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Abstract (200 words) 33 

Inflammatory cytokine production and de novo neurovascularization have been identified in painful, 34 

degenerated intervertebral discs (IVDs).  However, the temporal trajectories of these key pathoanatomical 35 

features, including the cascade of inflammatory chemokines and neo- vessel and neurite infiltration, and 36 

their associations with IVD degeneration, remain relatively unknown.  Investigating this process in the 37 

caudal mouse IVD enables the opportunity to study the tissue-specific response without confounding 38 

inflammatory signaling from neighboring structures. Thus this study aims to define the progression of 39 

chemokine production and neurovascular invasion during the IVD degeneration initiated by injury in the 40 

caudal spine 3-month-old C57BL6/J mice. Forty-nine IVD-secreted chemokines and matrix 41 

metalloproteinases (MMPs) was measured using multiplex ELISA, and the intradiscal infiltrating vessels 42 

(endomucin) and nerves (protein-gene-product 9.5) was quantified in the tissue volume using 43 

immunohistochemistry.  Injury provoked the increase secretion of IL6, CCL2, CCL12, CCL17, CCL20, 44 

CCL21, CCL22, CXCL2 and MMP2 proteins. The centrality and structure of inflammatory networks in 45 

IVDs evolved over the 12 post-injury weeks, highlighting distinct responses between the acute and 46 

chronic phases. Neurites propagated rapidly within 2-weeks post-injury and remained relatively constant 47 

until 12-weeks. Vascular vessel length was observed to peak at 4-weeks post-injury and it regressed by 48 

12-weeks. These findings identified the temporal flux of inflammatory chemokines and pain-associated 49 

pathoanatomy in a model of IVD degeneration using the mouse caudal spine.50 
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1. Introduction 51 

Low back pain affects up to 85% of the population worldwide1,2, and intervertebral disc (IVD) 52 

degeneration is a significant contributing factor.3 The IVD is a cartilaginous soft tissue and is considered 53 

avascular and aneural.4  Sandwiched between vertebral bodies, the IVD provides resistance against 54 

compressive loads and shock absorbance for the axial skeleton. With aging and injury, the IVD 55 

degenerates with the compromised ability to perform these essential functions and ultimately leading to 56 

low back pain.3  In addition to the structural collapse and the depletion of proteoglycan-rich matrix, other 57 

hallmarks of the degenerating IVD may be culprits to chronic pain, including the production of 58 

inflammatory chemokines, expression of catabolic enzymes5,6, and the invasion of neurites and 59 

vessels.7,8,9,10 Chemokines canonically recruit immune cells, which in turn secrete more chemokines that 60 

further exacerbate the inflammatory state of the degenerating IVD11, and the immune cells can further 61 

accelerate the breakdown of the extracellular matrix.12,13 Chemokines produced by the IVD may also 62 

contribute to neuron and vessel propagation around and into the outer annulus fibrosus which may 63 

mediate of IVD degeneration associated low back pain.14 Further, chronic presence of these chemokines 64 

can sensitize nociceptive neurons to produce more pain signals.58 65 

 Animal models are a common tool for studying IVD degeneration. Injury such as via mechanical 66 

overloading15–18 or needle puncture19–33 are used to provoke degeneration of the IVD. Though the lumbar 67 

spine is more clinically relevant as a site of pain generation compared to the caudal spine, the surgical 68 

exposure required to access the lumbar IVD is traumatic, and the surrounding inflammation may 69 

confound the IVD-specific responses.  Puncture injury to the caudal IVD does not require surgical 70 

exposure and can be implemented with relatively simple surgical exposure or radiographic guidance.25  71 

Furthermore, the murine caudal spine consists of 27 intervertebral discs, compared to just 5 in the lumbar 72 

spine,34 and thus enable better control of inter-animal variability by allowing comparisons of IVDs 73 

subjected to different treatment conditions within the same mouse. Therefore, the caudal spine may be 74 

more experimentally efficient for investigating IVD-specific disease mechanisms. 75 
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 To effectively leverage the advantages of the caudal model, it is crucial to define the progression 76 

of the inflammatory cascade and pain-related neurovascular features over time.  Both neurites and vessels 77 

have been observed in aged mouse lumbar IVDs35 and in human degenerated IVDs8, but the time course 78 

of how the caudal IVD recapitulates these features is unclear.   Therefore, the objective of this study is to 79 

define the temporal progression of neurites, vessels, and the local production of chemokines during 80 

injury-induced degeneration of the mouse caudal IVD.   81 
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2. Materials and Methods 82 

