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RNA abundance quantification has become routine and af-
fordable thanks to high-throughput ‘“short-read” technologies
that provide accurate molecule counts at the gene level. Sim-
ilarly accurate and affordable quantification of definitive full-
length, transcript isoforms has remained a stubborn challenge,
despite its obvious biological significance across a wide range
of problems. ‘“Long-read” sequencing platforms now produce
data-types that can, in principle, drive routine definitive iso-
form quantification. However some particulars of contempo-
rary long-read datatypes, together with isoform complexity and
genetic variation, present bioinformatic challenges. We show
here, using ONT data, that fast and accurate quantification of
long-read data is possible and that it is improved by exome cap-
ture. To perform quantifications we developed Ir-kallisto, which
adapts the kallisto bulk and single-cell RNA-seq quantification
methods for long-read technologies.
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Introduction

Advances in long-read RNA sequencing are facilitating tran-
script discovery, annotation improvements, and detection of
isoform switching, thanks to reductions in cost and decreas-
ing error rates as the technologies mature (1-3). Specifically,
long-read RNA-seq can readily detect gene fusion transcripts
and other expressed rearrangements in cancer (4), and iso-
form switching of biological consequence across develop-
ment (5, 6). In translational genomics, precision medicine
workflows are increasingly including gene and transcript on-
tology. These capabilities depend, in part, on accurate an-
notation of the genomes and transcriptomes of human and
model organisms, though they remain incomplete (7, 8). Im-
provements in long-read sequencing now allow for much
needed refinement of annotations for human and model or-
ganisms, coupled with rapid generation of genomes and an-
notations for non-model organisms (9). Importantly, while
annotation is mainly facilitated by transcript discovery, quan-
tification of isoforms is critical for filtering and thresholding
steps that are prerequisites for resolving locus structure and
quantifying their expression products (10).

While recent increases in affordability and sequence
quality are bringing full-isoform quantification within reach,

the long-read platforms are still rapidly changing and less
mature than short-read technologies (2). For example, Ox-
ford Nanopore Technology (ONT) sequencing has evolved
over many versions of chemistry in the library preparation
kits, pores, and signal processing algorithms. This has re-
sulted in a range of ONT data with various error profiles and
error distributions within the sequences. Of the quantifica-
tion tools that have been developed so far (11-19), many are
optimized for performance with a given generation of long-
read data and are now antiquated, in both accuracy and effi-
ciency, for processing the low error rate ONT data currently
being produced. Moreover, many methods are based on the
assumption of near uniform distribution of sequencing error
along reads; we found, as have others (20), that this does
not hold in practice. Furthermore, some ONT sequencing bi-
ases have now been described, including non-uniformly dis-
tributed sequencing error and sequence influenced error, such
as higher GC content and repeat regions increasing sequenc-
ing/base calling error (21).

By contrast, several accurate and efficient tools have
been developed for short read RNA-seq preprocessing (22—
27). However, even with the recent significant reduction
in the long-read RNA-seq error rates to ~0.5%, sequencing
errors remain informatically problematic and are compara-
tively much higher than the ~0.01% in short-read RNA-seq.
This makes the application of the fastest pseudoalignment
methods (25, 27) to long-reads nontrivial. Our approach,
which builds on kallisto (23-25, 28) and which we term Ir-
kallisto, demonstrates the feasibility of pseudoalignment for
long-reads; we show via a series of results on both biologi-
cal and simulated data that Ir-kallisto retains the efficiency of
kallisto thanks to pseudoalignment, and is accurate on long-
read data. Furthermore, we show that Ir-kallisto is robust to
error rates, making it suitable also for the analysis of previ-
ously published older long-read sequencing data.

Results

To assess the accuracy of Ir-kallisto with respect to data from
the current Oxford Nanopore Technologies platform (see Ma-
terials and Methods) we generated a deep coverage, high
fidelity dataset using long-read sequence and an Illumina
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Fig. 1. Ir-kallisto demonstrates high concordance between lllumina and ONT. (a) Experimental overview for comparison of exome capture vs. non-exome capture
LR-Split-seq libraries. (b) Kernel density estimations for read length distributions by capture strategy. (c) Percentage of demultiplexed reads by number of exons in each read
between exome and non-exome capture. (d) Ir-kallisto pseudobulk quantifications of exome capture for the C57BL/6J sample. (e) Ir-kallisto pseudobulk quantifications of
exome capture for the CAST/Eij sample. (f) Ir-kallisto pseudobulk quantifications of non-exome capture for the C57BL/6J sample. (g) Ir-kallisto pseudobulk quantifications of
non-exome capture for the CAST/Eij sample. Concordance Correlation Coefficient (CCC), Pearson, and Spearman correlations are shown for each comparison.

