions between a pair of genetic loci. Pairwise epistasis is computed by comparing the observed fitness of the
double-mutant to the expected fitness under a null model with no epistasis. Almost all formulae for pairwise epistasis
use either an additive null model, where the expected fitness is the sum f01 + f10 of the fitness values of the single-
mutants, or a multiplicative null model, where the expected fitness is the product f01f10 of the fitness values of the
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single mutants. Under an additive null model, epistasis ϵ is typically computed as the difference ϵ = f11− (f10+ f01)
between observed and expected double-mutant fitness.

For the multiplicative null model, there is notably no agreement in the literature about how to quantify deviation
from the null model. In the statistics literature, it is standard to compute multiplicative interaction effects using a ratio
ϵ = f10

f01f10
between the observed and expected values (e.g. [20, 21, 22]). On the other hand, many studies in the

genetics literature compute epistasis as the difference ϵ = f11 − f01f10 between observed and expected fitness values
of a double-mutant (e.g. [23, 24, 25, 26, 27, 28, 29, 4, 30, 31, 32, 33, 34]). We call the first formula the multiplicative
formula, as it preserves the multiplicative measurement scale, while we call the second formula the chimeric formula,
as it measures deviations from a multiplicative model on an additive scale and thus is a “chimera” of additive and
multiplicative scales.

The differences between the two pairwise epistasis formulae are not widely appreciated in biological applications.
Importantly, we show that the chimeric and multiplicative formula result in different measures of pairwise epistasis,
which affects qualitative findings on the strength of an epistatic interaction. At the same time, we also show that the
two formulae always yield the same sign (or direction) of a pairwise interaction. The sign of an epistatic interaction
is often the quantity of interest in genetics studies, e.g. negative epistatic interactions are used to quantify functional
redundancy [2, 35, 36] and recombination [37, 38, 39, 40]. Thus, the focus of existing literature on the sign of
interactions, as well as the focus on pairwise epistasis, may explain why the differences between the multiplicative
and chimeric formula are not broadly recognized.

The discrepancies between the multiplicative and chimeric formula are more pronounced and consequential for
higher-order interactions between three or more loci, which are becoming more widely studied with larger genetic
datasets and high-throughput measurements of fitness [41, 2, 42, 43, 44, 45, 46]. Recent studies in yeast genetics
[2, 42] and antibiotic resistance [43] independently derived analogous chimeric formula to quantify epistasis between
three or more loci and higher-order interactions between antibiotics, respectively, under a multiplicative fitness model.
These chimeric formulae were seemingly derived de novo and without consideration of the two distinct formula —
chimeric and multiplicative — for pairwise epistasis, nor the consequences of conflating multiplicative and additive
scales. However, unlike in the pairwise setting, we show that for three or more loci, the chimeric formula is not
guaranteed to produce the same sign of an interaction as the multiplicative formula. Thus, the chimeric formula may
indicate a positive epistatic interaction while the multiplicative formula shows a negative epistatic interaction, and
vice-versa. Such inconsistencies raise questions about reported higher-order epistasis in biological applications.

We resolve the mathematical and biological inconsistencies between the different epistasis formulae by deriving
a fundamental connection between epistasis and the parameters of the multivariate Bernoulli distribution (MVB), a
probability distribution on binary random variables [47]. We demonstrate that this connection to the multivariate
Bernoulli is implicit in several other approaches for quantifying epistasis, including the regression models commonly
used in GWAS and eQTL analyses [3, 4, 48] and the Walsh coefficients for measuring “background-averaged” epistasis
[41, 49, 50]. To our knowledge, the connections we derive between the MVB and the various epistasis formulae have
not been previously described.

We leverage the connections to the multivariate Bernoulli distribution to analyze the higher-order chimeric epistasis
formulae derived by Kuzmin et al. [2, 42] and Tekin et al. [43]. We show that both the chimeric formulae for pairwise
epistasis and the chimeric formulae for higher-order epistasis correspond to the joint cumulants of the MVB, a concept
from probability theory for measuring interactions between continuous variables [51, 52, 53]. The joint cumulants are
known to not be an appropriate measure of higher-order interactions for binary random variables [54, 55]. Accordingly,
we show that the chimeric epistasis formula are not appropriate for measuring higher-order epistasis between biallelic
mutations. In this way, just like how the hero Bellerophon in the Iliad slayed the monstrous chimera, the multivariate
Bernoulli distribution allows us to “slay” the chimeric epistasis formula.

We demonstrate that the mathematical issues with the chimeric epistasis formula lead to markedly different biolog-
ical interpretations of real data. Analyzing multi-gene knockout data in yeast using the more appropriate multiplicative
formula changes the sign of 12% of the 7, 957 trigenic interactions that [2, 42] reported using the chimeric formula.
Many of these sign changes are concentrated on negative interactions, which are more functionally informative than
positive interactions and are commonly used to measure functional redundancy between genes [35, 36, 56]. In particu-
lar, the multiplicative epistasis formula identifies nearly 500 novel negative interactions that are significantly enriched
for several measures of functional redundancy, thus extending the trigenic interaction network by 25%.

We further demonstrate that the multiplicative and additive formulae yield markedly different interactions com-
pared to the chimeric formula in two other applications: the identification of higher-order synergistic and antagonistic
drug interactions in Escherichia coli and the identification of epistatic interactions between protein mutations in deep
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Figure 1: (A) For a pair (i, j) of loci, the multiplicative epistasis measure ϵMij =
fij
fifj

is the ratio between the observed
fitness fij of the double mutant and the expected fitness fifj under a multiplicative null model. Equivalently, the
logarithm log ϵMij of the epistasis measure is given by log ϵMij = log fij − log fifj , or the difference between the
observed and expected values in log-fitness space. (B) The chimeric epistasis measure ϵCij = fij−fifj is the difference
between the observed and expected fitness values of the double-mutant under a multiplicative fitness model. Thus,
the chimeric measure ϵCij is a different measure of pairwise epistasis that conflates both multiplicative and additive
scales. (C) The fraction of instances where the signs sgn(log ϵM ) and sgn(ϵC) of the multiplicative and chimeric
fitness formula, respectively, disagree (“sign discordance fraction”) for interaction orders L = 2, . . . , 5, where fitness
values fi, fij , . . . are sampled uniformly at random from the interval [0, 1]. For two loci, the sign of the two measures
always agree (see Proposition 1), but for more than two loci, there is substantial disagreement.

mutational scanning experiments. We show that the discordance between the different formulae increases with inter-
action order: the additive formula shows significantly less antagonism between five-way interactions compared to the
chimeric formula used in [57], while for some proteins there is up to substantial (up to 60%) disagreement in the sign
of interaction between the multiplicative and chimeric formulae.

2 Results

2.1 Pairwise epistasis: additive, multiplicative, and chimeric
Pairwise epistasis describes interactions between two genetic loci. We assume that each locus is biallelic, i.e. each
locus has two alleles labeled 0 and 1. Thus for a pair of loci there are four possible genotypes: the wild-type 00, the
single mutants 01 and 10, and the double mutant 11. Accordingly, for a pair (i, j) of loci there are four corresponding
fitness values: the wild-type fitness f∅, corresponding to the wild-type genotype 00 with no mutations; the single-
mutant fitnesses fi, fj , corresponding to the genotypes 01 and 10 with either locus i or locus j mutated, respectively;
and the double-mutant fitness fij , corresponding to the genotype 11 with both loci mutated. Pairwise epistasis is
measured by comparing the observed double-mutant fitness fij to the expected fitness under a null model with no
epistasis.

In practice, the fitness f of a genotype, i.e. the mean reproductive success of the genotype, cannot be directly mea-
sured. Instead, experiments typically measure traits that are expected to be highly correlated with fitness, e.g. cellular
reproductive or growth rate, and are assumed to follow either an additive or multiplicative scale [58]. Accordingly, the
two standard null models of fitness for measuring epistasis are the additive model and the multiplicative model.

In the additive model, mutations are assumed to have an additive effect on fitness [29, 4, 3]. Thus the expected
double-mutant fitness is given by fi + fj , or the sum of fitness effects of the individual mutations, under the usual
assumption that fitness values are normalized such that the wild-type fitness f∅ = 0. The additive model has been used
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in studies of drug resistance [59, 60, 61, 62, 63], protein binding [50, 41], and quantitative genetics [4, 28, 64]. The
pairwise epistasis measure ϵAij under the additive model is equal to the difference between the observed and expected
double-mutant fitness values:

ϵAij = fij − (fi + fj), (1)

and the sign of the interaction (i.e. positive vs. negative) is given by the sign sgn(ϵAij) of the epistasis measure ϵAij .
In the multiplicative fitness model, mutations are assumed to have a multiplicative effect on fitness. Thus, the

expected double-mutant fitness is given by fi ·fj , or the product of fitness effects of the individual mutations, under the
typical assumption that fitness values are normalized such that the wild-type fitness f∅ is equal to 1. The multiplicative
fitness model has been used to model cellular growth rates [4, 23, 33, 2, 31, 65, 66, 67] and protein structure [68]. The
pairwise epistasis measure ϵMij under the multiplicative fitness model is equal to the ratio between the observed and
expected double-mutant fitness values:

ϵMij =
fij
fifj

, (2)

and the sign of the interaction is determined by whether the multiplicative measure ϵMij is greater than or less than 1.
The additive and multiplicative fitness models are closely related: if fitness values f are multiplicative, then the

log-fitness values log f are additive. Thus, the sign of an interaction under the multiplicative model is also given by the
sign sgn(log ϵMij ) of the log-epistasis measure log ϵMij . We prove that the additive and multiplicative epistasis measures
are closely related to two other notions of epistasis used in the genetics literature: the linear/log-linear regression
frameworks [3, 21] and the Walsh coefficients [41, 49, 50, 60, 69]. See Methods for details.

Curiously, there is a third epistasis formula that is widely used for the multiplicative fitness model. Here, deviations
from the multiplicative model are measured on an additive scale, resulting in the following chimeric formula for
pairwise epistasis:

ϵCij = fij − fifj . (3)

We refer to ϵCij as the chimeric epistasis measure because it measures deviations from a multiplicative null model
on an additive scale, and is thus a chimera of both the multiplicative and additive measurement scales. Although the
chimeric epistasis measure quantifies deviations from the multiplicative model, the sign of the interaction is given by
the sign sgn(ϵCij) of the chimeric measure ϵCij as in the additive fitness model. The chimeric measure ϵCij is widely used
in the genetics literature (e.g. [23, 24, 25, 26, 27, 28, 29, 4, 30, 31, 32, 33, 34]) and in the drug interaction literature
(e.g. [70, 71, 72, 73, 74, 75, 57, 43, 76, 77]).

The chimeric epistasis measure ϵCij is widely used because of its interpretation as a residual, i.e. the difference
between the observed and expected values of a measurement. However, despite the simplicity of this explanation, it
is not statistically sound, as residuals are only appropriate for additive models. For multiplicative models, instead it is
standard to compute the ratio between observed and expected measurements, rather than the difference [21]; here, the
ratio between observed and expected fitness corresponds to the multiplicative epistasis measure ϵMij . Indeed, Wagner
[78, 22] notes that preserving the multiplicative measurement scale (by using the ratio) is required in order to guarantee
meaningful notions of statistical and functional interactions.

The differences between the multiplicative epistasis measure ϵMij and chimeric epistasis measure ϵCij do not appear
to be widely appreciated in either the applied or theoretical literature. Almost every biological study that uses the
chimeric epistasis measure ϵCij does not consider the multiplicative measure ϵMij . On the other hand, while many in the
statistics literature draw a distinction between additive and multiplicative interaction effects (e.g. [21, 22]), none of
these papers discuss the chimeric interaction measure ϵCij that is frequently used in the genetics and drug interaction
literature. An exception is Gao, Granka, and Feldman [79] who generously refer to the multiplicative formula 2 as a
“rescaling of [the chimeric] formula”. However, we take the stronger view that “rescaling” is a generous term that
obscures consequential implications of the two formula.

While both the chimeric measure ϵCij and the multiplicative measure ϵMij are described as measuring deviations
from a multiplicative fitness model, the two measures are not equal. In particular, the (log-) multiplicative epistasis
measure log ϵMij = log fij − log fifj computes the difference between the observed and expected double-mutant
fitness values on a logarithmic scale (Figure 1A) while the chimeric epistasis measure ϵCij = fij − fifj computes the
difference directly (Figure 1B). Thus, the chimeric epistasis measure ϵCij may over- or under-state the strength of a
pairwise interaction in a multiplicative fitness model, as we demonstrate numerically (Supplementary Text). We note
that when the double-mutant fitness fij and single-mutant fitness values fi, fj are close to 1, the chimeric measure ϵCij
is approximately equal to the log-multiplicative measure log ϵMij (Supplementary Text).
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Fitness values f Parameters of multivariate Bernoulli distribution
Additive epistasis measure ϵA Log-probabilities logp Natural parameters β
Multiplicative epistasis measure ϵM Probabilities p Natural parameters β
Chimeric epistasis measure ϵC Moments µ Joint cumulants κ
Walsh coefficients Probabilities p Moments of (1− 2X1, . . . , 1− 2XL)

Table 1: Relationship between the different measures of epistasis and the parametrizations of the multivariate Bernoulli
distribution.

Nevertheless, we prove (Methods) that the chimeric measure ϵCij has the same sign of an interaction as the mul-
tiplicative measure ϵMij , i.e. the chimeric measure and the multiplicative measure agree on the direction of deviation
from the null model but not the magnitude. Thus, using either the chimeric or multiplicative measures will not affect
findings that depend on the sign of an epistatic interaction, such as the relationship between increased recombination
and negative epistasis [37, 40]. However, we emphasize that while in many applications the direction of deviation is
the quantity of interest, the magnitude of the deviation (i.e. effect size) is important for statistical tests.

However, the fact that the two measures agree on the sign of an interaction is true only for pairwise epistasis and
not higher-order epistasis, as we will show next.