2.1 Animal model 83 

All animal procedures were performed with Washington University School of Medicine IACUC 84 

approval. Three-month-old C57BL6/J female mice (N = 35) were used in this study. They were housed 85 

under standard animal husbandry conditions (in a temperature-controlled [21�±�1°C] room with normal 86 

12-h light/dark cycles). Bilateral puncture with 30G needle of caudal (Coccygeal - Co) intervertebral 87 

discs (IVD) was performed and adjacent IVDs were used as internal controls. Pre- and post-procedural X-88 

ray (Faxitron UltraFocus 100) was used to locate the IVDs of interest to confirm puncture. Co4/5 and 89 

Co6/7 were injured with Co3/4 and Co7/8 acting as internal controls. A group of animals (n = 5) 90 

underwent a sham procedure to create a superficial injury where the only the skin and surrounding soft 91 

tissue was punctured without injury to the IVD. Longitudinal assessment of pain behavior and locomotive 92 

performance was performed on a subset of animals (Supplemental methods). The mice were euthanized at 93 

2, 4 and 12 weeks (n = 9-10 per timepoint) after injury; all sham mice were taken out to 12 weeks. Paired 94 

control and injured IVDs from bilateral puncture mice were divided between OCT embedded histology 95 

(Co3/4 and Co4/5; n = 9-10 per timepoint), paraffin embedded histology (Co7/8 and Co6/7; n = 5 per 96 

timepoint) and organ culture (Co7/8 and Co6/7; n.= 4-5 per timepoint). Sham control and punctured IVDs 97 

were divided between immunohistochemistry (Co3/4 and Co4/5) and paraffin embedded histology (Co7/8 98 

and Co6/7).  The lumbar dorsal root ganglions were also extracted from a subset of animals and 99 

underwent staining for TRPV1 (Supplemental methods).  All samples for histology were immediately 100 

fixed in 4% paraformaldehyde at time of sacrifice for 24-48 hours.  101 

 102 

2.2 Paraffin embedded histology 103 

Spinal segments with Co7/8 and Co6/7 (n = 5 per timepoint) were embedded in paraffin and 10 µm thick 104 

sagittal sections were stained with Safranin-O against FAST green. IVDs were graded using a 105 

standardized 35-point histopathology scale.36 Three independent blinded individuals graded all 106 

histological sections to consensus.  107 
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2.3 Quantification of Secreted Factors 108 

Co7/8 and Co6/7 (n = 4-5 each per timepoint) functional spinal units (FSUs) were immediately placed in 109 

tissue culture media at time of sacrifice. Culture media consisted of 1:1 Dulbecco's modified Eagle's 110 

medium: Nutrient mixture F-12 (DMEM:F12) supplemented with 20% fetal bovine serum and 1% 111 

penicillin–streptomycin. FSUs were cultured for 6 days at 37°C and 5% CO2 with a complete media 112 

change after 3 days. Media that was collected on Day 6 was analyzed as described here.   113 

The chemokines were measured using the Luminex™ 200 system (Luminex) using two separate kits, a 114 

32-plex and a 12-plex assays (MilliporeSigma) to detect a total of 44 markers. The 32-plex included 115 

Eotaxin (CCL11), granulocyte colony-stimulating factor (GCSF), granulocyte-macrophage colony-116 

stimulating factor (GMCSF), IFN-γ, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 117 

(p40), IL-12 (p70), IL-13, IL-15, IL-17, IP-10 (CXCL10), KC (CXCL1), leukemia inhibitory factor 118 

(LIF), LIX (CXCL5), MCP-1 (CCL2), MCSF, MIG (CXCL9), MIP-1α (CCL3), MIP-1β (CCL4), MIP-2 119 

(CXCL2), RANTES (CCL5), TNFα, and VEGFA. The 12-plex measured 6Ckine/Exodus2 (CCL21), 120 

Fractalkine (CX3CL1), IFN-β1, IL-11, IL-16, IL-20, MCP-5 (CCL12), MDC (CCL22), MIP-3α 121 