short-read sequence SPLiT-Seq nuclei of the left cortices
of two mouse strains as part of the IGVF consortium (29).
Specifically, 4 biological replicates (2 males and 2 females)
were assayed from both C57BL6/J and CAST/EiJ mice, all
at 10 weeks of age, with libraries generated with and without
targeted exome capture of all mouse protein coding exons
using the Twist Biosciences Mouse exome panel of 215,000
probes (Fig. 1a; see Methods). Thus our exome capture tran-
scriptome will be enriched for reads overlapping one or more
coding exons in the same cell. This platform and experimen-
tal design was chosen to produce starting data with a highly
relevant sequencing error profile for two very well character-
ized genomes whose natural genetic variation between strains
is similar to that found within individual human genomes.
This also sets the stage for using Ir-kallisto to study natural
genetic variation.

We found no effective difference in read lengths with
reads generated from exome capture as opposed to non-
exome capture libraries (Fig. 1b), though the exome cap-
ture library showed a smaller fraction of mono-exonic reads
(Fig. 1c). This indicated that exome capture is an effective
approach to increasing the transcriptome complexity of li-
braries. The Illumina and ONT sequenced libraries displayed
high transcript abundance concordance after quantification
with Ir-kallisto (Fig. 1d-g), showing that Ir-kallisto accurately
quantifies transcripts from long-reads, as well as demonstrat-
ing that deeply sequenced ONT libraries are suitable for high
accuracy quantification. The concordance correlation coef-
ficients (CCC), which measure how close the ONT and Illu-
mina quantifications are to being identical, were high for both
the exome capture and non-exome capture libraries (0.95 and
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0.96, respectively). Importantly, when comparing all long-
reads that were subject to exome capture versus those that
were not, we observed a 3-fold increase in the percentage of
spliced reads aligning (Supplementary Fig. 1a). Thus, we
find that exome capture reads help overcome the limitations
of RNA sampling in the nucleus, including expected reads
from unspliced precursor transcripts. The effect, as others
have noted (30) is to provide more informative reads to study
full-length, spliced transcript isoform usage at lower cost.
Furthermore, Ir-kallisto outperforms Bambu (15), IsoQuant
(17), and Oarfish (16) with respect to CCC, Pearson corre-
lation, and Spearman correlation (Supplementary Fig. 1b).
In particular, the Ir-kallisto CCC is 0.95 versus 0.82 for the
recently published Oarfish long-read quantification tool. We
found that Ir-kallisto also outperforms Bambu (CCC = 0.86)
and IsoQuant (CCC = 0.78) (Supplementary Fig. 1b), which
have previously been shown to outperform other long-read
quantification methods (2, 31). In addition to being more ac-
curate than other methods, Ir-kallisto is also more computa-
tionally efficient (Supplementary Fig. 1c). Note that the dra-
matic difference in time scales between PacBio and ONT is
due to the number of reads in the ONT datasets being much
higher, in general.

Importantly, Ir-kallisto can be used for both high-
throughput bulk RNA-seq as well as single-cell or single-
nuclei RNA-seq datasets (Supplementary Fig. 1d), and is not
only faster than other tools, but also benefits from the low-
memory requirements of kallisto (23, 28). For single-nuclei
RNA-seq processing, we used splitcode (32) to extract nuclei
barcodes, umis, and reads from the raw ONT reads and then
pseudoaligned and quantified the reads with Ir-kallisto (see
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Methods). 100% of barcodes from the ONT reads that passed
filtering were also found in Illumina sequenced reads (Sup-
plementary Fig. 1d). Increased UMI depth per nucleus yields
higher Spearman correlations, indicating that with deeper se-
quencing depth, short and long read correlations will only
improve (Supplementary Fig. 1dI). To assess the observed
correlations between Nanopore and Illumina, we evaluated
random oligo vs 3’ priming in Illumina sequenced reads and
ONT sequenced reads separately, in the same fashion, find-
ing lower correlations (majority of nuclei having a Spearman
p between 0.10 and 0.30) than between ONT sequenced reads
and I[llumina sequenced reads (Supplemental Fig. 1dII-IIT).

