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Abstract 
 
Directed evolution of proteins is critical for applications in basic biological research, 
therapeutics, diagnostics, and sustainability. However, directed evolution methods are labor 
intensive, cannot efficiently optimize over multiple protein properties, and are often trapped by 
local maxima. In silico-directed evolution methods incorporating protein language models 
(PLMs) have the potential to accelerate this engineering process, but current approaches fail to 
generalize across diverse protein families. We introduce EVOLVEpro, a few-shot active learning 
framework to rapidly improve protein activity using a combination of PLMs and protein activity 
predictors, achieving improved activity with as few as four rounds of evolution. EVOLVEpro 
substantially enhances the efficiency and effectiveness of in silico protein evolution, surpassing 
current state-of-the-art methods and yielding proteins with up to 100-fold improvement of 
desired properties. We showcase EVOLVEpro for five proteins across three applications: T7 
RNA polymerase for RNA production, a miniature CRISPR nuclease, a prime editor, and an 
integrase for genome editing, and a monoclonal antibody for epitope binding. These results 
demonstrate the advantages of few-shot active learning with small amounts of experimental 
data over zero-shot predictions. EVOLVEpro paves the way for broader applications of AI-
guided protein engineering in biology and medicine. 
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Introduction 
 

Protein diversity has been shaped by billions of years of evolutionary pressures, filtering 
potential design space for diverse biological activities. Emerging evidence suggests that these 
sequences embody a fundamental language of biology that can be modeled with deep learning 
to offer unique insights into the evolutionary processes that have sculpted life on our planet. 
Protein language models (PLMs) learn the grammar of protein diversity by training to complete 
masked amino acids across comprehensive protein sequence databases, generating emergent 
biological representations(1–4). Leveraging this rich representation of the evolutionary 
landscape, PLMs have been used to nominate protein variants with improved activity(5, 6). 
However, these approaches have had limited success. Generative PLMs, such as ESM3, 
ProtGPT2, and ProGen(7–9), can design novel proteins, but these de novo-designed variants 
typically only reach wild-type level activity after extensive rounds of experimental testing(7, 10). 
This inability of PLMs to substantially improve protein activity in zero-shot settings is driven by 
their inability to generalize to new contexts due to evolutionary constraints and limited training 
data. Active learning methods that combine context-specific data with deep learning models, 
including machine learning-directed protein evolution (MLDE) methods(11–13), have effectively 
improved diverse proteins(14, 15) but at the cost of comprehensive experimental evaluation. 
Merging active learning with PLMs may simplify the evolution process and overcome this 
shortcoming, but previous attempts (16) have not generalized well beyond proof-of-concept 
demonstrations like fluorescent protein engineering. 
 

Here we present a novel protein evolution model, EVOLVEpro (EVOlution Via 
Language model-guided Variance Exploration for proteins). EVOLVEpro evolves high-activity 
protein variants with few-shot learning and minimal experimental testing, achieving accurate 
prediction of high-activity mutants from sequence alone. This performance stems from a 
modular approach, combining an evolutionary-scale PLM with a top-layer regression model to 
learn a protein’s activity landscape and guide the directed evolution process in silico. By 
applying EVOLVEpro in a few-shot active learning framework, protein sequences with 
significantly higher activity can be nominated in a generalizable fashion with minimal effort. The 
modularity of the EVOLVEpro architecture allows this framework to scale with larger parameter 
PLMs. Moreover, EVOLVEpro prompting only uses protein sequences and does not require 
structural information, expert knowledge, or prior data. We demonstrate EVOLVEpro’s ability to 
evolve multiple activities of a protein simultaneously, opening up vast possibilities for its use in 
biology and medicine.  
 