2.2 Higher-order epistasis
For higher-order epistasis, or interactions between three or more genetic loci, we find that the difference between
the multiplicative and chimeric epistasis measures are much more consequential. Under the multiplicative fitness
model, the three-way epistasis measure ϵMijk between loci i, j, k is given by the ratio between observed and expected
triple-mutant fitness:

ϵMijk =
fijk

fifjfkϵMij ϵ
M
ik ϵ

M
jk

=
fijkfifjfk
fijfikfjk

. (4)

Recent work in the yeast genetics [2, 42] and drug interaction [43] literature claim to use a multiplicative fitness
model, but derive a different formula to quantify deviations between the observed and expected fitness for three loci:

ϵCijk = fijk − (fifjfk + ϵCijfk + ϵCikfj + ϵCjkfi), (5)

where ϵCij , ϵ
C
ik, ϵ

C
jk are the pairwise chimeric epistasis measures in (3). Note that as in the pairwise case, formula (5)

mixes the additive and multiplicative scales in a complex manner. Thus, we refer to ϵCijk as the chimeric three-way
epistasis measure.

As in the pairwise setting, the three-way chimeric measure ϵCijk in (5) is clearly different from the three-way mul-
tiplicative measure ϵMijk in (4). However, we show (Figure 1C) these formula may differ in both the magnitude of
epistasis (as in the pairwise setting) and in the sign of epistasis. Thus, one formula may indicative positive epistasis
between three loci while another formula may indicate negative epistasis, and vice-versa. We demonstrate this nu-
merically (Supplementary Text), showing that even when there is no three-way epistasis according to a multiplicative
null model (i.e. ϵMijk = 1), the chimeric three-way epistasis measure ϵCijk may incorrectly indicate either positive or
negative three-way epistasis. Moreover, on simulated data, we find that the difference between the two formula may
be quite pronounced with approximately 28% of triples having different signs of epistasis between the two epistasis
formula (Figure 1C).

Tekin et al. [43] extended the three-way chimeric epistasis formula (5) to compute a 4-way chimeric epistasis
measure ϵCijkl and a 5-way chimeric epistasis measure ϵCijklm. We find even more substantial differences in the sign of
epistasis between these 4-way and 5-way chimeric epistasis measures and the 4-way and 5-way multiplicative epistasis
measures (equation (18) in Methods). On simulated data, only approximately 57% of the 4-way and 52% of the 5-way
interactions have the same sign of higher-order epistasis using both the chimeric and multiplicative epistasis formulae
(Figure 1C).

This substantial disagreement between the chimeric and multiplicative epistasis measure motivates a deeper math-
ematical understanding of the various epistasis formulae, which we undertake in the next section.
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2.3 Unifying epistasis measurements with the multivariate Bernoulli distribution
A genotype of biallelic mutations on L loci can be represented as a binary string of length L, where 0 corresponds to
the wild-type allele and 1 corresponds to the mutant, or derived, allele. For example, the string 01100 represents the
genotype of L = 5 loci with mutations in the second and third loci. The fitness values of all genotypes, often referred
to as the fitness landscape, corresponds to a function f that maps a binary string x ∈ {0, 1}L to its fitness fx.

A natural approach for studying a fitness landscape function f is to view it as a distribution on the set {0, 1}L of
binary strings, where the probability px of a binary string x is proportional to its fitness fx. Such distributions are
often used by protein structure models [80, 81]. Moreover, modeling fitness as a probability has a natural biological
interpretation: if the growth rate of an organism with genotype x is given by its fitness fx, and if there are initially an
equal number of organisms of each of the 2L genotypes x ∈ {0, 1}L, then after one unit of time the frequency px of
each genotype x will be proportional to its fitness fx.

Here, we model the fitness landscape using the multivariate Bernoulli (MVB) distribution [47, 82] which describes
any distribution on the set {0, 1}L of binary strings. Formally, a multivariate random variable (X1, . . . , XL) distributed
according to a MVB is parametrized by the probabilities px = P ((X1, . . . , XL) = x) for each binary string x =
(x1, . . . , xL) ∈ {0, 1}L. We model the genotype (X1, . . . , XL) of an organism as a random variable distributed
according to a MVB parametrized by the probabilities p = (px)x∈{0,1}L .

We prove that the additive, multiplicative, and chimeric measures of epistasis – as well as the Walsh coefficients
described in [50, 41, 49, 60, 69] – correspond to different parametrizations of the MVB distribution (Table 1, Methods).
We briefly describe these results below.

Multiplicative and additive epistasis. Suppose the fitness values fx ∈ R of each genotype x = (x1, . . . , xL) ∈
{0, 1}L are proportional to the corresponding probability px of a multivariate Bernoulli random variable (X1, . . . , XL),
i.e. fx = c · px for some c > 0. We prove that the (log-) multiplicative epistasis measures are equal to the natural
parameters of the MVB. The natural parameters β = {βS}S⊆{1,...,L} are another parameterization of the MVB that
encode conditional independence relations between the random variables X1, . . . , XL; see [47, 83]. We prove a similar
result for the additive epistasis measure under the assumption that the fitness fx is proportional to the log-probability
log px. See Methods and Supplementary Text for theorem statements and proofs.

Our theoretical results provide a novel connection between the multiplicative epistasis measure and interaction
coefficients in a log-linear regression model. This is because for each subset S of loci, the natural parameter βS

corresponds to the interaction term for the subset S in a log-linear regression model [82, 83, 47]. Such interaction
terms are a standard approach for measuring epistasis in genetics, e.g. GWAS or eQTL analyses for quantitative traits
[3, 4, 48].

We also prove that the natural parameters β of the MVB are closely related to the two standard approaches for
measuring pairwise SNP-SNP interactions in a case-control GWAS: logistic regression and conditional independence
testing [84]. Specifically, we prove that the interaction term in a logistic regression is equal to a 3-way interaction
term βijk in a MVB, while the conditional independence test is equivalent to testing whether a 2-way interaction term
βij and a 3-way interaction term βijk are both equal to zero. These interaction terms are equal to the corresponding
log-multiplicative epistasis measures log ϵM . To our knowledge, the relationship between the multivariate Bernoulli,
logistic regression, and conditional independence testing has not been explicitly described previously in either the
genetics or statistics literature.

Thus, our results show that the additive and multiplicative epistasis measures are implicitly computing interaction
terms in regression models commonly used in genetics.

Chimeric epistasis. The connection between the epistasis formulae and the MVB distribution allows us to derive,
to our knowledge, the first mathematically rigorous definition of the chimeric epistasis formula. Specifically, suppose
the fitness value fx of each genotype x = (x1, . . . , xL) is equal to a corresponding moment E[Xx1

1 · · ·XxL

L ] of
the random variable (X1, . . . , XL). Then we define the chimeric epistatic measure ϵCi1···iK as the K-th order joint
cumulant κ(Xi1 , . . . , XiK ) of the random variables Xi1 , . . . , XiK (Table 1). Joint cumulants are a concept from
probability theory that are used to quantify higher-order interactions between random variables [51, 52, 53]. See
Methods for a formal definition.

We emphasize that prior literature on higher-order interactions does not rigorously define the chimeric epistasis
measure. For example, Kuzmin et al. [2, 42] does not explicitly state the connection between the joint cumulant
and their three-way chimeric formula, while Tekin et al. [43] heuristically uses the joint cumulant formulae without
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specifying random variables or a probability distribution — thus obscuring any assumptions made by using joint
cumulants to measure higher-order interactions.

Our explicit definition of the K-th order chimeric epistasis measure ϵCi1···iK as the K-th order joint cumulant
reveals two critical issues with the chimeric formula. First, the assumption that the fitness values f are equivalent to
the moments of a MVB random variable is not biologically reasonable for higher order interactions between three or
more loci. This is because the moments assumption implies that the fitness of a particular genotype depends on the
probability of many other genotypes. For example, if we assume that the fitness values for L = 4 loci are moments of
the MVB, then the fitness f1100 of a double mutant is equal to the moment E[X1X2], which is equal to

E[X1X2] = P (X1 = 1, X2 = 1) = p1100 + p1101 + p1110 + p1111. (6)

However, it is not clear why the fitness f1100 of a single genotype, 1100, should equal the sum of the probabilities of
four different genotypes, 1100, 1101, 1110, and 1111.

The second issue is that joint cumulants are not an appropriate measure of higher-order interactions between bi-
nary random variables. The differences between the joint cumulants and natural parameters β have been previously
investigated in the neuroscience literature, as both quantities have been used to quantify higher-order interactions in
neuronal data. For example, Staude et al. [54] write that the joint cumulants κ and natural parameters β “do not
measure the same kind of dependence. While higher-order cumulant correlations indicate additive common compo-
nents ... the [natural parameters] directly change the probabilities of certain patterns multiplicatively”. In particular,
the natural parameters β measure “to what extent the probability of certain binary patterns can be explained by the
probabilities of its sub-patterns” [54]. Thus, for biallelic genotype data, the natural parameters β correspond exactly
with the epistasis we aim to measure, i.e. how the fitness of a binary pattern can be explained by the fitness of its
“sub-patterns”, while the joint cumulants do not.

2.4 Simulations
2.4.1 Multiplicative fitness model

We performed simulations to demonstrate the discrepancy between the multiplicative epistasis measure and the chimeric
epistasis measure. Since both the multiplicative and chimeric measures use a multiplicative fitness model, we simu-
lated fitness values f for L = 10 loci following a multiplicative fitness model with K-way interactions β for different
choices of interaction order K, and with multiplicative Gaussian noise with standard deviation σ (Methods). We com-
puted the K-way multiplicative measure ϵMS and chimeric measure ϵCS for each set S ⊆ {1, . . . , L} of loci of size
|S| = K, and we compared these two measures to the true interaction measure βS .

We first assessed whether the sign of the epistasis measures, i.e. sgn
(
log ϵMS

)
and sgn

(
ϵCS
)
, match the sgn(βS) of

the true interaction term βS , since the sign of a measure indicates whether there is a positive or negative interaction
between mutations in the loci S. We observed (Figure 2A) that for pairwise interactions (K = 2), both the multiplica-
tive measure ϵM and chimeric measure ϵC have the same sign as the true interaction measure β for the same fraction
of instances, which matches our theoretical result (Proposition 1, Methods). However, for higher-order interactions
(K > 2), the chimeric measure ϵC has an incorrect sign more often than the multiplicative measure ϵM (Figure 2A).
In particular, for K = 5-way interactions, even with no noise (i.e. σ = 0), the chimeric measure has a different sign
than the true interaction parameter σ for more than 30% of simulated instances. We also highlight that when there
is no noise, i.e. σ = 0, the multiplicative measure always has the same sign as the true interaction parameter β, i.e.
sgn(log ϵM ) = sgn(β), which agrees with Theorem 1.

We next compared how well the magnitudes of the multiplicative and chimeric epistasis measures agree with the
magnitude of the true interaction parameters. We computed the average absolute difference (“error”) | log ϵMS − β|
and |ϵCS −β| between the true interaction measure β and the estimated multiplicative and chimeric epistasis measures,
respectively, for all subsets S of loci of size |S| = K. We found (Figure 2B) that the multiplicative measure has a
smaller error for all interaction orders K and noise parameters σ. In particular, we note that the multiplicative measure
has smaller error than the chimeric measure even for pairwise interactions with no noise (K = 2, σ = 0) – i.e.,
when both the multiplicative and chimeric measures have the same sign – and that the error of the chimeric measure
ϵC increases with the interaction order K. We hypothesize that the reason why the pairwise chimeric measure has
much larger error than the pairwise multiplicative measure is because the chimeric measure ϵCij is approximately
equal to the (log-)multiplicative measure only when fij ≈ 1 and fifj ≈ 1, with the two measures being noticeably
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Figure 2: Fitness values f are simulated following a multiplicative fitness model with interaction parameters β, with
maximum interaction order K = 2, . . . , 5, and multiplicative Gaussian noise with standard deviation σ. (A) The
fraction of K-way interactions where the sign of the log-multiplicative epistasis measure log ϵM (orange) and the
chimeric epistasis measure ϵC (blue) do not match the sign of the true interaction parameter β. (B) The average
absolute difference (“error”) |β − log ϵM | and |β − ϵC | between the true interaction parameter β and (orange) the
log-multiplicative measure log ϵM and (blue) the chimeric measure ϵC , respectively. For all panels, these quantities
are averaged across 100 simulated fitness values.

different otherwise (Figure S2, Supplementary Text). We also emphasize that when there is no noise, i.e. σ = 0, the
multiplicative measure has zero error, i.e. log ϵM = β, matching our theoretical results (Theorem 1, Methods).

Our results demonstrate that the multiplicative measure ϵM yields a more accurate measurement of pairwise and
higher-order epistasis in a multiplicative fitness model compared to the chimeric measure ϵC which conflates additive
and multiplicative factors.

2.4.2 NK fitness model

We next compared the multiplicative and chimeric epistasis measures using the NK model, a classical model for
simulating random fitness landscapes f with varying degrees of “ruggedness” [85]. The NK model has two parameters:
the number L of loci1; and K, a measure of the ruggedness of the fitness landscape f , where the fitness landscape is
smoothest at K = 0 and most rugged for K = L − 1. Each locus ℓ = 1, . . . , L interacts with K random other loci,
meaning that the fitness landscape contains at most (K + 1)-way interactions. We use the NK model implementation
from [49], which simulates fitness values under an additive model, and then exponentiated the NK fitness values to
obtain fitness values following a multiplicative model.

Each simulated fitness landscape f has an associated graph G = (V,E) which describes a (simulated) genetic
interaction network, where the vertices V = {1, . . . , L} are the L loci and the edges E connect pairs of interacting
loci [86, 87]. For example, for K = 0, the graph G has no edges, indicating that there are no interactions between loci,
while for K = 1, the edges of the graph G connect loci with pairwise interactions. (For K ≥ 2, one may also describe
the interaction relationships with a hypergraph where hyperedges connect sets of interacting loci, e.g. [86, 88].)