We also examined the concordance between the exome
capture and non-exome capture in both long and short reads,
and found it to be only CCC = 0.88, highlighting the dis-
tortion resulting from the coupling of exome capture with a
mix of 3’-end and randomly primed read sequencing that is
characteristic of Parse (Supplementary Fig. le).

The Ir-kallisto quantification results are corroborated
when comparing its performance to other tools on previously
published data that is less deeply sequenced. In a compar-
ison of Illumina and ONT on the HCT116 cancer cell line
dataset generated by SG-NEx (33), we found that Ir-kallisto
could accurately quantify isoform level expression, in per-
formance comparisons constituting two replicates of direct
c¢DNA and direct RNA (Supplementary Fig. 2a). The CCC
performance of Ir-kallisto exceeded that of Oarfish, evaluated
on this data in (16). Spearman correlations were lower over-
all in this dataset, indicating poor data quality, perhaps due to
the lower coverage and higher sequencing error rate. We also
compared Ir-kallisto’s performance on direct RNA to direct
cDNA (Supplementary Fig. 2b). We also found better perfor-
mance with direct cDNA versus direct dRNA, and hypothe-
size that this is likely due to ~4 times the depth of coverage
for replicate 4 in direct cDNA (7,656,893 reads) vs the direct
RNA replicate 4 (1,896,643 reads), whereas replicate 3 direct
cDNA (873,077 reads) vs direct RNA (1,185,183 reads) does
not have the increased depth of coverage. We also compared
Ir-kallisto to Bambu, IsoQuant, and Oarfish on a previously
sequenced mouse cortex PacBio dataset (Supplementary Fig.
2¢). On this dataset (34, 35), which has an error rate of 12.4%
(see Methods) and a different error profile with errors more
uniformly distributed along transcripts, we found similar per-
formance between programs with Ir-kallisto slightly outper-
forming other tools in CCC.

We benchmarked Ir-kallisto’s stability and robustness
compared to other long-read quantification tools across
species, platforms, and protocols, by evaluating Ir-kallisto’s
performance, along with Bambu, IsoQuant, and Oarfish using
the LRGASP’s challenge 2 benchmark (2) of long-read quan-
tification tools (Fig. 2). For our benchmarking, we chose
to focus on the Mouse ES data, as it had lower sequencing
error rates across 3 out of the 4 protocol/platform combina-
tions, thereby serving as the closer proxy for current long-
read data. We found that Bambu, IsoQuant, Ir-kallisto, and
Oarfish all achieved reasonably high CCCs between repli-
cates, both with respect to abundance estimates (Fig. 2a), and
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variability between isoforms (Fig. 2b). For completeness, we
also compared the performance of Ir-kallisto to Bambu, Iso-
Quant, Oarfish using the metrics of the LRGASP paper (Sup-
plementary Fig. 3). Resolution Entropy (RE) is a measure of
how well a tool uniformly quantifies at different expression
levels. Irreproducibility Measure (IM) is a measure of how
reproducibly the tool quantifies expression across replicates,
i.e., whether the coefficient of variation between replicates is
low. Consistency Measure (CM) is a measure of how consis-
tent the tool is at detecting expressed transcripts, assuming
that transcripts should be expressed simultaneously across
replicates, and ACVC is the Area under the Coefficient of
Variation Curve, which again assumes that for a given mean
expression level across replicates the coefficient of variation
should be low. We found that Ir-kallisto performs as well as
other programs on these stability and robustness measures.
The variability that we found in quantifications of replicates
can be explained by variable depth of sequencing between
the replicates and between the protocols and platforms (2).
The notable difference in ONT cDNA is due in part to a se-
quencing error rate of ~12%, which is characteristic of data
obtained in earlier ONT platform versions (36).

We assessed the performance of Ir-kallisto using sim-
ulated data across a range of sequencing error profiles, and
compared with results on the same simulated data for five
other widely used or recently published programs. We used
simulations generated by (17) who used the IsoSeqSim sim-
ulator (see Data and Code Availability) to generate PacBio
reads (6 million Mus musculus reads with ~1.4% sequenc-
ing error rate), and NanoSim (18) to generate ONT.R10.4
reads (30 million Mus musculus reads with ~2.8% sequenc-
ing error rate). The PacBio IsoSeqSim Simulation (Fig. 3a)
demonstrates Ir-kallisto’s high accuracy compared to the cur-
rently leading benchmarked long-read quantification tools
Bambu, IsoQuant, and Oarfish, with Ir-kallisto achieving a
CCC of 0.98, vs 0.90, 0.91, and 0.99, respectively (2, 31).
Furthermore, in the ONT NanoSim R10.4 Simulation (Fig.
3b), Ir-kallisto ties for the highest CCC of 0.97, vs 0.88 and
0.91, respectively.