(CCL20), MIP-3β (CCL19), TARC (CCL17), and TIMP-1. Assay sensitivities of these markers range 122 

from 0.3–30.6 pg/mL.  Matrix metalloproteases (MMPs) were quantified using a single 5-plex kit 123 

(MilliporeSigma). This kit measured MMP-2, MMP-3, MMP-8, proMMP-9 and MMP-12. Assay 124 

sensitivities of these markers range from 1.6 – 8.4 pg/mL. Individual analyte sensitivity values for all kits 125 

are available in the MilliporeSigma MILLIPLEX® MAP protocol.  126 

2.4 Evaluation of intradiscal vascularization and innervation 127 

The spinal segments including Co3/4 and Co4/5 IVDs (n = 9-10 per timepoint) were embedded in OCT 128 

and sectioned along the sagittal plane at a 50 µm thickness. Frozen sections were stained with anti-protein 129 

gene product 9.5 (PGP9.5) and anti-endomucin (EMCN) against DAPI. PGP9.5 is a neuronal marker for 130 

sensory and autonomic nerve fibers and EMCN is an endothelial cell marker. Visualization of PGP9.5 131 

and EMCN was achieved with Alexa Fluor 488 (green) and Alexa Fluor 647 (red) antibodies, 132 

respectively.  133 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.12.603182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.12.603182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Three-dimensional image stacks were obtained via confocal fluorescence microscopy (DMi8, 134 

Leica Microsystems) and a maximum intensity image of each 50 μm section was generated for analysis. 135 

Nerves and vessels were semi-automatically traced using ImageJ 2.3.0 SNT plugin.37  Individual structure 136 

lengths were tabulated and total neurite and vessel length was calculated including both the posterior and 137 

anterior sides of the IVD.  The outer annulus fibrosus and immediately adjacent tissues were included as 138 

the region of interest (ROI) for quantification.  139 

 140 

2.5 Cytokine Network Analysis 141 

To further characterize the temporal variation in inflammatory signaling, networks of cytokine 142 

interactions were constructed and analyzed using a custom MATLAB (Version: 9.13.0.2080170 R2022b) 143 

script. Networks were generated by calculating a Pearson correlation matrix for each timepoint by 144 

ratioing each analyte’s concentration between injured and uninjured discs for each animal. To focus only 145 

on strong protein correlations, a threshold (|r| > 0.7) was applied to the correlation matrices and self-loops 146 

were removed. The filtered matrices were used to create undirected graphs, with nodes representing 147 

cytokines and edges representing significant interactions. Eigenvector centrality and betweenness 148 

centrality were computed to determine important cytokines for each timepoint network. High-ranking 149 

cytokines shared between timepoints and unique to each timepoint were identified. Additionally, key 150 

network characteristics were extracted to understand the structure and function of the cytokine networks. 151 

The path length was computed as an average of the shortest finite paths between all pairs of nodes; 152 

modularity was computed using the Louvain community algorithm (Blondel et al., 2008). The Jaccard 153 

index calculated for all pairs of networks with 2-hop reachability matrices to allow for quantifying 154 

similarity between networks with a slight tolerance for indirect edge comparisons. Finally, networks were 155 

visualized using force-directed layouts with nodes colored by eigenvector centrality and sized by 156 

betweenness centrality. 157 

 158 

2.6 Statistics 159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.12.603182doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.12.603182
http://creativecommons.org/licenses/by-nc-nd/4.0/


A paired two-way ANOVA was used to test for an effect of injury and week post-injury between the  160 

experimental and control segments, at a significance level of 0.05 with a post hoc Tukey HSD (Prism 161 

10.2.2, GraphPad). A paired t-test was used to test for an effect of the superficial injury on experimental 162 

levels versus control segments in the sham-injured group only (12 weeks).  163 

{Figure 1}  164 
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Results 165 

3.1 Direct injury to the intervertebral disc causes rapid and sustained degeneration 166 

Bilateral puncture of the caudal intervertebral disc (IVD) resulted in mild to severe IVD degeneration (Fig 167 

2A). Complete collapse of the IVD was observed in the most severe cases. Co6/7 and Co7/8 IVDs from 168 

sham and bilateral puncture mice were graded on a histopathologic scale for IVD degeneration and total 169 

IVD grade was significantly increased in punctured IVDs compared to internal controls of injured 170 