We find that the chimeric measure falsely indicates the presence of higher-order interactions that are not present in
the simulated fitness landscape f while the multiplicative measure does not. For example, when the fitness landscape
f contains only pairwise interactions (i.e. K = 1), then the 3-way multiplicative epistasis measure ϵMijk = 0 is equal

1While this parameter is typically called N (i.e. the “N” in “NK”), we use L to maintain consistency with the notation in this manuscript.
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B

Figure 3: (A) A fitness landscape f simulated following the NK fitness model with “ruggedness” parameter K = 1
contains only pairwise interactions. These interactions are represented with an interaction graph G. The 3-way
multiplicative measure ϵMijk = 0 equals zero for all loci triples (i, j, k). However, if the triple (i, j, k) forms a triangle
in the graph G, then the 3-way chimeric epistasis measure ϵCijk is non-zero with high probability, and incorrectly
indicates the presence of a higher-order interaction. (B) The fraction of non-zero (K + 2)-way interactions (“higher-
order interactions”) identified by the multiplicative measure ϵM (orange) and the chimeric measure ϵC (blue) across
100 fitness landscapes f simulated according to the NK fitness model with ruggedness parameter K. The fitness
landscape f contains at most (K+1)-way interactions, but the chimeric measure ϵC spuriously detects many non-zero
(K + 2)-way interactions.

to zero for all triples (i, j, k) of loci. However, if the NK model graph G contains a triangle (i, j, k), then the 3-
way chimeric measure ϵCijk ̸= 0 will be nonzero with high probability (Figure 3A). Thus, the chimeric measure ϵC

falsely indicates the presence of three-way interactions that do not exist in the simulated fitness landscape2. More
generally, for any value K > 0 of the ruggedness parameter, the fitness landscape f only contains at most (K + 1)-
way interactions. The (K + 2)-way multiplicative measure ϵM is always equal to zero, reflecting that there are no
(K + 2)-way interactions. However, we empirically observe that the (K + 2)-way chimeric measure ϵC is often
non-zero (Figure 3B).

Thus, our analyses demonstrate how the chimeric measure ϵC will often erroneously identify higher-order interac-
tions that are not present in the underlying fitness landscape.

2.5 Three-way epistasis in budding yeast
We investigate the biological implications of using the chimeric epistasis measure instead of the multiplicative epistasis
measure by reanalyzing two triple-gene-deletion studies in budding yeast by Kuzmin et al. [2, 42]. These studies used
triple-mutant synthetic genetic arrays (SGA) [90, 91] to measure the fitness of single-, double-, and triple-mutant
strains. The authors use a multiplicative fitness model since the SGA protocol models yeast colony sizes as a product
of fitness, time, and experimental factors [33]. The Kuzmin et al. studies, [2] and [42], measure fitness values for
195,666 and 256,861 gene triplets, respectively. They calculate the three-way chimeric epistasis measure ϵCijk and
report 3,196 [2] and 2,466 [42] negative three-way epistatic interactions, respectively.

We calculated the multiplicative epistasis measure ϵMijk (formula (4)) and the chimeric epistasis measure ϵCijk (for-
mula (5)) used by Kuzmin et al. [2, 42] for the 189,340 gene triplets (i, j, k) whose single-, double- and triple-mutant
fitness values were available in the publicly available data from [2, 42] and with a reported p-value of pijk < 0.05.
Following [2, 42] we say a gene triplet (i, j, k) has a positive chimeric interaction if ϵCijk > 0.08; a negative chimeric
interaction if ϵCijk < −0.08; and an ambiguous chimeric interaction if −0.08 < ϵCijk < 0.08. Accordingly, using the
same quantile as the chimeric threshold of 0.08, we say that a gene triplet (i, j, k) has a positive (resp. ambiguous,

2As this is sometimes a point of confusion: we note that triangles in a graph are sometimes referred to as higher-order structures [89]. However,
as our simulation demonstrates, it is quite possible to have a triangle in a graph, i.e. three pairwise interactions, without having a genuine higher-
order (3-way) interaction.
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Chimeric measure ϵCijk
Positive Ambiguous Negative

Positive 1197 259 0
Ambiguous 116 4291 91

Multiplicative
measure ϵMijk Negative 10 466 1527

Table 2: Comparison of signs of trigenic interactions in budding yeast calculated using the multiplicative epistasis
measure and the chimeric epistasis measure on fitness data from [42]. Red highlighted boxes correspond to gene
triplets having different sign of epistasis using the multiplicative measure versus the chimeric measure (approximately
12% of triplets).

negative) multiplicative interaction if ϵMijk > 1.105 (resp. 0.905 < ϵMijk < 1.105, ϵMijk < 0.905). See Supplementary
Text for specific details on data processing.

We observed considerable differences between the signs of the multiplicative epistatic measure versus the chimeric
epistatic measure (Table 2). In particular, approximately 12% of gene triplets have a different interaction sign with
the multiplicative measure compared to the chimeric measure. The difference between the two measures is especially
pronounced for negative interactions, which are typically more functionally informative than positive interactions
[2, 42, 33]. In particular, there were 476 gene triplets (i, j, k) with a negative multiplicative-only interaction, or triplets
with a negative multiplicative interaction but not a negative chimeric interaction (Figure 4A). On the other hand, there
were only 91 gene triplets with a negative chimeric-only interaction, or triplets with a negative chimeric interaction but
not a negative multiplicative interaction (Figure 4A); in fact, some of these 91 triplets even had positive multiplicative
interaction (Figure 4A). We also observe a qualitatively similar discrepancy between the two formula using the earlier
fitness data from Kuzmin et al. 2018 [2]; on this data, we find that there were 746 gene triplets with a negative
multiplicative-only interaction versus 177 triplets with a negative chimeric-only interaction (Figure S7). Our results
were also qualitatively similar when we did not restrict to triplets with reported p-value pijk < 0.05 (Figure S8).

Negative trigenic interactions often contain genes whose proteins are partially redundant in their functions [92] and
are enriched for other features that arise from biological models of functional redundancy, including shared expression
patterns [93, 94], shared protein-protein interactions [56], GO annotation, and amino acid divergence [56, 94]. We
observed (Figure 4B) that gene triplets with negative multiplicative-only interactions — that is, gene triplets not
identified by the chimeric formula used in Kuzmin et al. [42] — are significantly enriched for co-expression (P =
0.017, hypergeometric test), shared protein-protein interactions (P < 1.5 × 10−4, hypergeometric test), and similar
GO annotations (P < 2.1 × 10−5, hypergeometric test). In contrast, gene triplets with a negative chimeric-only
interaction are not significantly enriched for any of these features (Figure 4B). In this way using the multiplicative
measure extends the network of functionally redundant genes by almost 25% compared to the chimeric measure. We
obtain a similar result when analyzing the fitness data from the earlier Kuzmin et al. 2018 study [2] (Figure S7) and
also when we do not remove gene triplets with large reported p-values pijk as computed by [2, 42] (Figure S8). These
results demonstrate that using the appropriate three-way multiplicative formula for a multiplicative fitness model leads
to more biologically meaningful higher-order genetic interactions compared to using the chimeric epistasis formula
that mixes additive and multiplicative scales in an statistically unsound manner.

In particular, trigenic interactions also reveal the functional redundancy of paralogs, or pairs of duplicated genes
with overlapping functions, since two functionally similar genes tend to have a negative trigenic interaction with a
third gene more often compared to gene pairs with non-overlapping functions [42]. Thus, we evaluated whether the
gene triplets with negative multiplicative-only interactions involve functionally redundant gene pairs. We quantified
the functional redundancy between two genes by calculating the number of negative trigenic interactions to which
both genes belong, where we restricted our calculation to gene pairs involved in at least two negative multiplicative
interactions. We found that many pairs of genes had additional multiplicative-only interactions (Figure 4C). Thus
the multiplicative measure identified additional functional redundancies not found using the chimeric measure. As
additional validation, we note that Kuzmin et al. [42] quantify functional redundancy between two genes using a
related quantity that they call the trigenic interaction fraction (see Supplementary Text for more details). We observed
that for most gene pairs, the trigenic interaction fraction is larger when computed using the multiplicative formula
versus using the chimeric formula (Figure S10). This observation further supports the conclusion that the multiplicative
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Figure 4: Comparison of negative trigenic interactions in budding yeast calculated using the multiplicative epistasis
measure (formula (4)) and the chimeric epistasis measure (formula (5)). (A) Chimeric epistasis measure ϵCijk versus
the multiplicative epistasis measure ϵMijk for gene triplets (i, j, k) in [42]. We highlight trigenic interactions that are
negative only by the multiplicative measure (“M only”), only by the chimeric measure (“C only”), or by both measures
(“M and C”). (B) Fold enrichment for co-expression patterns, shared protein-protein interactions (PPI), and shared GO
annotations for negative trigenic interactions. Asterisk (*) denotes statistical significance at the P < 0.05 level, while
‘ns’ indicates not significant. (C) Number of negative trigenic interactions (i, j, k) for every pair (i, j) of genes with at
least five negative trigenic interactions. (D) Fold enrichment for GO annotations and protein-protein interactions (PPI)
for negative “M only” trigenic interactions that involve the gene pairs highlighted in (C). The numbers in parentheses
are the number of “M only” interactions. (E/F) Genes that have a negative trigenic interaction with either NUP53-
ASM4 (E) or with SKI7-HBS1 (F), organized into protein complexes and colored by whether the trigenic interaction
is “M only” (gold) or “M and C” (blue).

formula uncovers additional functional redundancies between these paralogs that was not detected by the chimeric
measure.
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We expect paralogs with large increases in the number of multiplicative-only interactions to be functionally re-
dundant. Of the 130 paralogs we analyzed, there are fifteen paralogs with at least 10 negative multiplicative-only
interactions (highlighted in Figure 4C). The three paralogs with the largest number of negative multiplicative-only
interactions were RPS24A-RPS25B, MSN2-MSN4, and ARE1-ARE2. For these three paralogs, the multiplicative
formula quadrupled the number of total trigenic interactions compared to the number of such interactions reported
by [42] using the chimeric formula. These three paralogs also appear to have redundant functions according to other
patterns of sequence evolution: all three have highly correlated position-specific evolutionary rates (Table S12 in [42])
and two of them (RPS24A-RPS25B and ARE1-ARE2) have low sequence divergence rates (Figure S9). Moreover,
negative genetic interactions have been previously documented for MSN2-MSN4 [95, 96, 97], ARE1-ARE2 [98, 99],
and RPS25A-RPS25B [100, 31].

The paralogs with many multiplicative-only interactions are also enriched for shared PPIs or GO annotations
with the genes they interact with (Figure 4D). In particular, the paralogs NUP53-ASM4, which are components of
the large nuclear pore complex [101], had 36 additional negative multiplicative-only interactions. These epistatic
interactions are highly enriched for shared PPIs and GO annotations (Figure 4D) and also involve members of the
same protein complexes (Figure 4E). One of the 36 additional genes that interact with NUP53-ASM4 is NUP145,
which also forms part of the nuclear pore [102]. Interestingly, while the gene triplet NUP53-ASM4-NUP145 has a
negative multiplicative interaction (ϵM = 0.684 < 1), the same gene triplet was reported to have a positive chimeric
interaction (ϵC = 0.25 > 0; [42]). Another example of one of the 36 additional interactions is SAC3, which encodes
a nuclear pore-associated protein that functions in mRNA transport [103]. The gene triplet NUP53-ASM4-SAC3 has
an extremely negative multiplicative interaction (ϵM = 0.046 << 1), but in the original study [42] was reported to
have a slightly positive chimeric interaction (ϵC = 0.014 > 0). Moreover, both NUP145 and SAC3 share at least one
protein-protein interaction and GO category with NUP53 and ASM4. These findings provide additional support to the
hypothesis by [42] that NUP53 and ASM4 have overlapping functions.

Two other noteworthy paralogs are SKI7 and HBS1; both genes recognize ribosomes stalled during translation
and also initiate mRNA degradation. While some studies report that these paralogs have evolved distinct functions
[104, 105], other studies show that they retain some overlapping functions [106, 107, 108] and may bind to sim-
ilar sites on the ribosome [108]. Kuzmin et al. [42] previously reported relatively few (13) trigenic interactions
involving both SKI7 and HBS1 as corroboratory evidence for the functional divergence of these paralogs. However,
by using the multiplicative epistasis formula, we find 15 additional trigenic interactions involving SKI7 and HBS1.
These 15 multiplicative-only interactions are highly enriched for shared GO terms (Figure 4D). Moreover, 12 of the
15 multiplicative-only interactions involve functionally similar genes that are all members of the ribonucleoprotein
complex (Figure 4F). Thus, the multiplicative epistasis measure finds evidence for additional functional redundancy
between SKI7 and HBS1 that went undetected by the chimeric epistasis measure used in Kuzmin et al. [42].

In addition to the negative interactions just described, we also highlight an example of a biologically relevant
positive trigenic interaction that is missed by the chimeric epistasis measure but detected by the multiplicative measure.
The gene triplet CIK1-VIK1-SUP35td, which consists of two paralogs, CIK1 and VIK1, involved in mitosis [109], and
the essential gene SUP35 [110], has an ambiguous, negative chimeric interaction (ϵCijk = −0.03) but has an extremely
large, positive multiplicative interaction (ϵMijk = 75.337). Examining the fitness values (Figure S6) shows that the
fitness of the CIK1-VIK1-SUP35td triple mutant is more than 100 times larger than the fitness of the CIK1-SUP35td
double mutant. Moreover, positive interactions have been previously documented between pairs of these genes: VIK1
deletion mutants suppress several phenotypes of CIK1 deletion mutants, including a mitotic delay phenotype and a
temperature-dependent fitness defect [109]; and a phenotypic suppression interaction exists between CIK1 and SUP35,
where deletion of CIK1 reduces the ability of SUP35 to form prions [109]. These previously identified positive
pairwise interactions, together with the large triple-mutant fitness value, demonstrate that the gene triplet CIK1-VIK1-
SUP35td is more likely to have a positive interaction as indicated by the multiplicative measure, rather than a neutral
interaction as indicated by the chimeric measure.