We performed additional comparative evaluations of
Bambu, IsoQuant, Ir-kallisto, and Oarfish on a more exten-
sive set of simulations to understand the strengths and weak-
nesses these tools when confronted with different sequencing
error challenges (Supplementary Fig. 4). We found that Ir-
kallisto and IsoQuant were both robust to indel and substitu-
tion profiles simulated to match PacBio sequencing data and
uniformly distributed. IsoQuant was also robust to uniformly
distributed sequencing errors with indel and substitution pro-
files matched to ONT, whereas Ir-kallisto performance de-
graded at higher ONT error rates in this simulation (Supple-
mentary Fig. 4a). In particular, this highlights Ir-kallisto’s
sensitivity to the unrealistic combination of uniform sequenc-
ing error distribution and higher rate of insertion errors in
ONT versus PacBio.

In another ONT simulation generated with NanoSim
to produce reads with an 11.2% error rate (see Data and
Code Availability), Ir-kallisto achieved a CCC of 0.31 on
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and ONT (right-hand side) simulations with Concordance Correlation Coefficient (CCC), Normalized Root Mean Squared Error, and Pearson’s and Spearman’s correlation

coefficients reported.

all transcripts, outperforming IsoQuant (CCC = 0.28), and
underperforming Bambu (CCC = 0.51), and Oarfish (CCC
= 0.55) (Supplementary Fig. 4b). This was also the case
at a higher error rate (15.2%), with Ir-kallisto continuing to
outperform IsoQuant and underperform Bambu and Oarfish
(Bambu CCC = 0.53, IsoQuant CCC = 0.32, Ir-kallisto CCC
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= 0.34, Oarfish CCC = 0.58) (Supplementary Fig. 4c).

The performance of Ir-kallisto benefits from quantifica-
tion with respect to a de Bruijn graph (28). We tested whether
and to what extent changing the k-mer length default in Ir-
kallisto to 63 bp long vs 31 bp long in the reference tran-
scriptome de Bruijn graph creates a less connected and less
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complex structure (Supplementary Fig. 5). In this example,
of the Pax2 gene, we find that a change of k-mer length sim-
plifies the T-DBG with the reduction of a single node and 2
edges. However, when we scale this out to just the first 1000
transcripts listed in the LRGASP basic gencode human anno-
tation, we found a reduction from 3,698 nodes using the 31
k-mer T-DBG to 2,708 nodes using the 63 k-mer T-DBG and
4,687 edges to 3,238 edges, respectively. Furthermore, the
largest connected T-DBG graph component in the 63 k-mer
T-DBG is composed of 12.59% of the bp vs 65.90% in the 31
k-mer T-DBG. We believe that the selection of higher qual-
ity, low sequencing error regions from the reads by the 63 k-
mer T-DBG, combined increasing the probability of uniquely
mapping, or at the very least mapping to a transcript compat-
ibility class with less transcripts, is producing more accurate
and more efficient pseudoalignment.

Discussion

With Oxford Nanopore sequencing becoming more accessi-
ble due to low entry costs and reduced sequencing error rate
(37), long-read sequencing is advancing our ability to deci-
pher the complexity of transcriptomes. Increasing through-
put now makes it possible to not only perform discovery with
long-read sequencing, but also to accurately quantify tran-
script abundances, and we have shown that results compara-
ble to short-read sequencing can be achieved at reasonable
cost with exome capture, and with high accuracy quantifica-
tion using Ir-kallisto. Exome capture will be especially help-
ful for filtering out intronic reads that would be otherwise
sequenced in (single-)nucleus data, as nuclei are replete with
intron lariats and partially processed transcripts. Ir-kallisto
is highly accurate in producing quantification results on data
with less than 10% sequencing error rate comparable to those
with short-read sequencing. This makes Ir-kallisto immedi-
ately useful for current long-read sequencing transcriptome
projects, although performance will not be as good on legacy
higher error long-read sequencing datasets.

Furthermore, as described in Methods, Ir-kallisto is use-
ful for long-read sequencing of single-cell and single-nucleus
RNA-seq libraries when coupled with tools designed for bar-
code discovery (32, 38). Furthermore, Ir-kallisto is comptible
with translated pseudoalignment, which can be useful for de-
tection of viruses (39).