We benchmark EVOLVEpro in silico across a panel of 12 different protein datasets, 
showing state-of-the-art performance, and then apply the final model for three different 
applications (antibody drugs, genome editing, and mRNA manufacturing) with five proteins: 1) a 
monoclonal COVID antibody, 2) a miniature CRISPR nuclease, 3) a Bxb1 integrase, 4) a prime 
editor, and 5) a T7 RNA polymerase. This demonstration is, to the best of our knowledge, the 
first demonstration of PLM-guided models to demonstrate utility in evolution across diverse 
protein families in non-reporter proteins like GFP. EVOLVEpro yields mutants with 2- to 515-fold 
improvement over initial proteins. We demonstrate in vivo liver editing with an EVOLVEpro-
engineered miniature nuclease and improved in vivo mRNA performance generated from an 
EVOLVEpro evolved T7 polymerase. Analyzing nominated mutations with the structure of the 
protein, EVOLVEpro explores diverse residues that are often in non-intuitive locations of the 
protein. Moreover, we found that the learned activity landscape is distinct, and often negatively 
correlated with, the fitness landscape inferred by the underlying protein language model. Lastly, 
we showcase EVOLVEpro’s utility in proposing multi-mutant protein sequences out of a vast 
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sequence space that enables final mutants with much higher activity than naturally observed 
proteins. EVOLVEpro establishes the capabilities of few-shot active learning with protein 
language models for optimizing proteins for diverse activities. 

 
Results  
 
Development and benchmarking of the EVOLVEpro model 
 
 We developed a deep learning based directed evolution framework called EVOLVEpro 
that involves: 1) a PLM to encode protein sequences into a continuous latent space to facilitate 
activity optimization, and 2) a top-layer regression model to learn the mapping between latent 
space and activity from a few number of data points (i.e. the low-N regime). We employ active 
learning by using the regression model to rank protein sequences according to their predicted 
fitness from which we select the top-ranked sequences to experimentally validate. This cycle is 
performed iteratively to evolve defined protein activities until they reach desired levels (Fig. 1A).  
 

We optimized EVOLVEpro across five parameters: 1) the strategy employed for the first 
round mutant selection, 2) the top-layer regression model that learns the activity landscape, 3) 
the active learning strategy for selecting mutants for the next round, 4) data processing for 
experimentally measured activities, and 5) the PLM embedding vector transformation (table S1, 
Data S1). To perform a grid search across this space, we curated a panel of twelve unique deep 
mutagenesis scanning (DMS) datasets for in silico validation (17–27) (table S2, Data S2). These 
twelve proteins represent diverse activities, including viral spike proteins, RNA-guided 
nucleases, lactases, and kinases, ensuring that the resulting model will be generalizable for 
learning diverse protein activity landscapes in the PLM latent space.  
 

We first focused on the ESM-2 protein language model because of its large training data 
and available model size of >200M proteins and 15B parameters, respectively. Using the ESM-
2 15B parameter model, our grid search found the optimal strategy was: 1) selecting a random 
set of first-round variants, 2) employing a random forest regressor discriminatory model to 
predict protein activities, 3) using residue pooled average embeddings, and 4) using a top-N 
selection strategy in each round of evolution (fig. S1A). This model nominated a high frequency 
of gain-of-function protein variants in only 5 rounds (fig. S1A-B). Since we focused on the 
percent of variants passing an activity threshold as our evaluation metric in the grid search, we 
next checked for increasing activity during in silico evolution. We found that both the median 
activity and the activity of the nominated top mutant increased monotonically from round to 
round across all DMS datasets, further validating the model’s performance in this low-N active 
learning setting (fig. S1B). 

 
In general, 16 mutants per round of evolution for 10 rounds identified top mutants with 

fitness up to 7-fold higher activity than starting wild-type sequence (fig. S1B). To understand 
how the number of variants per round affected performance, we tested between 10 and 100 
variants per round, finding that larger rounds increased prediction accuracy (fig. S1C). This 
performance trade-off indicates that EVOLVEpro can be used for both extremely low-N 
evolution (<20 mutants per round) for rapid and cheap experimental characterization and 
medium-N (~100 mutants per round) for quicker and more efficient evolution with fewer rounds.  

 
After optimizing the top-layer model and learning strategies, we optimized the PLM,  

comparing ESM-2 15B to a panel of foundational models. Using the optimal parameters from 
the grid search, we benchmarked performance against smaller versions of ESM-2 and ESM-
1(28), UniRep(16, 29), ProtT5(30), ProteinBERT(4), Ankh(3), one-hot encoding, and integer 
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encoded protein representations. ESM-2 15B parameter model outperformed all the other 
models for identifying the highest fitness proteins for all datasets except two, confirming its final 
selection for the EVOLVEpro latent space model (Fig. 1B, Data S3). Importantly, large 
parameter PLMs showed a significant boost in prediction accuracy compared to non-language 
model-based architectures, indicative of the powerful feature extraction present in transformer-
based models (Fig. 1B). 
 