Overall, our results demonstrate not only the degree to which the multiplicative and chimeric formula may lead
to distinct interpretations of fitness data, but also that genetic interactions measured using the multiplicative formula
appear to be more consistent with other biological features compared to interactions measured using the chimeric
formula.
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Figure 5: Comparison of the additive and chimeric measures for higher-order interactions between antibiotics in E.
coli using drug response data from [57]. (A) Proportion of E. coli cultures where the sign (positive vs. negative) of the
chimeric and additive measures disagree. The sign discordance fraction, or proportion of interactions where the sign of
the two measures disagree, increases with the interaction order, consistent with the simulations shown in Figure 1. (B)
Distributions and Q-Q plots (insets) for the additive (orange) and chimeric (blue) measures for 5th order interactions.
(C) Scatter plot of median relative growth rates for each 5-way combination of antibiotics across concentration levels
and replicates.

2.6 Higher-order interactions in drug responses
We next reanalyzed a drug response dataset [57] in which three-way, four-way, and five-way interactions between
drug combinations were quantified using the chimeric formula. For these data, the authors exposed Escherichia
coli cultures to between one and five antibiotics (out of eight total) at one of three different concentrations. They
measured fitness as the difference in exponential growth rates between the culture exposed to antibiotics and a negative
control with no antibiotics. The authors then used the chimeric epistasis measure ϵC to identify third-, fourth-, and
fifth-order interactions between different combinations of antibiotics. We compared their results with the additive
epistasis measure ϵA. We used the additive measure ϵA because, under the standard assumption that antibiotic exposure
multiplicatively affects the survival probability of individual cells [78], then antibiotic exposure will have an additive
effect on the exponential growth rates of the population of cells [111, 112].

The signs of the chimeric interaction measure ϵC and the additive interaction measure ϵA disagree for three-way,
four-way, and five-way interactions, with the discrepancy between the two measures increasing with the interaction or-
der (Figure 5A), which is consistent with our earlier simulations (Figure 1C). The discrepancy is largest for fifth-order
interactions, with approximately 14% of fifth-order interactions having a different sign using the additive measure
versus the chimeric measure (Figure 5A).

The discrepancy between the additive and chimeric measures may lead to different conclusions on the type of
interactions between antibiotics, i.e. whether a given combination of antibiotics is synergistic (more effective at killing
bacteria when taken together versus taken individually) or antagonistic (less effective together versus individually).
For fifth-order interactions, the chimeric measure ϵC was more positively skewed than the additive measure ϵA (Figure
5B), with a Pearson skewness coefficient of 0.87 for the chimeric measure versus 0.17 for the additive measure.
Thus, the chimeric measure is significantly more likely to identify antagonistic interactions than the additive measure
(P < 7× 10−43, paired t-test).

We then examined specific five-way combinations of antibiotics with different interaction signs following the
procedure of [43] and [76]. For each five-way combination of antibiotics we first calculated the median relative
growth rate of E. coli across replicates and concentrations, and then used these median relative growth values to
compute both the additive and chimeric measures (Figure 5C). The interaction between the antibiotic combination
Ampicillin (AMP), Doxycycline hyclate (DOX), Erythromycin (ERY), Streptomycin (STR), Trimethoprim (TMP) is
highly antagonistic using the chimeric measure (i.e. ϵC = 0.56 > 0) but synergistic using the additive measure (i.e.
ϵA = −0.04 < 0). A similar pattern also holds for the antibiotic combination consisting of AMP, DOX, ERY, STR,
and Cefoxitin sodium salt (FOX). We emphasize that because we use the same fitness values as reported in [57],
the differences between the additive and chimeric measures arise solely from the use of the additive versus chimeric
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Figure 6: Comparison of multiplicative and chimeric measures for measuring epistasis between protein mutations
in nine different proteins. (A-B) Standard deviation of fitness values across all (left) three-, (middle) four-, and
(right) five-way tuples of mutations versus the average (A) correlation and (B) sign disagreement fraction of the log-
multiplicative measure log ϵM versus the chimeric measure ϵC . (C-D) Log-multiplicative measure log ϵM versus
chimeric measure ϵC for the (C) folA [113] and (D) Streptococcus pyogenes Cas9 (SpCas9) nuclease [114] proteins.
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measures as opposed to variability arising from biological or technical replicates.

2.7 Epistasis between protein mutations
We further demonstrate the difference between the multiplicative and chimeric epistasis measures using experimental
fitness data of several different proteins. These fitness values were measured using deep mutational scanning (DMS),
a recent class of technologies which use high-throughput sequencing to measure the fitness of many variants of a
protein, with fitness measured in terms of the relative frequency of the variant [46]. See Methods for more details on
the different datasets. Importantly, recent DMS technologies measure the fitness of molecules with multiple mutations,
allowing for the measurement of epistasis between individual mutations. The accurate measurement of epistasis
between mutations in proteins is important for many biological applications including 3-D protein structure prediction
[115, 68], protein engineering [116], genome editing optimization [114], variant effect prediction [117], and more.

We observe that the multiplicative and chimeric measures have substantial disagreement when measuring higher-
order epistasis for several of the proteins. Specifically, we find that the correlation and sign disagreement frac-
tion of the two measures vary as a function of a single quantity: the standard deviation s of the 2K fitness values
{f0···00, f0···01 . . . , f1···11} across all K-tuples of mutations. In particular, the correlation between the chimeric mea-
sure and the multiplicative measure decreases as a function of the fitness standard deviation s (Figure 6A), while the
sign disagreement function increases as a function of the fitness standard deviation s.

One protein with a large fitness standard deviation s is folA, an E. coli metabolic protein where the fitness of
approximately 260, 000 mutations at nine single-nucleotide loci was recently profiled by [113]. For the folA protein
(Figure 6C), the three-way multiplicative and chimeric measures have correlation 0.6086, while the four- and five-way
measures have correlation < 0.05 — i.e. the two measures are almost uncorrelated for four- and five-way interactions.
There is also substantial sign disagreement between the multiplicative and chimeric measures, with over 60% sign
disagreement for five-way interactions. Another biologically meaningful protein with large fitness standard deviation
s is the Streptococcus pyogenes Cas9 (SpCas9) nuclease, a widely used protein for genome editing across biology. The
fitness landscape of SpCas9 was profiled by [114], where fitness was measured as the editing efficiency of the SpCas9
protein. For the SpCas9 protein (Figure 6D), the sign disagreement between the two epistasis measures is over 20%
for three-, four-, and five-way interactions. The large sign disagreement between the two epistasis measures is likely
because for many protein variants, the log-multiplicative measure log ϵM is close to 0 while the chimeric measure ϵC

varies widely between −4 and 2.
Overall, our results demonstrate the extent to which one may infer substantially different higher-order epistasis

between protein mutations – including different epistasis signs – depending on the measure used.

3 Discussion
Higher-order interactions between genetic variants, drugs, and other perturbations play a large role in shaping the
fitness landscape of an organism [1, 3, 4, 5]. Yet despite the importance of these interactions, there are multiple
different — and sometimes inconsistent — formulae used in the literature for measuring higher-order interactions,
most notably for measuring higher-order epistasis between mutations. In particular, many researchers use a chimeric
formula that quantifies epistasis as an additive deviation from a multiplicative null model and is thus a “chimera” of
additive and multiplicative measurement scales.

In this work, we show that there is considerable disagreement between the chimeric epistasis measure and the
additive and multiplicative measures. For higher-order interactions, the chimeric measure often has a different sign
compared to the multiplicative measure (Figure 1C). We demonstrate that this inconsistency is not purely a mathemat-
ical curiosity but also leads to markedly different biological conclusions in yeast genetics [2, 42] (Figure 4), antibiotic
resistance [57, 76] (Figure 5), and protein epistasis (Figure 6), raising potential questions about some reported higher-
order epistatic interactions in the literature. Furthermore, we show that the different epistasis measures are equal to
different parametrizations of the multivariate Bernoulli distribution (MVB) [47] (Table 1) and demonstrate that the
chimeric epistasis measure is less statistically sound than the additive and multiplicative measures. Our connection
between epistasis measures and parameters of the multivariate Bernoulli measure is general and unifies many different
epistasis measures: the additive, multiplicative, and chimeric measures; and the Walsh coefficients [50, 41, 49, 60, 69].
Overall, our results demonstrate that the more appropriate multiplicative and additive formula for epistasis yield more
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mathematically sound and biologically meaningful results compared to the chimeric formula which improperly con-
flates measurement scales.

To our knowledge, the discrepancy between the chimeric measure and the multiplicative measure has not been
previously explored or appreciated in the biological literature. We suspect this is because historically, much of the
literature has focused on pairwise interactions, for which the chimeric and multiplicative measures agree on the in-
teraction sign. However, even in the pairwise setting, the two measures have different magnitudes, which may still
affect biological findings. For example, Costanzo et al. [31] recently built a large-scale pairwise interaction network
for yeast using the chimeric epistasis measure, where they included an edge between two genes if the absolute value
of the chimeric measure was greater than a certain threshold. From our results with the trigenic yeast network (Sec-
tion 2.5), it is possible that the edges in the network would change if one used the more appropriate multiplicative
measure instead, which may lead to the inference of different genetic interactions and thus the functional relationships
and regulatory mechanisms identified by [31]. As another example, the formulae derived in the theoretical population
genetics literature [38, 39, 40] that relate recombination, selection, and the pairwise chimeric epistasis will change if
pairwise epistasis is instead measured using the multiplicative measure.

The relevance of higher-order epistasis in human GWAS remains a topic of substantial debate. For example, there
are many opinions on whether epistasis is a frequent source of missing heritability for human traits, e.g. [118] argues
that epistasis does not contribute to heritability while [119, 120] argue the opposite. We note that several recent papers
have identified complex trait epistasis in humans, including pairwise and higher-order epistatic interactions between
pathways [121, 122] and individual SNPs [123, 124, 125], suggesting that epistasis is relevant for human genetics.

There are several future directions for our work. First, it would be useful to further investigate the connections
between the MVB and regression approaches for higher-order epistasis. For example, regression-based approaches
often do not require that one has measured the fitness of all 2L genotypes, which may make the estimation of the
interaction parameters of the MVB more challenging. Moreover, these regression approaches may sometimes produce
biased estimates of epistasis [48], and we imagine that the MVB would provide a useful statistical framework for
characterizing such statistical biases. A second direction is to incorporate uncertainty of fitness measurements in the
MVB, e.g. by using a Bayesian framework. Thirdly, our statistical framework could be extended to model how higher-
order interactions contribute to evolutionary trajectories in a fitness landscape [126, 127, 128]. Fourth, it would be
quite interesting to investigate the connections between the MVB and the circuit and Markov bases formulae used to
quantify the shape of a fitness landscape [59, 29, 60, 69, 129]. Fifth, for certain technologies, it may be desirable to
test whether an additive or multiplicative model better fits experimental fitness data. Our MVB framework provides an
approach for doing formal model comparisons. Thus, an interesting and important future direction would be to derive a
statistical test using the MVB to test which fitness model better fits data. Finally, one could incorporate environmental,
ecological, and other non-genetic factors into the MVB [130, 131].

Ultimately, future studies on interactions in genetics, drug response, protein fitness landscapes, and other domains
should take care to use the mathematically appropriate additive or multiplicative formula for measuring higher-order
interactions, and not fall victim to the chimera.
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[116] Júlia Domingo, Pablo Baeza-Centurion, and Ben Lehner. The causes and consequences of genetic interactions
(epistasis). Annual review of genomics and human genetics, 20:433–460, 2019.

[117] Thomas A Hopf, John B Ingraham, Frank J Poelwijk, Charlotta PI Schärfe, Michael Springer, Chris Sander, and
Debora S Marks. Mutation effects predicted from sequence co-variation. Nature biotechnology, 35(2):128–135,
2017.
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4 Methods

4.1 Pairwise epistasis
We start with the simplest setting where the genotype consists of two loci, each with two alleles labeled 0 and 1. Thus,
there are four possible genotypes — the wild-type 00, the single mutants 01 and 10, and the double mutant 11 — with
corresponding fitness values f00, f01, f10, and f11 (Figure 1). There are two standard null models that relate genotype
to fitness: the additive model and the multiplicative model.

Additive fitness model. In the first model, mutations are assumed to have an additive effect on fitness [29, 4, 3],
e.g. in drug resistance [59, 60, 61, 62, 63] and protein binding [50, 41]. The effect of a mutation is quantified by the
difference in fitness when one locus is mutated; for example, f11− f10 measures the effect of a mutation in the second
locus, where the genetic background is a mutation in the first locus. An interaction between mutations in the two loci
[59, 21], i.e. pairwise epistasis, is measured by the difference in the effect of a mutation in one locus across the two
possible genetic backgrounds (Figure S1A). The pairwise interaction measure ϵA is given by

ϵA = (f11 − f10)− (f01 − f00). (7)

Note that the definition (7) of the pairwise epistasis measure is invariant to the choice of which locus is mutated,
i.e. ϵA = (f11 − f10)− (f01 − f00) = (f11 − f01)− (f10 − f00). In practice, the fitness values are often normalized
so that f00 = 0, i.e. the fitness f00 of the wild-type is zero, resulting in the following commonly-used equation for
pairwise epistasis under an additive fitness model:

ϵA = f11 − (f01 + f10). (8)

Equivalently, the pairwise epistasis measure ϵA is the difference between the observed double-mutant fitness f11
and the expected double-mutant fitness f01 + f10 under a null model with no epistasis. As [4] notes, this definition of
pairwise epistasis is similar to Fisher’s original definition of epistasis [132].

The sign sgn(ϵA) of the pairwise epistasis measure ϵA determines the type of epistatic interaction. If ϵA = 0, then
there is no interaction between the two loci and so the fitness f11 of a double mutant is completely determined by the
sum f11 = f01 + f10 of the single mutant fitnesses f01, f10. If ϵA > 0 then there is a positive interaction between
the two loci, in the sense that the fitness f11 of the double mutant is larger than the fitness if there was no pairwise
interaction. Similarly, if ϵA < 0 then there is a negative interaction between the two loci, in the sense that the fitness
f11 of the double mutant is smaller than the fitness if there was no pairwise interaction.