Finally, in this work we have focused on quantification.
However, Ir-kallisto can also be used, in principle, for tran-
script discovery. In particular, reads that do not pseudoalign
with Ir-kallisto can be assembled to construct contigs from
unannotated, or incompletely annotated, transcripts.

Data and code availability

The LRGASP data can be accessed from the accessions and
ftp links listed in the data folder of https://github.
com/pachterlab/LSRRSRLEFKOTWMWMP_2024.
IGVF Bridge exome capture and non-exome capture can be
accessed from the IGVF portal with the accession IDs in the
provided table.
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Accession ID Subpool Name | Read Type
IGVFDS4803WKTQ BO1_13G Nanopore
IGVFDS9445YYVB BO1_13H Nanopore
IGVFDS9522BMQK BO1_13G [lumina
IGVFDS0356VCIO BO1_13H [lumina

Table 1. IGVF Bridge exome capture and non-exome capture accession IDs.

The HCT116 cell line SG-NEx data was accessed on
March 13, 2024 at https://registry.opendata.
aws/sg-nex—data. The Ir-kallisto method is available
via release 0.51 of kallisto at https://github.com/
pachterlab/kallisto.

We used bambu v3.4.1, IsoQuant v3.3.0, and oarfish
v0.5.1 (with the exception of analysis of HCT116 data). In
the initial version of the preprint, oarfish (v0.3.1 and v0.4.0)
were used and the simulation data was run with samtools
sort (genome coordinate sorting), causing overcounting in
oarfish’s performance due to oarfish’s use of consecutive
alignments of the same read filtering; this has been updated
in this version of the manuscript. Simulation data is available
athttps://zenodo.org/records/11201284. Pro-
cessed abundance matrices for Figures 1-3 are available at
https://zenodo.org/records/13755772. Code
for reproducing the results and figures in the manuscript
is available at https://github.com/pachterlab/
LSRRSRLFKOTWMWMP_2024.
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Accession ID

File Name

IGVFDS4705QPIK

IGVFDS7467TPQO

IGVFDS3821ZEWS
IGVFDS1377KBXL
IGVFDS2498XYWS
IGVFDS9180SYAE

IGVFDS4019MYIG
IGVFDS6540HMFT
IGVFDS3833XYEY
IGVFDS5673HQEN
IGVFDS2760LQIX
IGVFDS9744VNMR
IGVFDS0231GDWH
IGVFDS1622ABWA

b01_nanopore_13G_single_cell_k63_both_mm39
b01_nanopore_13G_single_cell_k63_polyT_mm39
b01_nanopore_13G_single_cell_k63_randO_mm39
b01_nextl_13G_single_cell_k31_both_mm39
b01_nextl_13G_single_cell_k31_polyT_mm39
b01_nextl_13G_single_cell_k31_randO_mm39
b01_nanopore_13G_bulk_k63_casteij
b01_nanopore_13G_bulk_k63_mm39
b01_nanopore_13H_bulk_k63_casteij
b01_nanopore_13H_bulk_k63_mm39
b01_nextl_13G_bulk_k31_casteij
b01_nextl_13G_bulk_k31_mm39
b01_nextl_13H_bulk_k31_casteij
b01_nextl_13H_bulk_k31_mm39

Table 2. IGVF Bridge exome capture and non-exome capture processed accession IDs.
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Methods

Ir-kallisto. Many approaches have been applied to RNA-seq quantification from classical alignment approaches to pseudoalign-
ment paired with likelihoods and expectation-maximization (EM). Due to its speed, efficiency, and accuracy, pseudoalignment
with likelihoods and EM has been widely adopted for the mapping of short read RNA-seq. However, for long-read RNA-seq,
minimap2 has become the standard for aligning long-reads. Minimap2 follows the standard genome alignment methodology of
seed-chain-align (20). It creates a reference index in the form of hashing minimizers into keys for a reference hash table storing
the list of genomic/transcriptomic locations of the minimizer. For each read, minimap?2 uses read minimizers as seeds matching
these to the reference hash table and identifies the optimal collinear chain(s) of matches. While this method is accurate and has
been developed to be highly efficient for the alignment strategy used, it is still time and resource expensive with high memory
storage demands.