We next benchmarked EVOLVEpro’s performance relative to other PLM-based 
engineering approaches. As many methods require pre-training a discriminatory model on 
thousands of variants, we tested versions of EVOLVEpro augmented with various amounts of 
pre-training (Fig. 1C). Active learning drastically reduced the overall number of mutants 
required: EVOLVEpro with only 5 rounds of evolution (16 mutants per round) was equivalent in 
performance to EVOLVEpro pre-trained with 160 mutants, while 10 rounds of evolution (16 
mutants per round) was equivalent to pre-training with 500 mutants. Moreover, EVOLVEpro 
significantly outperformed zero-shot prediction methods (6). This comparison confirms that the 
few-shot nature of EVOLVEpro allows for efficient directed evolution with minimal effort and low-
N testing per round (Fig. 1C, Data S4).  
 

Lastly, we analyzed the per-round evolution improvement for EVOLVEpro compared to 
one-hot and integer encoding and zero-shot prediction, finding that by round 5, variants with 
significantly enhanced fitness could universally be found (at 16 mutations per round) (Fig. 1D, 
fig. S2). Moreover, in many cases, the one-hot and integer encoding frameworks saturated 
much earlier in the evolution process and never reached the fitness levels achieved by 
EVOLVEpro. Interestingly, for some proteins we observe a non-linear increase in protein fitness 
after round 3, suggesting greater gains in mapping the protein fitness landscape as EVOLVEpro 
evolution proceeds. 
 
Antibody optimization with EVOLVEpro 
 

As a first test of EVOLVEpro, we optimized the binding interaction of the REGN10987 
antibody to the extracellular epitope of the SARS-CoV-2 spike protein. REGN10987, a 
component of an approved COVID-19 therapy (31), is engineered for neutralization of the 
SARS-CoV-2 spike protein and is refractory to previous in silico optimization (6). Given the 
challenge of improving REGN10987, it is an ideal first test of EVOLVEpro’s capabilities. 
Mutagenizing the heavy chain variable region with EVOLVEpro, we compared wild-type 
REGN10987 to 11 nominated mutants each round with an enzyme-linked immunosorbent assay 
(ELISA) against the SP6 stabilizing variants of SARS-CoV-2 spike protein(32). We found 
significant fold improvement (FI) in binding from only 1 round of EVOLVEpro, and five rounds of 
mutagenesis yielded variants that showed a 63% improvement by ELISA with an IC50 of 11.9 
nM (Fig. 1E, fig. S3A). We observed that the success rate of EVOLVEpro increased each round, 
with success increasing from 9.1% in the first random round to 54.5% in the last round. This 
improvement demonstrates EVOLVEpro’s top-layer model learns an activity grammar distinct 
from the fitness grammar captured initially by the underlying foundational model (Fig. 1E, fig. 
S3B).  
 

In the structure of REGN10987 bound to the spike epitope, one high-performing 
mutation (D63K) lies inside the 2nd complementarity-determining region (CDR), with other 
mutations clustered around the CDR3 in the framework region (HFR3), suggesting a role in 
enhanced antigen binding (Fig. 1F). To understand EVOLVEpro’s mutational trajectory, we 
represented the model’s attention to particular residues as cumulative frequency of individual 
residues being explored by the model and found that multiple residues are repeatedly explored 
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by the model including D63, D91, and N32 (fig. S3C). Across all nominated mutations, 
successive rounds of training focused on regions around CDR2, emphasizing the increased 
attention of the EVOLVEpro to specific regions of the protein. We next analyzed each mutant’s 
observed activity versus the PLM-predicted fitness. We calculated the mutant fitness as 
predicted marginal masked score within the ESM2 embeddings (pMMS) and found that the 
activities of EVOLVEpro variants did not correlate with fitness (fig. S3D). To extrapolate this 
finding across the entire REGN10987 mutational landscape, we projected the base layer PLM 
fitness score and top-layer random forest predicted fold improvement (pFI) in the latent space 
for every possible single mutation variant (fig. S3E-F). There was relatively little overlap 
between the two distributions, with a negative correlation of -0.22 between predicted fitness and 
predicted activity (fig. S3G).  
 