The pairwise epistasis measure ϵA is equivalent to two other notions of epistasis used in the genetics literature.
First, the pairwise epistasis measure ϵA is equal to the pairwise interaction term in the standard linear regression
framework for quantifying epistasis [3, 21]. Specifically, if the fitness values f00, f01, f10, f11 follow a linear model
of the form

fx1x2
= β0 + β1x1 + β2x2 + β12x1x2, (9)

then the coefficient β12 of the interaction term x1x2 is equal to the pairwise epistasis measure ϵA in (7). Second, the
epistasis measure ϵA is equal (up to a constant factor) to the 2nd-order Walsh coefficient that is often used to measure
“background-averaged” epistasis [41, 49, 50, 60, 69].

Multiplicative fitness model. In this model, mutations are assumed to have a multiplicative effect on fitness, e.g.
modeling cellular growth rates [4, 23, 33, 2, 31, 65, 66]. The multiplicative pairwise epistasis measure (Figure S1B)
is given by

ϵM =
f11
f10

/
f01
f00

=
f11f00
f10f01

. (10)

As in the additive model, in practice the fitness values are typically normalized such that f00 = 1, resulting in the
following equation for pairwise epistasis:

ϵM =
f11

f01f10
. (11)
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That is, the pairwise epistasis measure ϵM is the ratio between the double-mutant fitness f11 and the product f01f10
of the single-mutant fitness values.

The multiplicative fitness model is closely related to the additive fitness model: if fitnesses f are multiplicative,
then the log-fitnesses log f are additive. Thus, the sign of the interaction is determined by the difference between the
epistasis measure ϵM and 1, or equivalently the sign sgn(log ϵM ) of the log ϵM of the epistasis measure ϵM (Figure
1A). If ϵM > 1, i.e. log ϵM > 0, there is a positive interaction between the two loci; if ϵM = 1, i.e. log ϵM = 0,
then there is no interaction between the two loci; and if ϵM < 1, i.e. log ϵM < 0, then there is a negative interaction
between the two loci.

The multiplicative pairwise epistasis measure is closely related to the pairwise interaction term in the standard log-
linear regression framework for epistasis [3, 21]. Specifically, if the fitness values f00, f01, f10, f11 follow a log-linear
regression model of the form

log fx1x2 = β0 + β1x1 + β2x2 + β12x1x2, (12)

then β12 = ϵM .

Chimeric formula. Many studies in genetics use a multiplicative fitness model but do not measure pairwise epis-
tasis with the multiplicative epistasis measure ϵM . Instead, these papers use a multiplicative null model but measure
deviations with an additive scale, yielding the following epistasis measurement:

ϵC = f11 − f01f10. (13)

We call ϵCij a “chimeric” measure as it measures deviations from a multiplicative null model on an additive scale,
and is thus a chimera of both the multiplicative and additive measurement scales. The chimeric measure has been
widely used in the genetics literature (e.g. [23, 24, 25, 26, 27, 28, 29, 4, 30, 31, 32, 33, 34]) and in the drug interaction
literature (e.g. [70, 71, 72, 73, 74, 75, 57, 43, 76, 77]). In these applications, similar to the additive measure, the sign
of an interaction between two loci is determined by the sgn(ϵC) of the chimeric measure ϵC : ϵC > 0 corresponds to a
positive interaction while ϵC < 0 corresponds to a negative interaction.

Although it is often described in terms of a multiplicative fitness model, the chimeric epistasis measure ϵC is not
equal to the multiplicative measure ϵM . The chimeric epistasis measure ϵC in equation (13) is similar to equation (11),
but the deviation between the observed double-mutant fitness f11 and the expected fitness f01f10 under a multiplicative
null model is computed using subtraction instead of division. Equivalently, the (log-)multiplicative epistasis measure
log ϵM = log f11 − log f01f10 computes the difference between the observed and expected logarithm of the fitness of
the double mutant, while the chimeric epistasis measure ϵC = f11 − f01f10 computes the difference directly (Figure
1A). In this way, the chimeric epistasis measure may overstate or understate the strength of a pairwise interaction in a
multiplicative fitness model (Figure 1A); see Supplementary Text for a numerical example highlighting this issue with
the chimeric measure.

Nevertheless, we show that the chimeric measure ϵC measures the same sign of an interaction as the multiplicative
measure ϵM .

Proposition 1. Let f01, f10, f11 ∈ R be real numbers. Let ϵM = f11
f01f10

and ϵC = f11 − f01f10. Then sgn(ϵC) =

sgn(log ϵM ).

Proof. f11 − f01f10 > 0 ⇐⇒ f11
f01f10

> 1.

4.2 Higher-order epistasis
We next generalize our discussion to genotypes with L ≥ 2 loci, where we demonstrate that the differences between
the multiplicative measure and the chimeric measure become even more pronounced when analyzing higher-order
epistasis, or interactions between three or more loci.

There are 2L genotypes x1 · · ·xL, where xℓ ∈ {0, 1} indicates a mutation in locus ℓ, with each genotype x1 · · ·xL

having a corresponding fitness value fx1···xL
, e.g. f010 is the fitness of genotype 010 with a mutation in the second

locus and no mutations in the first and third loci. However, because writing out the 2L genotypes is infeasible for large
L, we use the following notational shorthand. We use fi to refer to the fitness of the genotype with a single mutation
in locus i, fij to refer to the fitness of the genotype with mutations in loci i, j, and so on. For example, for L = 3 loci,
f2 corresponds to f010 while f12 corresponds to f110. Without loss of generality we assume the wild-type fitness f∅
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is equal to 0 for the additive fitness model, and equal to 1 for the multiplicative and chimeric fitness models. We also
define ϵAij , ϵ

M
ij , ϵ

C
ij as the additive, multiplicative, and chimeric pairwise epistasis measure, respectively, between the

i-th locus and the j-th locus, i.e. ϵAij = fij − fi − fj , ϵMij =
fij
fifj

and ϵCij = fij − fifj . For example, for L = 3 loci,

ϵM12 corresponds to f110
f100f010

.

Additive fitness model. We start by quantifying three-way epistasis in the additive fitness model. When there is
no pairwise epistasis, the fitness fijk of a triple mutant is equal to fi + fj + fk, i.e. the fitness from of each of the
single-mutants. When there is pairwise epistasis, then the triple mutant fitness fijk also includes pairwise interactions
measures, i.e.

fi + fj + fk + ϵAij + ϵAik + ϵAjk (14)

Three-way epistasis is computed by measuring the difference between the observed triple-mutant fitness fijk and
the expected fitness in (14) when only pairwise interactions are included. Thus, the three-way additive epistasis
measure ϵAijk is given by

ϵAijk = fijk −
[
fi + fj + fk + ϵAij + ϵAik + ϵAjk

]

= fijk − fij − fik − fjk + fi + fj + fk.
(15)

As in the pairwise case, the sign of the three-way epistatic measure ϵAijk determines the sign of the interaction: if
ϵAijk > 0, then there is a positive three-way interaction between loci i, j, k — in the sense that the fitness fijk of the
triple mutant is larger than the expected fitness in (14) when only pairwise interactions are present — while if ϵAijk < 0,
then there is a negative three-way interaction between loci i, j, k.

Our derivation of the three-way epistasis measure ϵAijk is easily extended to higher-order interactions. The additive
K-way epistasis measure ϵAi1...iK is defined recursively as

ϵAi1...iK = fi1...iK −






K∑

j=1

fij


+


 ∑

1≤j1<j2≤K

ϵMij1 ij2


+ · · ·+


 ∑

1≤j1<···<jK−1≤K

ϵAij1 ···ijK−1




 . (16)

The K-way epistasis measures ϵAi1...iK are proportional to two other measures of epistasis: (1) the K-th order
Walsh coefficient used to quantify background-averaged epistasis among K genetic loci [41, 49, 50] and (2) the K-th
order interaction coefficients of a linear regression model, which we discuss in more detail in Section 4.3.

Multiplicative fitness model. We derive formulae for epistasis in a multiplicative fitness model by using the equiv-
alence between multiplicative fitness and additive log-fitness. For example, the 3-way epistasis measure ϵMijk in the
multiplicative model is given by

ϵMijk =
fijk

fifjfkϵMij ϵ
M
ik ϵ

M
jk

=
fijkfifjfk
fijfikfjk

. (17)

As in the pairwise setting, the sign of interaction is determined by the difference between the multiplicative measure
ϵMijk and 1, or equivalently by the sgn(log ϵMijk) of the logarithm of the epistasis measure ϵMijk.

Using (16), then the K-way epistasis measure ϵMi1...iK in the multiplicative model is defined recursively by

ϵMi1...iK =
fi1...iK(∏K

j=1 fij

)(∏
1≤j1<j2≤K ϵMij1 ij2

)
· · ·
(∏

1≤j1<···<jK−1≤K ϵMij1 ···ijK−1

) . (18)

Recent work in the genetics [2, 42] and drug interaction [43] claim to measure three-way epistasis using a multi-
plicative fitness model. However, they do not measure three-way epistasis the multiplicative epistasis formula (17) but
instead derive a chimeric formula using both additive and multiplicative measurement scales:

ϵCijk = fijk − fifjfk − ϵCijfk − ϵCikfj − ϵCjkfi. (19)

We call ϵCijk the chimeric three-way epistasis measure. In these applications, the sign of the interaction is deter-
mined by the sgn ϵCijk of the chimeric measure ϵCijk.
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Despite the claim that the chimeric measure ϵCijk is derived from a multiplicative fitness model, it is clear by
inspection that the three-way chimeric measure ϵCijk is not equal to the multiplicative three-way epistasis measure ϵMijk.
However, unlike in the pairwise setting, even the signs of these two measures disagree (Figure 1B). We demonstrate in
the Supplementary Text that even when ϵMijk = 1 — that is, there is no three-way epistasis — the chimeric three-way
epistasis measure ϵCijk may still indicate either positive or negative three-way epistasis.

Tekin et al. [43] extended the three-way chimeric epistasis formula (19) by heuristically deriving chimeric formulae
for 4-way and 5-way epistasis. For example, their chimeric formula for 4-way epistasis is given by

ϵCijkℓ =fijkℓ − fifjkℓ − fjfikℓ − fkfijℓ − fℓfijk − fijfkℓ − fikfjℓ − fjkfiℓ

+ 2fifjfkℓ + 2fifkfjl + 2fifℓfjk + 2fjfkfiℓ + 2fjfℓfik + 2fkfℓfij − 6fifjfkfℓ.

As in three-way epistasis, the sign of the 4-way and 5-way chimeric epistasis measures derived by [43] do not
match the signs of the corresponding multiplicative epistasis measures (Figure 1C). This fundamental disagreement
motivates a deeper mathematical understanding of these epistasis measures, which we explore in the following section.

4.3 Multivariate Bernoulli distribution
In the previous section, we defined quantitative measures of epistasis for two standard null models for fitness: the
additive model and multiplicative model. Nevertheless, some recent papers use a multiplicative fitness model but
instead use an epistasis measure which is a chimera of both multiplicative and additive measurement scales. Here, we
unify these different epistasis measures using the multivariate Bernoulli distribution from probability theory [47].

The multivariate Bernoulli distribution describes any distribution on {0, 1}L, i.e. binary strings of length L, for
L ≥ 2. The multivariate Bernoulli distribution has three different parameterizations which are used throughout the lit-
erature [47, 82]. We start by describing these parametrizations for the simplest such distribution: a bivariate Bernoulli
distribution over binary strings of length L = 2.

Bivariate Bernoulli distribution. Suppose that X = (X1, X2) ∈ {0, 1}2 is distributed according to a bivariate
Bernoulli distribution. A distribution on X is specified by the parameters p00, p01, p10, p11, where px1x2 = P (X1 =
x1, X2 = x2) is the probability of (x1, x2). The parameters p = (p00, p01, p10, p11) are sometimes called the general
parameters [47]. Note that since p00 + p01 + p10 + p11 = 1, only three such parameters are needed to define the
distribution.

The probability density function (PDF) P (X1, X2) of X = (X1, X2) has the form

P (X1, X2) = p
(1−X1)(1−X2)
00 p

(1−X1)X2

01 p
X1(1−X2)
10 pX1X2

11

= exp

[
log p00 +

(
log

p10
p00

)
X1 +

(
log

p01
p00

)
X2 +

(
log

p11p00
p10p00

)
X1X2

]
.

(20)

In other words, the PDF P (X1, X2) follows a log-linear model of the form

logP (X1, X2) = β0 + β1X1 + β2X2 + β12X1X2 (21)

for constants β0, β1, β2, β12 ∈ R. There is a one-to-one correspondence between the general parameters p =
(p00, p01, p10, p11) and the constants β = (β0, β1, β2, β12). Thus, a bivariate Bernoulli distribution is also parametrized
by the parameters β, also known as the natural parameters of the distribution [47]. As with the general parameters p,
we note that only three out of the four parameters β0, β1, β2, β12 are needed to fully specify a distribution. We also
note that independence between the random variables X1 and X2 is described by the parameter β12, where X1 and
X2 are independent if and only if β12 = 0.

Equation (21) demonstrates that X = (X1, X2) follows an exponential family distribution, a wide class of distri-
butions that includes many common distributions including normal distributions or Poisson distributions. In particular,
using the terminology of exponential families, equation (21) shows that the sufficient statistics of X are X1, X2, and
X1X2, with corresponding canonical parameters β1, β2, and β12 [83, 133, 134]. As a result, the distribution P (X)
is uniquely defined by the expected values E[X1], E[X2], E[X1X2] of the sufficient statistics, sometimes called the
moments or the mean parameters of the distribution [83]. Thus, we obtain a third parametrization of the distribu-
tion P (X) using the moments µ0 = 1, µ1 = E[X1], µ2 = E[X2], µ12 = E[X12]. The elements of the vector
µ = (1, µ1, µ2, µ12) of moments are sometimes called the mean parameters of the distribution.
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Multivariate Bernoulli distribution. The three parametrizations we derived for the bivariate Bernoulli distribution
extend to the multivariate Bernoulli distribution. Suppose that (X1, . . . , XL) ∈ {0, 1}L is distributed according to a
multivariate Bernoulli distribution. Then the distribution P (X) of the random variables X is uniquely specified by
one of the three following parametrizations.