Ir-kallisto, building on the existing framework of kallisto and adapting the pseudoalignment and expectation-maximization
algorithm for long-reads, gives an accurate, fast, and low resource solution for mapping long-reads. The main technical chal-
lenge of long-reads lies in the higher sequencing error rates, though others include the differing rates of substitutions, deletions,
and insertions between long-read sequencing technologies, sequencing length, repetitive regions, and concatemers. To address
the challenge of higher sequencing error, different methods, including minimap2 (20), uLTRA (40), and STAR (41) have uti-
lized various approaches to long-read alignment. Minimap2 uses a small k-mer size of 14 and 15 for long-reads, while uLTRA
employs a two-pass chaining algorithm to improve alignment accuracy. Strobemers have been suggested using fuzzy k-mers
that allow error tolerance (42). In Ir-kallisto, we, instead, propose a long k-mer length and “chaining” pseudoalignment for
addressing the challenges of long-read alignment.

We must address two points: first, that sequencing length and long-read sequencing error rates require a different algorith-
mic approach to pseudoalignment and, second, the length bias in sampling longer transcripts less times. To address the first,
we propose the following algorithm for pseudoalignment and the change of index k-mer length to 63, which we discuss after
describing the algorithm. Both of these changes take into consideration the sequencing error rate and repetitive regions across
genes. While this idea is not a direct implementation of the chaining described in (20), it can be understood in a similar way.
Within kallisto’s pseudoalignment, a read’s transcript compatibility class is determined. For short reads, this is accomplished
with a strategy that increases efficiency by checking the transcript compatibility class for the first, middle, and end of k-mers
in the read if the distance to the end of the contig is longer than the read or the first, middle, and end k-mers of the read within
the region that is consistent with the contig in the transcriptome de Bruijn graph (T-DBG) (to ensure that the read is consistent
with the T-DBG junctions) and then proceeds to the next contig in the read. If they are all the same, these are the only k-mers
checked, while if they differ a more iterative approach is taken. We then take the intersection of these transcript compatibility
classes. Whereas, in Ir-kallisto, if the intersection of transcript compatibility classes (TCCs) a read maps to is empty, we instead
take the most often occurring TCC. Moreover, if at least one k-mer maps uniquely to a transcript, then we take the most often
occurring TCC among mapping k-mers that are uniquely mapping to a single transcript. In the case of the intersection, the
intersection can directly be interpreted as the transcript or set of transcripts that the read has the longest combined stretches
of compatibility with, since the intersection takes the subset of transcripts that coexist between all k-mers with compatible
transcripts. However, the intersection may be empty in the case of a variant or error creating an isolated stretch of compatibility
with a disjoint transcript compatibility class. Furthermore, in the case that the intersection is empty and the algorithm switches
to using the mode of transcript compatibility classes with threshold one, the calculated mode across all transcript compatibility
classes that k-mers in the read mapped to is the transcript or set of transcripts that again is the “longest chain” of compatibility.

The change of k-mer length to 63 was based on empirical evidence showing improved performance over the standard
k-mer length of 31 for short reads. We found that across long-read technologies and simulations there was an improvement in
metrics of Normalized Root Mean Squared Error and Spearman’s correlation between Ir-kallisto quantifications and the ground
truth. In real data (both PacBio and ONT), we observed an increased rate of alignment of reads with a longer k-mer length for
PacBio sequencing error rate less than 2% and for ONT sequencing error rate less than 10%. Moreover, the longer k-mer length
improves the quality of mapping k-mers making it more probable that the read originates from the transcript compatibility class
it maps to. As k increases, the number of distinct k-mers also increases, but the number of contigs decreases. This implies
that the number of transcripts in a transcript compatibility class decreases on average with increasing length of k. Overall,
the complexity of the T-DBG decreases (Supplementary Fig. 5), increasing the probability of the read originating from the
transcript compatibility class it is mapping to. Furthermore, this also increases the probability of the intersection of equivalence
classes being nonempty, which increases the overall mapping rate.

To address the second point, we adapted the effective length within kallisto to be transcript specific, i.e., defining the
effective transcript length for a transcript ¢ to be:

Z lreads aligningtot
# reads aligning to ¢

lefr,t =

We use the first 1 million aligning reads to compute these effective, transcript-specific lengths. We found that length
normalization was effective at low sequencing error rates (< 2%), providing a slight improvement in results, and was detrimental
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to performance at high sequencing error rates.