Evolution of a miniature RNA-guided CRISPR nuclease with EVOLVEpro 
 
 Programmable RNA-guided nucleases have diverse applications in basic biology, 
therapeutics, and diagnostics. However, commonly used nucleases, such as the Cas9 from 
Streptococcus pyogenes (SpCas9) are too large to effectively be packaged in common viral 
vectors such as adeno-associated viral (AAV), and more compact high-efficiency nucleases, 
such as the Cas9 from Staphylococcus aureus (SaCas9) still preclude the use of larger 
regulatory elements or protein fusions. Miniature Cas12f nucleases have compact sizes (<700 
residues) but suffer from reduced efficiencies, requiring significant engineering for genome 
editing applications(33). Previous Cas12f engineering efforts relied on DMS or rationally 
designed mutations to increase the in vitro cleavage activity(19, 34–37), requiring extensive 
screening to find the optimal variant. To accelerate miniature nuclease engineering, we tested 
whether EVOLVEpro could rapidly develop highly active Cas12f variants.   
 

We selected the Cas12f from Pseudomonas aeruginosa (PsaCas12f) for evolution with 
set indel formation at the endogenous RNF2 locus target site as the optimization metric (Fig. 
2A). After four rounds of evolution of 12 single mutants per round, EVOLVEpro yielded point-
mutants of PsaCas12f with up to 4.9-fold improvement in indel formation. This top variant, 
PsaCas12f K333V, had >40% indel efficiency at the RNF2 site (Fig. 2B, fig. S4A). To identify 
synergies between EVOLVEpro nominated mutants, we combined the top-performing variants 
from previous rounds in a fifth round. We evaluated a set of these multi-mutants and found that 
PsaCas12f I178A/K333V/K454P exhibited greater than 50% indel activity at the RNF2 locus, a 25% 
higher activity than any of the single mutants (fig. S4A). Given its performance, we refer to the 
PsaCas12f I178A/K333V/K454P variant as EVOLVEpro PsaCas12f (epPsaCas12f). Because these 
mutants synergize to produce an even more active enzyme, it suggests that the variants 
identified by EVOLVEpro are uniquely independent in mechanism, highlighting the insightful 
potential of the method. 

 
To generalize epPsaCas12f’s improved activity, we evaluated the enzyme at 10 different 

targets across five endogenous genomic loci, comparing to WT PsaCas12f and seven 
previously characterized Cas12 effectors, AsCas12a, Cas12Φ, UnCas12f1, enAsCas12f, 
OsCas12f, RhCas12f, and CasMINI(19, 35, 37–40). We observed consistently higher 
epPsaCas12f activity compared to WT PsaCas12f on 9 of 10 tested targets (Fig. 2C). Moreover, 
epPsaCas12f edited the 10 targets with a 23.3 ± 16.7% average indel rate, surpassing all tested 
miniature Cas12f effectors and AsCas12a with 2.2- to 44-fold improvement. Interestingly, 
epPsaCas12f generated an average deletion of 5-bp across the 10 tested targets, larger than 
the deletions generated by other orthologs (fig. S4B). Consistent with our mammalian data, 
purified epPsaCas12f exhibited higher biochemical DNA cleavage activity than WT PsaCas12f 
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(fig. S4C). Together, these data demonstrate that epPsaCas12f is a highly active, compact 
effector for mammalian genome editing that outperforms other small effectors. 

 
We applied epPsaCas12f for in vivo genome editing applications, using its compact size 

for single-vector viral delivery in vivo. We designed guides targeting a sequence 5′ of exon 3 in 
the mouse PCSK9 gene (Fig. 2D). The PCSK9 protein regulates blood low-density lipoprotein 
(LDL) by binding to LDL receptors, making it a valuable therapeutic target(41). We first tested 
the efficacy of epPsaCas12f in a murine hepatocyte cell line (Hepa 1-6) by co-transfecting 
murine codon-optimized epPsaCas12f and sgRNA targeting sequences 5′ of exon3 in the 
PCSK9 gene. Analyses of epPsaCas12f, WT PsaCas12f, and Staphylococcus pyogenes Cas9 
(SpCas9) revealed that epPsaCas12f robustly edited PCSK9 in Hepa1-6 cells with ~40% indel 
formation (comparable levels to SpCas9 and 3-fold higher than the WT PsaCas12f) (Fig. 2D). 