1. General parameters: These are 2L non-negative values p = (px1...xL
)(x1,...,xL)∈{0,1}L satisfying

px1...xL
= P (Xℓ = xℓ for ℓ = 1, . . . , L). (22)

For example if L = 3, then p010 = P (X1 = 0, X2 = 1, X3 = 0) and p110 = P (X1 = 1, X2 = 1, X3 =
0). Note that since

∑
(x1,...,xL)∈{0,1}L px1...xL

= 1, only 2L − 1 values px1...xL
are necessary to define the

distribution.

2. Natural/canonical parameters: These are 2L real numbers β = (βS)S⊆[L] ∈ R satisfying

logP (X1, . . . , XL) =
∑

S⊆[L]

βS ·
∏

i∈S

Xi. (23)

Similar to the general parameters pi, only 2L − 1 values βS are necessary to uniquely define the distribution.
Typically, the parameter β∅, often called a normalizing constant or a partition function of the distribution, is
left unspecified. As noted in the bivariate setting, equation (23) shows that the multivariate Bernoulli is an
exponential family distribution with 2L−1 sufficient statistics of the form

∏
i∈S Xi for subsets S with |S| > 0.

Moreover, by rewriting (23) as

log px1···xL
= β∅ +

(
L∑

i=1

βixi

)
+


 ∑

1≤i1<i2≤L

βi1i2 · xi1xi2


+ · · ·+

(
β1···L · x1 · · ·xL

)
, (24)

we observe that the natural parameters β correspond to interaction coefficients in a log-linear regression model
with response variables p. For example, the natural parameter β12 is the coefficient of the interaction term x1x2.

3. Moments/mean parameters: These are 2L real numbers µ = (µS)S⊆[L] satisfying

µS = E

[∏

s∈S

Xs

]
. (25)

For example if L = 3, then µ13 = E[X1X3] while µ12 = E[X1X2]. The mean parameters {µS}|S|>0 are
sufficient statistics for the multivariate Bernoulli distribution, as seen in the exponential family form (23) of the
multivariate Bernoulli distribution.

We note that all three parametrizations, as well as the fitness values f and epistasis measures ϵ, can be defined
either in terms of subsets S ⊆ [L] as with the natural parameters β and moments µ, or in terms of binary strings
x1 · · ·xL as with the general parameters p. We use both definitions interchangeably, with the convention that a subset
S ⊆ [L] corresponds to the binary string x1 · · ·xL with xi = 1{i∈S}.

Moreover, when written as vectors indexed by binary strings, the three parametrizations β,µ,p of the multivari-
ate Bernoulli are related to each through different linear transformations involving a matrix operation known as the
Kronecker product (see Supplementary Text for specific formulae). Interestingly, several papers quantify epistasis
using the Walsh-Hadamard transform which is also defined in terms of Kronecker products [41, 49, 50]. This con-
nection is not a coincidence; in the next section we show that the Walsh-Hadamard transform is closely related to the
parametrizations of the multivariate Bernoulli.

4.4 Unifying epistasis measures with the multivariate Bernoulli
The multivariate Bernoulli distribution provides an elegant means by which to describe the different epistasis formulae
in the literature. We model the genotype (X1, . . . , XL) ∈ {0, 1}L as a random variable distributed according to a
multivariate Bernoulli distribution. The parametrizations of the multivariate Bernoulli correspond to different features
of the genotype; for example, the probability px1···xL

might be derived from the frequency of observing the genotype
(x1, . . . , xL) in a large population.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2024. ; https://doi.org/10.1101/2024.07.17.603976doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.17.603976
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.4.1 Multiplicative and additive epistasis measures

We start by relating the multiplicative epistasis formula (18) to the multivariate Bernoulli distribution. A careful
reader may observe that the natural parameter β12 = log p11p00

p10p01
in the bivariate Bernoulli distribution (21) bears close

resemblance to the multiplicative epistasis measure in equation (10). Specifically, if the fitness fx1x2
of each genotype

(x1, x2) ∈ {0, 1}2 is proportional to the probability px1x2
of that genotype in the multivariate Bernoulli, then the

natural parameter β12 is equal to the logarithm log ϵM12 of the multiplicative epistasis measure ϵM12 . Thus, for L = 2
loci, epistasis is measured by the natural parameters β of a bivariate Bernoulli distribution.

We prove that this observation is not specific to the bivariate Bernoulli distribution with L = 2 loci, and in fact
generalizes to any number L of loci. Specifically, we prove that if the fitness fx1···xL

of genotype (x1, . . . , xL) is
proportional to the probability px1···xL

of observing the genotype, then for each subset S ⊆ [L] of loci, the natural
parameter βS equals the logarithm log ϵMS of the corresponding multiplicative epistasis measure as defined in equation
(18).

Theorem 1. Let fx ∈ R be fitness values for genotypes x = (x1, . . . , xL) ∈ {0, 1}L such that fx = c · px for
some constant c > 0 and for some multivariate Bernoulli random variable (X1, . . . , XL) with general parameters
p = (px)x∈{0,1}L . Then for all subsets S ⊆ {1, . . . , L} of loci, the log multiplicative epistasis measure log ϵMS is
equal to the interaction parameter βS of the random variable (X1, . . . , XL).

By using the equivalence between multiplicative fitness values and additive log-fitness values, we also derive a
similar probabilistic interpretation of the additive epistasis formula. Specifically, if fitness fx1···xL

is proportional to
the log-probability log px1···xL

of observing the genotype (x1, . . . , xL), then for each subset S = {i1, . . . , iK} ⊆ [L]
of loci, the natural parameter βS equals the logarithm log ϵAi1,··· ,iK of the corresponding additive epistasis measure as
defined in equation (16). We formalize this observation as the following Corollary of Theorem 1.

Corollary 1. Let fx ∈ R be fitness values for genotypes x = (x1, . . . , xL) ∈ {0, 1}L such that fx = c · log px for
some constant c > 0 and for some multivariate Bernoulli random variable (X1, . . . , XL) with general parameters
p = (px)x∈{0,1}L . Then for all subsets S ⊆ {1, . . . , L} of loci, the log additive epistasis measure log ϵAS is equal to
the interaction parameter βS of the random variable (X1, . . . , XL).

The assumption that the fitness fx1···xL
of a genotype (x1, . . . , xL) is proportional to the probability px1...xL

of
observing the genotype is often used in generative models for estimating the fitness of protein structures from sequence
data [80, 81]. This assumption also has a natural biological interpretation: suppose the fitness value fx corresponds to
the growth rate of an organism with genotype x = (x1, · · · , xL), and suppose that initially there are an equal number
of organisms of each of the 2L genotypes x ∈ {0, 1}L. Then after one unit of time, the frequency px of each genotype
x will be proportional to its growth rate fx.

We also note that the statistical problem of estimating the natural parameters β or mean parameters µ of a multi-
variate Bernoulli distribution from samples (X1, . . . , XL) of the distribution is computationally hard [83]. The reason
why we are able to use relatively simple formulae (16), (18) to compute the natural parameters β is because in this
setting, we have both samples (X1, . . . , XL) and their corresponding probabilities P (X1, . . . , XL), i.e. the fitness
values f .

Relationship with (log-)linear regression. Under the assumption that the fitness values fx1···xL
are proportional to

the genotype probabilities px1···xL
, then (24) is a log-linear regression model of the form

log fx1···xL
= β∅ +

(
L∑

i=1

βixi

)
+


 ∑

1≤i1<i2≤L

βi1i2 · xi1xi2


+ · · ·+ (β1...L · x1 · · ·xL) . (26)

Thus, Theorem 1 shows that computing the multiplicative epistasis measure ϵM is equivalent to computing the interac-
tion parameters of the log-linear regression in (26). The interaction parameters of a regression are a standard approach
for quantifying epistasis in GWAS and eQTL analyses [3].

Similarly, Corollary 1 demonstrates the equivalence between the additive epistatic measure ϵA and the coefficients
of a linear regression model with response variables equal to the fitness values. Specifically, under the assumption that
the fitness values fx1···xL

are proportional to the logarithm log px1···xL
of the genotype probabilities, then computing
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the additive epistasis measures ϵA is equivalent to computing the interaction parameters β of the following linear
regression model

fx1···xL
= β∅ +

(
L∑

i=1

βixi

)
+


 ∑

1≤i1<i2≤L

βi1i2 · xi1xi2


+ · · ·+ (β1···L · x1 · · ·xL) . (27)

In this way, Theorem 1 and Corollary 1 provide a connection between the multiplicative and additive epistasis
measures and the interaction coefficients of log-linear and linear regression models, respectively.

Relationship with case-control GWAS. We also prove that the natural parameters β of a MVB with three variables
are closely related to the two standard approaches for measuring pairwise SNP-SNP interactions in a case-control
GWAS: logistic regression and conditional independence testing [84]. Specifically, suppose we are given genotype
(X1, X2) ∈ {0, 1}2 and (binary) disease status D ∈ {0, 1}. Then the joint random variable (X1, X2, D) follows a
MVB distribution, where the log-probability logP (X1, X2, D) is given by the following expression in terms of the
natural parameters β:

logP (X1, X2, D) = β0 + β1X1 + β2X2 + βdD + β12X1X2 + β1dX1D + β2dX2D + β12dX1X2D. (28)

Note that there is a natural approach for representing GWAS data from diploid genomes (with {0, 1, 2}-valued allelic
states) using binary random variables X1, X2, as described in [135].

We show that the logistic regression approach for measuring pairwise interactions is equivalent to computing β12d,
while the conditional independence test is equivalent to testing the null hypothesis H0 : β12 = β12d = 0. See the
Supplementary Text for proofs.

4.4.2 Chimeric epistasis measure

The multivariate Bernoulli also provides a way of rigorously defining the pairwise and higher-order chimeric epistasis
measures using joint cumulants. Joint cumulants are a concept from probability theory used to quantify higher-order
interactions between random variables. For example, the 2nd order joint cumulant κ(X,Y ) of two random variables
X,Y is given by

κ(X,Y ) = E[XY ]− E[X]E[Y ], (29)

and is equal to the covariance Cov(X,Y ). The 3rd order joint cumulant κ(X,Y, Z) of three random variables is given
by

κ(X,Y, Z) = E[XY Z]− κ(X,Y )E[Z]− κ(X,Z)E[Y ]− κ(Y,Z)E[X]. (30)

Under the assumption that the fitness fx1···xL
of a genotype (X1, . . . , XL) is equal to the corresponding moment

µx1,...,xL
, we define the K-way chimeric epistatic measure ϵCi1···iK as the K-th order joint cumulant κ(Xi1 , . . . , XiK )

of the random variables Xi1 , . . . , XiK .

Definition 1. Let fx ∈ R be fitness values for genotypes x = (x1, . . . , xL) ∈ {0, 1}L such that fx1···xL
= c ·

µx1,...,xL
for some constant c > 0 and for some multivariate Bernoulli random variable (X1, . . . , XL) with moments

µx1,...,xL
= E[Xx1

1 · · ·XxL

L ]. The chimeric epistasis measure ϵCi1···iK is the joint cumulant κ(Xi1 , . . . , XiK ) of the
random variables Xi1 , . . . , XiK .

Our definition of the K-th order chimeric epistasis measure ϵCi1···iK as the K-th order joint cumulant formalizes
the heuristic derivation of the chimeric measure in previous literature. Almost every paper that uses the chimeric
epistasis measures ϵC does not even mention the joint cumulant. Two notable exceptions are [57, 76], which use the
joint cumulants to derive formulae for 3-way, 4-way, and 5-way interactions between drugs. However, [57, 76] do not
rigorously define a probability distribution nor the random variables whose joint cumulant they compute.

At the same time, our formal definition of the chimeric epistasis measure ϵC reveals two critical issues with the
chimeric formula. First, the assumption that the fitness values f are equivalent to the moments of a MVB random
variable is not biologically reasonable for higher order interactions between three or more loci. This assumption
implies that the fitness of a particular genotype depends on the probability of many other genotypes. For example,
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making this assumption for L = 4 loci, the fitness f1100 of a double mutant is equal to the moment E[X1X2], which
is equal to

E[X1X2] = P (X1 = 1, X2 = 1) = p1100 + p1101 + p1110 + p1111. (31)

However, it is not clear why the fitness f1100 of a single genotype, 1100, should equal depend on the probabilities of
four different genotypes, 1100, 1101, 1110, and 1111.

The second issue is that joint cumulants are not necessarily an appropriate measure of higher-order interactions
between binary random variables. The differences between the joint cumulants and natural parameters β have been
previously investigated in the neuroscience literature, as both quantities have been used to quantify higher-order inter-
actions in neuronal data. For example, Staude et al. [54, 55] write that the joint cumulants κ and natural parameters β
measure mathematically distinct types of higher-order interactions, and that each quantity may be appropriate for dif-
ferent applications. In particular, Staude et al. note that the joint cumulants measure higher-order interactions between
random variables in terms of “additive common components”, while the natural parameters β measure “to what extent
the probability of certain binary patterns can be explained by the probabilities of its sub-patterns”. It follows that for
binary mutation data, the natural parameters β correspond exactly with the epistasis we aim to measure, i.e. how the
fitness of a binary pattern can be explained by the fitness of its “sub-patterns”, while the joint cumulants do not.

4.4.3 Walsh coefficients and background-averaged epistasis

The multivariate Bernoulli distribution also provides a probabilistic interpretation of the Walsh coefficients that are
used to measure “background-averaged” epistasis [50, 41, 49, 60, 69]. The Walsh coefficients u = [ux1···xL

] ∈ R2L ,
i.e. a vector indexed by binary strings, are defined by

u = Ψf (32)

where Ψ =

(
1 1

1 −1

)⊗L

∈ R2L×2L is a Hadamard matrix [50] and f = [fx1···xL
] ∈ R2L is the vector of fitness

values indexed by binary strings. Equation (32) is known as the Walsh-Hadamard transformation, sometimes also
called the Walsh or Fourier-Walsh transform; see [50, 41] for more details.

We prove that if the fitness values f are equal to probabilities p of a multivariate Bernoulli random variable
(X1, . . . , XL), then the Walsh coefficients u are equal to the moments of (1− 2X1, . . . , 1− 2XL) ∈ {−1, 1}L, i.e. a
linear transformation of the random variable (X1, · · · , XL) such that it takes values in {−1, 1}L instead of {0, 1}L.