(p<0.05, ANOVA) but no differences were detected in these levels in the sham mice (p=0.1, t-test; Fig. 171 

2B). Multiple compartments of the IVD showed degenerative changes, including the nucleus pulposus, 172 

annulus fibrosus and the interfaces at all timepoints after injury while cartilaginous endplates were only 173 

significantly degenerated at 12 weeks following injury (Fig. 2C). No effect of injury was observed in any 174 

pain behavior or locomotive assessments {Supplemental}. 175 

{Figure 2}  176 
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3.2 Chemokine production peaks at 2 weeks after injury 177 

Forty-four distinct chemokines and five MMPs were measured from the culture media of control and 178 

punctured functional spinal units from injured mice. An effect of injury was seen in both pro-179 

inflammatory chemokines (IL6 and TNFα) and immune cell recruitment chemokines (CCL4, CCL12, 180 

CCL17, CCL20, CCL21, CCL22 and CXCL2) (Fig 3). TNFα and IL1β are pivotal inflammatory 181 

chemokines in IVD degeneration, and in this experimental model we only see increased 182 

TNFα expression.38,39 The greatest difference between injured and control IVDs in chemokine production 183 

occurred 2 weeks after injury where significantly higher expression of CCL12, CCL17, CCL20, CCL22 184 

and TNFα with all but CCL20 returning to control levels by 4 weeks post injury and CCL20 by 12 weeks 185 

post injury (Fig 3A-E). CCL21 was elevated at 12 weeks after injury (Fig 3G). MMP-2 was detected as 186 

being affected by injury with the peak at 12 weeks post injury (Fig. 3J).  Approximately x chemokines 187 

were not detectable at any of the time points, while Y chemokines were not different over time 188 

(Supplemental Table 1). 189 

{Figure 3} 190 

 191 
 192 
3.3 Innervation and vascularization propagate at different temporal trajectories  193 

PGP9.5+ neurite and EMCN+ vasculature structures were manually segmented on a maximum projection 194 

image (Fig 4A). The region of interest (ROI) contained the anterior and posterior outer annulus fibrosus 195 

and surrounding tissue. High magnification ROIs show innervation and vascularization that colocalize in 196 

these areas (Fig 4B). Nerve and vessel structures were semi-automatically traced and lengths were 197 

tabulated in each IVD.  198 

{Figure 4} 199 

Sham mice showed negligible amounts of innervation and vascularization within their IVDs. Total length 200 

of each feature in each IVD was measured and an increased presence of both structures was observed as 201 

early as 2 weeks after injury (Fig 5A-B). PGP9.5+ neurite structures are observed 2 weeks following 202 
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injury and remain consistently increased through the 12 week period; in comparison, EMCN+ vessels 203 

peak at 4 weeks and appear to recede by 12 weeks after injury. Violin plots of punctured IVDs from 204 

injured mice show the tabulation of individual nerve and vessel lengths that were measured with the total 205 

number of structures written above the plot (Fig 5C-D). The distribution of nerves remains consistent 206 

through all 12 weeks while the number of vessels in the 150-300 µm range is dramatically reduced at 12 207 

weeks compared to 4 weeks post injury.  208 

{Figure 5} 209 

3.4 210 

There were several novel findings in identifying influential cytokines in the networks across the 3 211 

timepoints in this study. At 2 weeks post injury, pro-inflammatory (IL-4) and immune-cell recruiting 212 

(IFNγ, CCL2, CCL5) cytokines are high ranking in centrality. By week 4, these are no longer highly 213 

central, but IFNB1, IL12p70, and CXCL1 (which are immune-cell recruiting cytokines also highly central 214 

in the week-2 network) are still high-ranking nodes in centrality measures. Additional chemotactic and 215 

immune-cell regulating cytokines (CX3CL1, IL-16, and LIF) are highly influential in the network at week 216 