Finally, we implemented a change to the expectation-maximization (EM) algorithm for long-reads. In the default option,
we initialize transcript abundances to a uniform distribution on the multi mapping counts with the unique counts for each
transcript added to the initialization of a transcript abundance. In the long-read option, we first apportion multi-mapping reads
using the EM algorithm starting with a uniform distribution of multi-mapping reads among those mapped to transcripts, and
then post EM we add the uniquely mapping counts to each transcript. We found that the latter option works better for the
PacBio InDel profile with uniform error in reads and has reduced performance in the wild with real PacBio and ONT reads and
simulations based on real data.

Mice and Tissue Collection. Mice were housed at the UC Irvine Transgenic Mouse Facility (TMF) in a temperature-
controlled pathogen-free room under 12-hour light/dark cycles (lights on at 07:00 hr, off at 19:00 hr). The animal experiments
were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC), protocol AUP-21-106, “Mouse
genomic variation at single cell resolution”. Left cerebral cortex tissues of 10-week-old mice were harvested from 4 C57BL/6J]
and 4 CAST/EiJ (2 males and 2 females per genotype) between the hours of 09:00 to 13:00. Tissues were stored in 1 mL
Bambanker media in cryotubes kept at -80°C until nuclei isolation.

Purification of Nuclei from Mouse Tissues. Tissues were thawed in Bambanker media on ice until the tissue could be
extracted and lysed using Nuclei Extraction Buffer (Miltenyi Biotec cat. #130-128-024). Using forceps, tissues were transferred
to a chilled gentle MACS C Tube (Miltenyi Biotec cat. #130-093-237) with 2 mL Nuclei Extraction Buffer supplemented
with 0.2 U/uL. RNase Inhibitor (New England Biolabs cat. M0314L). Nuclei were dissociated from whole tissue using a
gentleMACS Octo Dissociator (Miltenyi Biotec cat. #130-095-937). The resulting suspension was filtered through a 70 um
MACS SmartStrainer then a 30 um strainer (Miltenyi Biotec cat. #130-110-916 and #130-098-458, respectively). Nuclei were
resuspended in 3 mL PBS + 7.5% BSA (Life Technologies cat. #15260037) and 0.2 U/uL RNase inhibitor for manual counting
using a hemocytometer and DAPI stain (Thermo Fisher cat. #R37606).

Nuclei Fixation. After counting, 4 million nuclei per sample were fixed using Parse Biosciences’ Nuclei Fixation Kit v2 (cat.
#ECF2003), following the manufacturer’s protocol. Briefly, nuclei were incubated in fixation solution for 10 minutes on ice,
followed by permeabilization for 3 minutes on ice. The reaction was quenched, then nuclei were centrifuged and resuspended
in 300 uL Nuclei Buffer (Parse Biosciences cat. #ECF2003) for a final count. DMSO (Parse Biosciences cat. #£CF2003) was
added before freezing fixed nuclei at -80°C in a Mr. Frosty (Sigma-Aldrich cat. #635639).

Split-Seq Experimental Protocol. Nuclei were barcoded using Parse Biosciences’ WT Kit v2 (cat. #ECW02030), following
the manufacturer’s protocol. Fixed, frozen nuclei were thawed in a 37°C water bath and added to the Round 1 reverse tran-
scription barcoding plate at 19,500 nuclei per well, with alternating columns in rows A and C containing C57BL/6J males and
females and rows B and D containing CAST/EiJ males and females. In situ reverse transcription (RT) and annealing of barcode
1 + linker was performed using a thermocycler (Bio-Rad T100, cat. #1861096). After RT, nuclei were pooled and distributed
in 96 wells of the Round 2 ligation barcoding plate for the in situ barcode 2 + linker ligation. After Round 2 ligation, nuclei
were pooled and redistributed into 96 wells of the Round 3 ligation barcoding plate for the in situ barcode 3 + UMI + Illumina
adapter ligation. Finally, nuclei were counted using a hemocytometer and distributed into 8 subpools of 13,000 nuclei. The
nuclei in each subpool were lysed and cDNA was purified using AMPure XP beads (Beckman Coulter cat. #A63881), then
the barcoded cDNA underwent template switching and amplification. Importantly, for two subpools (“13G” and “13H”) we
increased the number of PCR cycles to 13 cycles from 12, and increased the extension time from 3 minutes to 13 minutes in
order to increase the yield of full-length barcoded cDNA. cDNA from one of the subpools (“13G”) also received exome capture
treatment using Parse Biosciences’ Custom Gene Capture Kit (cat. #GCE1001) and a Mouse Exome Panel (Twist Bioscience,
cat. #102036). 1 ug of cDNA was hybridized with a blocker solution to block repetitive sequences, then hybridized with
the exome panel overnight. Captured molecules were purified using Streptavidin beads, then amplified again using the cDNA
amplification reagents from the WT Kit v2 (Parse Biosciences cat. #ECW02030). The cDNA for all 8 subpools were cleaned
using AMPure XP beads and quality checked using an Agilent Bioanalyzer before proceeding to Illumina and Nanopore library
preparation. All 8 subpools were fragmented, size-selected using AMPure XP beads, and [llumina adapters were ligated. The
cDNA fragments were cleaned again using beads and amplified, adding the fourth barcode and P5/P7 adapters, followed by
size selection and quality checking with a Bioanalyzer. Libraries were sequenced with two runs of the Illumina NextSeq 2000
sequencer with P3 200 cycles kits (1.1 billion reads) and paired-end run configuration 140/86/6/0. Libraries with 5% PhiX
spike-in were loaded at 1000 pM for one run and 1100 pM for the second run and sequenced to an average depth of # million
reads per library.