Theorem 2. Let (X1, . . . , XL) ∈ {0, 1}L be distributed according to a multivariate Bernoulli distribution with
general parameters f , and define Yℓ = 1− 2Xℓ ∈ {−1, 1} for ℓ = 1, . . . , L. Define u = [ux1···xL

] ∈ R2L as in (32).
Then ux1···xL

= E[Y x1
1 · · ·Y xL

L ].

To our knowledge, Theorem 2 gives the first probabilistic interpretation of the Walsh coefficients u. Interestingly,
the Walsh coefficients u assume an additive fitness model [41, 50] while Theorem 2 requires that the fitness values f
are equal to the probabilities p, an assumption corresponding to the multiplicative fitness model (Table 1).

Theorem 2 also provides a connection between the multivariate Bernoulli distribution and the circuit formulae
used to quantify the geometry of a fitness landscape [59, 29, 60, 69], as the circuit formulae for a full genotype space
are linear combinations of the Walsh coefficients; see [29] for details.

4.4.4 Relationship to theoretical genetics models

We note that some previous works in theoretical genetics by Barton and Turelli (e.g. [136, 137, 138]) also model the
genotype with a MVB. However, their approach is substantially different from ours. Barton and Turelli model linkage
disequilibrium between k loci Xi1 , . . . , Xik using the k-way central moment µ̃(Xi1 , . . . , Xik) = E

[∏k
j=1(Xij − E[Xij ])

]

of the genotype distribution P (X1, . . . , Xn). Barton and Turelli model epistasis using coefficients that are not related
to the genotype distribution P (X1, . . . , Xn). In contrast, we model epistasis with the natural parameters β of the
genotype distribution P (X1, . . . , Xn), as described in Section 4.4.1.

Interestingly, Barton and Turelli’s 3-way linkage disequilibrium term, i.e. µ̃(Xi1 , Xi2 , Xi3), is equal to the 3-way
joint cumulant κ(Xi1 , Xi2 , Xi3) implicitly used by Kuzmin et al. [2, 42] to measure 3-way epistasis (see Section
4.4.2). This equivalence is because the k-way central moment µ̃(Xi1 , . . . , Xik) is equal to the k-way joint cumulant
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κ(Xi1 , . . . , Xik) for k = 1, 2, 3. However, for k ≥ 4, the k-way linkage disequilibrium term used by Barton and
Turelli is not equal to the k-way joint cumulant.

4.5 Simulating fitness values
We simulate fitness values fx for genotypes x = (x1, . . . , xL) with L = 10 loci and K-way interactions using the
following two different approaches. For both models, we divide all of the fitness values f by f∅ so that f∅ = 1.

Multiplicative fitness model. We draw interaction parameters βS ∼ Uni(−0.5, 0.5) for each subset S ⊆ {1, . . . , L}
of loci with size |S| ≤ K. We set the fitness fx of genotype x = (x1, . . . , xL) as

log fx =




∑

S⊆{1,...,L}
|S|≤K

βS

(∏

i∈S

xi

)

+ ϵx (33)

where ϵx ∼ N(0, σ2) are independent and identically distributed Gaussian random variables with mean zero and
variance σ2.

NK model. We simulate fitness values f according to the NK model with the code used by [49]. Because [49] uses
an additive fitness model, we exponentiate the fitness values from the NK model.

4.6 Epistasis between protein mutations
The analysis in Section 2.7 was performed using publicly available DMS data for the following proteins/RNA molecules:

• the E.coli metabolic protein folA [113];

• the Streptococcus pyogenes Cas9 (SpCas9) nuclease [114];

• the immunoglobulin-binding protein G domain B1 (GB1), expressed in Streptococcal bacteria [139, 140];

• the Omicron BA.1 variant of the SARS-CoV-2 virus, where fitness is measured relative to the Wuhan Hu-1
strain [141];

• the Entacmaea quadricolor fluorescent protein eqFP611, where fitness is measured in terms of fluorescence
[142];

• the Aequorea victoria green fluorescent protein avGFP [143];

• the green fluorescent proteins (GFPs) from [144];

• yeast tRNA [145]; and

• the Chlamydomonas reinhardtii flavin mononucleotide (FMN)-based fluorescent protein CreiLOV [146].

We note that the fitness landscape of each protein may be measured using different scales. To make it possible to
compare the fitness landscape of each protein, we make the following transformations to the observed fitness values
f . For proteins whose fitness values are measured multiplicatively (resp. additively), we divide (resp. subtract) all
fitness values f by the wild-type fitness value f∅. Moreover, for proteins whose fitness values are measured additively,
we then exponentiate the fitness values (i.e. f → expf ) to convert the fitness values to a multiplicative scale. This
allows us to compare the multiplicative epistasis measure ϵM with the chimeric epistasis measure ϵC , which implicitly
assumes fitness values are measured using a multiplicative scale.

For each protein and each interaction order K, we compute the multiplicative (resp. chimeric) measure ϵM (resp.
ϵC) across all K-tuples of mutational events. We note that for some proteins, the fitness of multiple mutations at a given
locus is measured (e.g. all 3 possible base pair substitutions at a locus, or all 19 possible amino acid substitutions); for
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these proteins, we consider each possible mutation at a given genetic locus as a separate mutational event. Furthermore,
following [139], we only compute the epistasis measure for a given K-tuple of mutational events if all fitness values
for the 2K genotypes are greater than a threshold ϵ, which we set to ϵ = 0.01 as in [139].
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(B) Multiplicative fitness model
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Pairwise epistasis

Epistasis: ✏M =
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f10

�
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f00
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Epistasis: ✏A = (f11 � f10) � (f01 � f00)
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Figure S1: Pairwise epistasis is computed by the change in the fitness effect of a mutation in one locus across the two
possible genetic backgrounds of the other locus (shown with the two red lines). The computation of the fitness effect
and the change in the fitness effect depends on the fitness model. (A) In an additive fitness model, the mutational effect
is computed with subtraction, while (B) in a multiplicative fitness model they are computed with a ratio.

Supplementary Text

A Comparing the chimeric and multiplicative formulae
For pairwise epistasis, the sign of the chimeric measure ϵC is always equal to the sign of the multiplicative epistasis
measure ϵM (Proposition 1). Nevertheless, the chimeric epistasis measure may sometimes overstate or understate the
degree of epistasis, as we demonstrate below.

Example 1. Consider the two following scenarios under a multiplicative fitness model:

1. f11 = 0.8, f10 = f01 = 1, versus

2. f11 = 0.2, f10 = f01 = 0.5.

In both scenarios, the multiplicative epistasis measure is given by ϵM = 0.8 < 1, indicating the same degree
of negative epistasis. However, the chimeric epistasis measure ϵC gives a different conclusion, namely that the first
scenario (ϵC = −0.2 < 0) has a larger degree of negative epistasis compared to the second scenario (ϵC = −0.05 <
0).

For higher-order epistasis, the sign of the chimeric epistasis measure is not guaranteed to be equal to the sign of
the multiplicative epistasis measure, as we demonstrate below.

Example 2. Consider a genotype with L = 3 loci and the following fitness values under the multiplicative model:

• f1 = 0.5, f2 = 1.0, f3 = 0.25,

• f12 = 0.5, f13 = 1, f23 = 0.1,

• f123 = 0.4

Then there is no three-way epistasis using the multiplicative epistasis formula, i.e.,

ϵM123 = 1 (34)

However the chimeric three-way epistasis measure ϵC123 is given by

ϵC123 = −0.525 < 0 (35)
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and would indicate a negative three-way interaction.
If instead we have f1 = 0.1 and f123 = 2 then there is still no three-way epistasis according to the multiplicative

measure, i.e. ϵM123 = 1, but the chimeric three-way measure would incorrectly indicate a positive three-way interaction
with ϵC123 = 0.915.

B Proof of Proposition 1

Proposition 1. Let f00, f01, f10, f11 ∈ R be real numbers. Let ϵM = f11f00
f01f10

and ϵC = f11 − f01f10
f00

. Then

sgn(ϵC) = sgn(ϵM − 1). (36)

Proof. We have that

ϵC > 0 ⇐⇒ f11 −
f01f10
f00

> 0 ⇐⇒ f11f00
f01f10

> 1 ⇐⇒ ϵM − 1 > 0. (37)

Thus, ϵC > 0 if and only if ϵM − 1 > 0. By similar logic, we have that ϵC = 0 (resp. ϵC < 0) if and only if
ϵM − 1 > 0 (resp. ϵM − 1 < 0). It follows that sgn(ϵC) = sgn(ϵM − 1).

C Proof of Theorem 1
Theorem 1. Let (X1, . . . , XL) ∈ {0, 1}L follow the multivariate Bernoulli distribution with general parameters p
and natural parameters β. Let fx1···xL

∈ R be real numbers for each (x1, · · · , xL) ∈ {0, 1}L such that fx1···xL
=

c · px1...xL
for some constant c ∈ R. Then we have

βS = log ϵMS . (38)

Proof. We proceed by induction on the size |S| of S. For our base case we assume that |S| = 2. Writing S = {i, j},
then we have that

ϵMij =
fijf∅
fifj

=
pijp∅
pipj

=
exp(β∅ + β1 + β2 + β12 exp(β∅)

exp(ββ∅ + β1) exp(ββ∅ + β2)

= exp(β12),

(39)

where in the second equality we use that the fitness values f are proportional to the probabilities p of the multivariate
Bernoulli, and in the third equality we use the definition (23) of the natural parameters β.

Next for the inductive hypothesis we assume that βS = log ϵMS holds for all |S| < K. We will prove the equation
holds for |S| = K. Without loss of generality assume that S = {1, . . . ,K}. Then from (18) we have

ϵM1···k =
f1...K

f∅
(∏K

i=1
fi
f∅

)(∏
1≤i1<i2≤K ϵMi1i2

)
· · ·
(∏

1≤i1<···<iK−1≤K ϵMi1···iK−1

)

=
p1...K

p∅
(∏K

i=1
pi

p∅

)(∏
1≤i1<i2≤K ϵMi1i2

)
· · ·
(∏

1≤i1<···<iK−1≤K ϵMi1···iK−1

)

=
exp

(
β∅ +

∑K
i=1 βi +

∑
1≤i1<i2≤K βi1i2 + · · ·+∑1≤i1<···<iK−1≤K βi1···iK−1

+ β1···k

)

exp(β∅)
(∏K

i=1 exp(βi)
)(∏

1≤i1<i2≤K exp(βi1i2)
)
· · ·
(∏

1≤i1<···<iK−1≤K exp(βM
i1···iK−1

)
)

= exp(β1···K),

(40)

which completes the proof.
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D Transformation between parameterizations of the multivariate Bernoulli
Let (X1, . . . , Xn) ∈ {0, 1}n be distributed according to a multivariate Bernoulli distribution with natural parameters
β, mean parameters µ, and general parameters p. [50, 82] give two formulae relating these different parametrizations.
These equations are defined in terms of the Kronecker product A ⊗ B of matrices A,B. For shorthand, we write
A⊗n = A⊗ A · · · ⊗ A as the Kronecker product of a matrix A with itself n times. Note that if A has size s× t then
A⊗n has size sn × tn.

First, Equation (13) of [50] gives the following formula relating the natural parameters β and the general parame-
ters p:

logp =

(
1 0

1 1

)⊗n

β (41)

where log is taken entry-wise. Note that

(
1 0

1 1

)⊗n

is a square matrix of size 2n × 2n.

Second, [82] gives the following formula relating the general parameters p and the mean parameters µ:

µ =

(
1 1

0 1

)⊗n

p. (42)

E Proof of Theorem 2
We require the following lemma.

Lemma 1. Let (X1, . . . , XL) ∈ {0, 1}L be distributed according to a multivariate Bernoulli distribution with mo-
ments µC . Define Yℓ = 1 − 2Xℓ ∈ {−1, 1} for ℓ = 1, · · · , L. Let µY = [µY

x1···xL
] ∈ R2L be a vector with entries

ux1···xL
= E[Y x1

1 · · ·Y xL

L ]. Then we have

µY =

(
1 0

1 −2

)⊗L

µC . (43)

Proof. We proceed by induction on L. For ease of notation, we define Mℓ =

(
1 0

1 −2

)⊗ℓ

. The base case, L = 1, is

equivalent to (
1

1− 2 · E[X1]

)
=

(
1 0

1 −2

)(
1

E[X1]

)
, (44)

which holds by inspection.
Now for the inductive step, we assume (43) holds for L − 1 and we will show (43) holds for L. Define A =

{(a1, · · · , aL ∈ {0, 1}L : a1 = 0} and B = {(a1, · · · , aL ∈ {0, 1}L : a1 = 1}. Then the first 2L−1 entries of
µY ,µC are indexed by A, and the second 2L−1 entries are indexed by B. Thus, define µY

A ,µ
C
A as the first 2L−1

entries of µY ,µC , respectively, and define µY
B ,µ

C
B similarly.

For (0, a2, · · · , aL) ∈ A, we have that

(µY
A)0a2···aL

= E[Y 0
1 Y

a2
2 · · ·Y aL

L ] = E[Y a2
2 · · ·Y aL

L ] = (ML−1µ
C
A)0a2···aL

, (45)

where in the last equality we use the inductive hypothesis on the L− 1 random variables (X2, · · · , XL). Similarly for
(1, a2, · · · , aL) ∈ B, we have

(µY
B)1a2···aL

= E[Y 1
1 Y

a2
2 · · ·Y aL

L ]

= E[(1− 2X1)Y
a2
2 · · ·Y aL

L ]

= E[Y a2
2 · · ·Y aL

L ]− 2 · E[X1Y
a2
2 · · ·Y aL

L ]

= (ML−1µ
C
A)0a2···aL

− 2(ML−1µ
C
B)1a2···aL

,

(46)
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where again in the last equality we use the inductive hypothesis. Writing these two equalities in matrix form:
(

µY
A

µY
B

)
=

(
ML−1 0

ML−1 −2ML−1

)(
µC

A

µC
B

)
. (47)

By definition of the Kronecker product, the matrix in (47) is equal to
(

ML−1 0

ML−1 −2ML−1

)
= ML−1 ⊗

(
1 0

1 −2

)
= ML−1 ⊗M1 = ML. (48)

Thus, µY = MLµ
C , completing the proof.