4. In moving to week 12, a unique set of cytokines and pleiotropic factors (IL9, CXCL2, CXCL9, CCL17, 217 

CCL20, and VEGF) are central to network activity. Throughout all time points, IL-11 and CCL4 were 218 

consistently highly ranked in both centrality measures. In analyzing the network characteristics, 219 

modularity greatly increases as time progresses after injury (0.269, 0.368, 0.466 for week 2, 4, 12 220 

respectively). This finding is corroborated by the increase in path length as time progresses (1.41, 1.69, 221 

and 1.80), wherein regulatory relationships become more distinct and linear while being less interactive 222 

and autoregulatory at later timepoints. In comparing network intersections, week 2 and week 4 are the 223 

most similar (0.327 Jaccard Index) while week 2 vs week 12 and week 4 vs week 12 are equally 224 

dissimilar (0.238 and 0.237 Jaccard Index respectively). 225 

{Figure 6} 226 

Discussion 227 
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IVD injury models are a commonly utilized tool for studying the progression of IVD degeneration. In 228 

contrast to the lumbar spine, where degeneration is known to evoke changes in pain behavior24,40, we did 229 

not observe any behavioral changes following injury in the caudal spine (Fig. S1).  Thus, the caudal IVD 230 

injury model is best suited to evaluate IVD-specific responses during degeneration.  The advantage of a 231 

non-invasive surgical approach and access to multiple levels promotes the reduction in number of 232 

research animals used in accordance to the 3R principle.41  The use of the caudal spine also minimizes the 233 

interference due to the disruption and inflammation of surrounding tissues compared to the complex 234 

surgical access to the lumbar spine. While there have been extensive studies showing the structural and 235 

compositional degenerative changes following caudal puncture25,29,30,42,43, limited data exists on additional 236 

aspects of IVD degeneration including innervation27,28 and vascularization and chemokine secretion from 237 

the explanted IVD.44 Our results here show that the caudal IVD produces a significant amount of diverse 238 

chemokines, and it is susceptible to developing pain-associated features after injury.  239 

Bilateral puncture of the caudal IVD resulted in quick and sustained IVD degeneration up to 12 240 

weeks post-injury. Both proinflammatory (IL6 and TNFα) and chemokines (CCL4, CCL12, CCL17, 241 

CCL20, CCL21, CCL22 and CXCL2) were elevated with injury, with the highest expression of a subset 242 

of chemokines compared to controls at 2 weeks following injury. These chemokines canonically recruit 243 

monocytes, T-cells, and lymphocytes.45 Yet chemokines are known to be pleiotropic and have been 244 

associated with additional functions such as IVD degeneration, pain, neurite growth and angiogenesis.46 245 

For example, CCL4 has been shown to be elevated in degenerated human IVDs and associated with pain 246 

behavioral changes in a rat model of IVD degeneration.6,47,48 TNFα injected into rat lumbar IVDs has 247 

been shown to enhance pain behavior changes, possibly through irritation of nerve endings.33 CCL17 and 248 

CCL21 induced dorsal root ganglion (DRG) axonal growth 49,50  and CXCL2 is a known mediator of 249 

angiogenesis.51 CCL17 and CCL22 through the receptor CCR4 were indicated to play a role in pain 250 

development and CCL22 was able to activate neurons and increase neuron excitability.52 Chemokines 251 

production of the IVD following injury may help provide further insights into the pathoanatomy of 252 
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innervation and vascularization as well as provide possible pathways for IVD degeneration associated low 253 

back pain. 254 

Correlative network analysis of the cytokine production revealed several key factors in both the 255 

acute and chronic phases of injury. CCL4, a factor significantly upregulated in the IVD within this injury 256 

model, is highly central in the cytokine network at all time points. In contrast, factors like CXCL2, 257 

CCL17, and CCL20 are also upregulated during injury but are only highly central at the latest timepoint 258 

of 12 weeks. This highlights two distinct regimes of chronic inflammatory degeneration within the IVD. 259 

Initially, factors like CCL4 may serve as directors early on and remain notably influential within the 260 

cytokine network all the way till the chronic timepoint of 12 weeks. In the end, however, there is a latent 261 

inflammatory network change in which CXCL2, CCL17, and CCL20 become prominent only during this 262 

final timepoint. This suggests that CCL4 may be a target for early intervention given its consistent 263 

influence on the expression of other cytokines, elevated expression during injury, and its suggested role in 264 

IVD degeneration and pain development previously mentioned. On the other hand, CXCL2, CCL17, and 265 

CCL20 may be more appropriate as targets of late-stage intervention in chronic painful degeneration of 266 

the disc, given their aforementioned roles in angiogenesis, pain development, immune cell recruitment. 267 

Network comparison revealed that both modularity and path length increase greatly with time after injury. 268 