Long-Read-Split-Seq Experimental Protocol and Base Calling. Nuclei were barcoded and cDNA was purified as spec-
ified in the previous section. LR-Split-seq libraries were generated using an input of 200 fmol from the amplified, barcoded
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Split-seq cDNA before fragmentation (section 2 of the Split-seq protocol). Libraries were built using Oxford Nanopore Tech-
nologies Ligation Sequencing Kit (SQK-LSK114) and NEBNext Companion Module for Oxford Nanopore Technologies Lig-
ation Sequencing (E7180L). The Short Fragment Buffer (SFB) from the Ligation Sequencing Kit (SQK-LSK114) during the
second wash step. Libraries were loaded on R10.4.1 flowcells (FLO-PRO114M, FLO-MIN114) with an input of 20 fmol and
12 fmol, respectively. Sequencing was performed on the GridlON and PromethION 2 Solo instruments using the MinKNOW
software.

Bases were called from reads with Oxford Nanopore base-calling software Dorado v0.5.0 (https://github.com/
nanoporetech/dorado) in super-accurate mode using config file dna_r10.4.1_e8.2_400bps_sup@v4.1.0 for both the ex-
ome capture and non-exome capture data, as well as the MinION and PromethION data.

Long-Read-Split-Seq Preprocessing and Quantification with splitcode and Ir-kallisto. We first used splitcode to find
barcodes and umis using linkers and reverse complements of linkers, allowing a total of 3 errors in linkers. We then used
a custom python script to reverse the order of barcodes extracted from reverse strand to be in the same order as forward
strand barcodes. Subsequently, we apply splitcode to combine and split randO and polyT barcodes from round 1 of Split-Seq
barcoding, allowing 1 substitution or indel per barcode, 39,027,314 out of 105,591,654 raw reads passed this pipeline. We then
use Ir-kallisto to pseudoalign and quantify the resulting reads; 22,197,716 of the reads pseudoalign. We performed QC with a
500 UMI threshold per nuclei and filtered to genes present in at least 100 cells.

Error rate estimation. Error rates for the PacBio dataset (34) were calculated by analyzing a subsample of 1/8th of the
reads using the NanoSim read characterization module with the command ‘read_analysis.py transcriptome -i *fastq* -rg ref-
erences/genome.fa -rt references/transcriptome.fa -annot references/annotations.gtf -t 8 -o output_folder*. Error rates for the
LRGASP datasets were also calculated this way, without need for subsampling.

Benchmarking and comparisons. In benchmarks and comparisons of programs, we used Bambu v3.4.1, IsoQuant
v3.3.0, and Oarfish v0.5.1. For the HCT116 data we also ran Oarfish 0.3.1 so as to be able to make a direct compar-
ison with the results of (16). We ran Oarfish according to the scripts at https://github.com/COMBINE-lab/
lr_guant_benchmarks/blob/0b89465420250d3511044fdc3d988a320aba773c6/snakemake_rules/
isoquant_sim_data/alignment/alignment_transcriptome/align.snk and https://github.
com/COMBINE-lab/lr_quant_benchmarks/blob/0b89465420250d3511044£dc3d988a320aba73c6/
snakemake_rules/isoquant_sim_data/quantification/oarfish_gquant/quant.snk. In a previous
version of this preprint (43), Oarfish v0.3.1 and v0.4.0 were used and the simulation data was run with SAMtools sort as in
(44). This appears to have resulted in overcounting that degraded Oarfish’s performance.
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