Theorem 2. Let (X1, . . . , XL) ∈ {0, 1}L be distributed according to a multivariate Bernoulli distribution with
general parameters f , and define Yℓ = 1 − 2Xℓ ∈ {−1, 1}. Define u = [ux1···xL

] ∈ R2L as in (32). Then
ux1···xL

= E[Y x1
1 · · ·Y xL

L ].

Proof. Let µC be the mean parameters of X . We define the vector µY = [µY
x1···xL

] ∈ R2L with entries µY
x1···xL

=
E[Y x1

1 · · ·Y xL

L ]. By Lemma 1 and equation (42), we have

µY =

(
1 0

1 −2

)⊗L

µC =

(
1 0

1 −2

)⊗L(
1 1

0 1

)⊗L

f =

((
1 0

1 −2

)
·
(
1 1

0 1

))⊗L

f =

(
1 1

1 −1

)⊗L

f .

F Relationship between MVB and case-control GWAS
Suppose we are given genotype (X1, X2) ∈ {0, 1}2 and (binary) disease status D ∈ {0, 1}. Then the joint ran-
dom variable (X1, X2, D) follows a MVB distribution, where the log-probability logP (X1, X2, D) is given by the
following expression in terms of the natural parameters β:

logP (X1, X2, D) = β0 + β1X1 + β2X2 + βdD + β12X1X2 + β1dX1D + β2dX2D + β12dX1X2D. (49)

Logistic regression. In the logistic regression approach for measuring pairwise interactions, one fits a model of the
form

log

(
P (D = 1|X1 = x1, X2 = x2)

P (D = 0|X1 = x1, X2 = x2)

)
= α0 + α1x1 + α2x2 + α12x1x2 (50)

and measures pairwise interactions with the interaction term α12.
To relate the MVB and logistic regression, we rewrite the LHS of 50 as logP (X1 = x1, X2 = x2, D = 1)) −

logP (X1 = x1, X2 = x2, D = 0) and plug in 49:

log

(
P (D = 1|X1 = x1, X2 = x2)

P (D = 0|X1 = x1, X2 = x2)

)
= log

(
P (X1 = x1, X2 = x2, D = 1) · P (X1 = x1, X2 = x2)

P (X1 = x1, X2 = x2, D = 0) · P (X1 = x1, X2 = x2)

)

= log

(
P (X1 = x1, X2 = x2, D = 1)

P (X1 = x1, X2 = x2, D = 0)

)

= logP (X1 = x1, X2 = x2, D = 1))− logP (X1 = x1, X2 = x2, D = 0)

= (β0 + β1x1 + β2x2 + βd + β12x1x2 + β1dx1 + β2dx2 + β12dx1x2)

− (β0 + β1x1 + β2x2 + β12x1x2)

= βd + β1dx1 + β2dx2 + β12dx1x2.

(51)

By equating coefficients with (50), it follows that α12 = β12d. That is, the 3-way interaction term β12d in the
MVB is equal to the logistic regression interaction term α12.
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Conditional independence testing. We start by describing the conditional independence test. Let θ0 = log
(

p000p110

p100p010

)

be the log-odds ratio of X1 and X2 conditioned on D = 0, where we use px1x2d as shorthand for P (X = x1, X2 =
x2, D = d). Note that θ0 = 0 if and only if X1 and X2 are independent conditioned on D = 0. Similarly, we define
θ1 = log

(
p001p111

p101p011

)
as the log-odds ratio of X1 and X2 conditioned on D = 1, so that θ1 = 0 if and only if X1 and

X2 are independent conditioned on D = 1.
The conditional independence test is testing the null hypothesis H0 : θ0 = θ1 = 0. To relate the conditional

independence test to the MVB, we plug (49) into the formula for θ0 and simplify, which yields:

θ0 = log

(
p000p110
p100p010

)

= log p000 + log p110 − log p100 − log p010

= (β0) + (β0 + β1 + β2 + β12)− (β0 + β1)− (β0 + β2)

= β12.

(52)

A similar computation for the formula for θ1 yields

θ1 = β12 + β12d. (53)

Thus, the conditional independence null hypothesis H0 : θ0 = θ1 = 0 is equivalent to the null hypothesis

H0 : β12 = β12d = 0. (54)

In other words, the conditional independence test is testing whether the 2-way interaction β12 (i.e. the marginal
interaction) and 3-way interaction term β12d are equal to 0.

Computing interaction terms β from GWAS data. From Theorem 1, each MVB interaction term is equal to the
corresponding log-multiplicative measure, i.e. β = log ϵM , where the fitness values fx1x2d in the definition of the
epistasis measure ϵM are proportional to the genotype probability px1x2d = P (X1 = x1, X2 = x2, D = d), i.e.
fx1x2d = c · px1x2d for some c > 0. Given observational GWAS data, the genotype probability px1x2d – and thus the
fitness values – are estimated by the empirical frequency of genotypes in the data with loci X1 = x1, X2 = x2 and
disease status D = d.

G Pairwise and higher-order epistasis measure comparison
The pairwise chimeric measure ϵCij approximates the pairwise multiplicative epistasis measure ϵMij under certain con-
ditions. Specifically, if the double mutant fitness fij and the product fifj of the single-mutant fitness values are both
close to 1, i.e. fij ≈ 1 and fifj ≈ 1, then the pairwise chimeric epistasis measure ϵCij is approximately equal to the
pairwise log-multiplicative measure log ϵMij . To see this, note that

log ϵMij = log fij − log fifj ≈ (fij − 1)− (fifj − 1) = fij − fifj = ϵCij , (55)

where we use the approximation that log c ≈ c− 1 if c ≈ 1.
We empirically assessed (Figure S2) how closely the the pairwise chimeric epistasis measure ϵCij approximates

the interaction parameter βij (which is equal to the pairwise log-multiplicative measure log ϵMij ), using the simulated
fitness values f from the multiplicative fitness model (Section 2.4, pairwise interactions K = 2 with noise parameter
σ = 0). We observe that the chimeric measure has small error |ϵCij − βij | when both the double mutant fitness fij and
product fifj of single mutant fitness values are close to 1. However, the error gets much larger when either fij or fifj
are not close to 1, which agrees with when the the approximation in (55) is valid. Moreover, the multiplicative and
chimeric measures diverge substantially for higher-order interactions, with the correlation between the two measures
approaching zero as the interaction order increases (Figure S3).

This analysis demonstrates that for pairwise interactions, the chimeric epistasis measure ϵCij is an accurate measure
of interactions in a multiplicative fitness model in certain settings.
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Figure S2: Double mutant fitness fij versus product fifj of single mutant fitness values for each pair (i, j) of loci
across all simulated instances of the multiplicative fitness model in Section 2.4 (pairwise interactions with noise
parameter σ = 0). Points are colored by the difference |ϵCij − β| between the chimeric epistasis measure ϵCij and true
interaction parameter β.

H Yeast reanalysis

H.1 Reproducing previous results
We gathered fitness data from the supplemental tables of [42] and [2] in a way that was consistent with how the data
were described in the corresponding publications. To reproduce results from [42], we used data from Supplementary
Tables S1, S3, and S5. To reproduce those from [2] we used Table S1 along with Data File S1 from [31] which contains
three tables (SGA NxN.txt, SGA ExN.txt, SGA ExE.txt).

Following the formula and notation from the supplement of [2], we recalculated the trigenic interaction scores τijk
reported by [2, 42] (i.e. the chimeric three-way measures ϵCijk) using the following formula:

τijk = eij,k − eikfj − ejkfi (56)

where
eij,k = fijk − fijfk. (57)

Here, ejk and eik are the reported pairwise interactions between knockout mutant j, k and i, k, respectively. We
obtained the values of fi, fj , fk, fij , fijk, eik, and ejk directly from the data tables of [2, 42]. We recomputed the
trigenic interaction score τijk for 74% and 81% of the triple knockout mutants (i, j, k) reported in [42] and [2],
respectively, as some values were either missing or were ”NaN”. Our recalculated trigenic interaction scores were
highly similar to reported values: the distributions were nearly identical and values were highly correlated (Figure
S4), with a Pearson correlation of 0.9974 and 0.9809 for the data from [42] and [2], respectively.

We note that plugging (57) into (56) yields the following expression for the trigenic interaction score τijk:

τijk = fijk + 2fifjfk − fifjk − fjfik − fkfij . (58)

Computing the trigenic interaction score τijk using (58) should be identical to computing it using (56) (Figure S4).
However, we find that the scores calculated using (58) are quite different compared to the scores reported by [42, 2]
(Figure S5). This discrepancy is due to the fact that the reported values of fik and fjk are not equal to fifk + eik and
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Figure S3: Pearson correlation ρ(ϵC , log ϵM ) between chimeric measure ϵC and multiplicative measure ϵM for differ-
ent interaction orders K and each K-tuple of loci across all simulated instances of the multiplicative fitness model in
Section 2.4 (pairwise interactions with noise parameter σ = 0). The x- and y-axis ranges are [min ϵM ,max ϵM ].

fjfk + ejk, respectively. Thus, to make our reanalysis consistent with the reported trigenic interaction scores from
[2, 42], we recompute the trigenic interaction score using (56).

We computed the three-way multiplicative measure ϵMijk as

ϵMijk =
fijkfifjfk

fij(fifk + eik)(fjfk + ejk)
. (59)

In the denominator, we compute the double-mutant fitness values fik and fjk indirectly due to the aforementioned
issues with using the reported double-mutant fitness values fik and fjk. Our data handling procedures and analysis
are located in our Github repository.

H.2 Enrichment analyses
Physical interactions. To test whether subsets of trigenic interactions were enriched for protein-protein interactions,
we downloaded pairwise physical interaction data from BIOGRID (release 4.4.211) for Saccharomyces cerevisiae
(strain S288c) and only considered physical interactions discovered using the following experimental system types:
Affinity Capture-MS, Affinity Capture-Western, Two-hybrid, Reconstituted Complex, PCA, Co-purification, and Co-
crystal Structure. Using this information, we classified a given set of three genes as having a shared protein-protein
interaction if all three genes had a physical interaction with at least one other gene in the genome (not including the
genes in the set of three).

Coexpression. From COXPRESSdb [147], we downloaded union-type coexpression data, which integrates RNAseq
and microarray coexpression data, for S. cerevisiae. From these data, we only considered a pair of genes as signif-
icantly coexpressed if they had a Z-score greater than or equal to 3. To test whether subsets of trigenic interactions
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A

B

Figure S4: (A) Kuzmin et al 2020 [42]. Left: Density of the reported trigenic interaction score τijk (blue) and our
recalculation of τijk using (56) from fitness data (orange). Right: Calculation of the Pearson correlation between the
reported value of τijk and our recalculation of τijk using (56). (B) Same analysis as in (A) for data from Kuzmin et al
2018 [2]. Note that for this analysis, only negative values of τijk were reported.

were enriched for coexpressed genes, we classified a given set of three genes as coexpressed if at least two of three
possible gene pairs within the set had a coexpression Z-score greater than or equal to three.

GO enrichment. We downloaded GO Slim mappings from the Saccharomyces Genome Database and only con-
sidered GO terms corresponding to biological processes (i.e. with a GO aspect of ”P” in the GO Aspect column of
go slim mapping.tab). We then classified a given set of three genes as sharing a GO term if all three genes had at least
one GO term in common.

H.3 Trigenic interaction fraction
Kuzmin et al. [42] quantify functional redundancy between paralogs using a quantity that they call the trigenic inter-
action fraction. The trigenic interaction fraction is equal to the number of trigenic interactions involving both paralogs
divided by the sum of numerator and the number of digenic interactions involving at least one of the paralogs. Kuzmin
et al. [42] hypothesize that paralogs with higher trigenic interaction fractions are more redundant, whereas those with
low trigenic fractions have undergone subfunctionalization.

We compared the trigenic interaction fraction computed using the chimeric formula to the trigenic interaction
fraction computed using the multiplicative formula (Figure S10). We observe that for most gene pairs, the trigenic
interaction fraction is larger when it is computed using the multiplicative formula versus when it is computed using
the chimeric formula. Additionally, for the 15 paralogs that have many additional trigenic interactions found using the
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Figure S5: Same analysis as in Figure S4, except with the trigenic interaction score τijk calculated using (58).

multiplicative formula (highlighted in Figures 4C, D), we also observe elevated trigenic interaction fractions (Figure
S10). This observation further supports the conclusion that the multiplicative measure uncovers additional functional
redundancies between these paralogs.
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Figure S6: Single, double, and triple mutant fitnesses are shown for the cik1, vik1, sup35-td gene triple. On the
right-hand side of the plot is the predicted triple-knockout fitness using all single mutant fitnesses and pairwise multi-
plicative epistasis measures (ϵMij , ϵ

M
ik , ϵ

M
jk). The observed triple-knockout fitness is substantially higher than predicted,

indicating higher-order epistasis.
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Figure S7: Comparison of negative trigenic interactions reported by Kuzmin et al 2018 [2] and those detected using
the multiplicative epistasis formula. The analysis is identical to Figure 4 but using data from Kuzmin et al 2018 [2]
instead of Kuzmin et al 2020 [42].
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Figure S8: Comparison of negative trigenic interactions reported by [42] (top row) and [2] (bottom row) and those
detected using the multiplicative formula. These analyses are identical to those reported in Figure 4 and Figure S7
except we do not use the reported p-value from [2, 42] to filter negative interactions (see Section 2.5).
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Figure S9: Distribution of sequence divergence rates between paralogs interrogated by [42]. RPS24A-RPS25B and
ARE1-ARE2 have low sequence divergence rates of 0.041 and 0.051, respectively, whereas MSN2-MSN4 has a higher
divergence rate of 0.41.
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Figure S10: Comparison of trigenic fractions computed using the chimeric formula (x-axis) and the multiplicative
formula (y-axis) for paralog pairs with at least 6 total interactions (trigenic and digenic). Red dots indicate the paralog
pairs highlighted in Figure 4 which had many additional trigenic interactions according to the multiplicative measure.
The orange line indicates the point at which trigenic fractions are equivalent across measures.
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