This suggests that earlier timepoints are characterized by a broad variety of inflammatory pathways 269 

functioning in parallel (a notion supported by the peak upregulation of cytokines at 2 weeks post injury). 270 

Contrarily, later timepoints are characterized by a more specific and linear set of chronic cytokine 271 

relationships. This is further supported by the network similarity scores, with week 12 being highly 272 

dissimilar from week 2 and week 4. This ultimately suggests that the microenvironment of the injured 273 

IVD switches from promoting acute inflammation to promoting chronic inflammation between week 4 274 

and week 12, which could serve as the critical window for the mechanistic underpinnings of chronic 275 

inflammatory signaling to develop.  276 

Innervation of the IVD may be the potentiator of low back pain observed with lumbar puncture 277 

models and this feature is recapitulated here in the caudal spine. Studies have previously illustrated 278 
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innervation of the IVD following injury with detection of PGP9.5+ or CGRP+ staining injured IVDs, but 279 

without any quantification of the structures.19,26,28  Further, the coincidence of vascularization with neo-280 

innervation has been previously observed but the time course of vessel propagation into the IVD 281 

following injury has not been documented. To overcome these limitations, we semi-automatically traced 282 

neurite and vascular structures on maximum projection images of PGP9.5 and EMCN stained thick 283 

sections.37 This allowed for the tabulation of neurites and vessels present in the region of interest and their 284 

lengths for comparison. We observed a time-dependent vessel infiltration of the outer annulus fibrosus 285 

and surrounding tissue.  In contrast, neurites quickly infiltrated within two weeks of injury and remained 286 

at similar levels in the subsequent time post injury. It is likely that the penetration of the IVD by vessels 287 

would be considered prerequisite to infiltration by circulating cells, including monocytes and other 288 

immune cells that might be responsible for secretion of the chemokines. 289 

Behavioral assays can be used following lumbar puncture to quantify pain.20,23,24,26 A caveat of the 290 

caudal puncture model is that it does not produce axial low back pain as it does not endure the axial torso 291 

loadings.  Correspondingly, we observed no differences in behavioral measures between sham and 292 

bilateral puncture mice.  Although not measured here, there may have been localized measures of pain 293 

including sensitization of the tail to mechanical and thermal stimuli (e.g., Hargreave’s test, tail-flick).28,53 294 

Another possible surrogate of pain-related change is to quantify molecular expression of neurotrophic 295 

factors in the innervating lumbar dorsal root ganglia (DRG). The DRG has been linked to chronic pain, 296 

and the increase in the expression of pain-related neuropeptides as well as neuronal excitability may be 297 

the mediators of discogenic pain.54 Ongoing work utilizes immunohistochemical staining for altered 298 

presence of neurotrophic factors in lumbar DRGs that have a demonstrated role in mediating pain 299 

transmission in the spine  such as transient receptor potential cation channel subfamily V member 1 300 

(TRPV1). 301 

The method for quantifying innervation and vascularization of the IVD enabled measuring these 302 

features with greater fidelity. Protein analysis the IVD secreted chemokines revealed potential molecular 303 

mediators of IVD degeneration, innervation and vascularization with relevance to generation of 304 
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inflammation and pain. Many of the secreted chemokines found to be elevated may be associated with 305 

increased presence of infiltrating monocytes that may include macrophages, B-cells or T-cells.55,56 Not 306 

surprisingly, the key angiogenic factor, VEGFA, was not elevated at any of the measured timepoints.  307 

VEGFA is critically expressed early following tissue repair promote early angiogenesis, 55 and by two-308 

weeks following injury VEGFA has already exerted its effects as evidenced by robust vessel formation.  309 

In this study, we intentionally measured locally produced chemokines which will remove the effects of 310 

systemic changes in the animal. Recent work shows that the chronic NFκB activation in the caudal IVD 311 

produces a secretome that promote macrophage migration.57 Our data here confirm that a degeneration-312 

causing injury will upregulate a plethora of chemokines that will likely recruit multiple immune cell 313 

types55, concomitant with increasing neurovascular features.  Future studies quantifying the presence of 314 

these immune cells would advance our understanding of a role for local versus systemic changes in 315 

modulating chemokine secretion, as well as key factors that govern the infiltration of these pain-316 

associated features.    317 
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