 
  After validation of epPsaCas12f in Hepa1-6 cells, we packaged both epPsaCas12f and 

its sgRNA targeting PCSK9 in a single AAV2/8 vector (Fig. 2E). AAV-epPsaCas12f was 

administered at a titer of 1.5✕1012 viral genome copies per mouse via retro-orbital injection into 
3-month-old C57BL/6J mice. We tracked blood PCSK9 levels for 14 days post-injection of AAV 
and found a significant decrease to around 50% of the original levels after 14 days (Fig. 2F, fig. 
S4D). We then harvested the liver at day 15, isolated the genomic DNA, and performed next-
generation sequencing to survey for indel formation at the PCSK9 target site (fig. S4E-F). We 
found around 7% on-target indel formation in the AAV-epPsaCas12f injected mice (fig. S4E), 
demonstrating that epPsaCas12f can be used for single-vector AAV-mediated genome editing. 
To survey off-targets, we used Cas-OFFinder to predict the top four off-target cleavage sites 
generated by epPsaCas12f and analyzed the guide-dependent off-target cleavage in the 
liver(42). We only found detectable editing at one of the four sites with a maximum level of 
0.27% indels, confirming minimal off-target cleavage triggered by epPsaCas12f (fig. S4G).  
 

To understand the mechanisms of the beneficial mutations nominated by the 
EVOLVEpro, we used Alphafold3 to predict the structure of PsaCas12f (Fig. 2G). The predicted 
structure provides insights into how the PLM-nominated mutations, including 
I178A/K333V/K454P, contribute to enhancing the DNA cleavage activity (Fig. 2G). The K333V 
mutation is located in the WED domain, suggesting that it could increase the binding to its RNA 
guide. The I178A mutation is located in the middle of the long α-helix in the REC domain and 
forms a hydrophobic core with I245 and L248 in the adjacent α-helix. Given that alanine is a 
helix-forming residue, the I178A mutation may stabilize the α-helix in the REC domain and thus 
augment the cleavage activity. The K454P mutation is located at the C-terminus of an α-helix in 
the RuvC domain and forms hydrophobic interactions with A509 and V511 in the adjacent α-
helix, suggesting that it also stabilizes the protein conformation.  
 

We then looked at the model’s attention to particular residues in the protein by 
calculating the cumulative frequency of individual residues explored by the model and found that 
multiple residues are repeatedly nominated by the model, including G147 and E451 (Fig. 2H). 
We calculated the pMMS for each nominated mutant to understand the relationship between the 
base layer PLM’s fitness prediction and the actual measured protein activity (Fig. 2I). We found 
that there is a weak negative correlation between fitness and activity in PsaCas12’s local 
context but EVOLVEpro nominated for higher activity mutants toward the later rounds contrary 
to high fitness mutants recommended by the PLM base layer (Fig. 2I). We then further projected 
both base layer PLM’s fitness score and top-layer random forest regressor’s activity score in the 
EMS2 latent space to better understand EVOLVEpro’s global mutational trajectory (Fig. 2J-L). 
We found a weak positive correlation of 0.03 between fitness and activity, further denoting the 
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necessity of a top-layer discrimination model to properly distinguish between high fitness and 
high activity (Fig. 2l).  
  
Engineering improved prime editors with EVOLVEpro 
 
 Many molecular tools, such as next-generation genome editing proteins, function as 
multiple enzymes acting in concert. Prime editing, which uses an RNA-templated reverse 
transcriptase to programmably install diverse genome edits, is the fusion of a SpCas9 nicking 
mutant (nCas9) with an engineered Moloney Murine Leukemia Virus Reverse Transcriptase (M-
MLV RT) [D200N, L603W, T306K, W313F, T330P] (termed PE2). We surmised that 
EVOLVEpro could improve upon these rational mutations, given further optimizations 
discovered on M-MLV RT by other directed evolution approaches(43). As PE-based insertion 
has difficulty installing longer (>40 nt) edits, we focused on editing outcomes with longer (46 bp) 
insertions, which have particular utility for programmable gene insertion methods, such as 
PASTE(44). We set up the evolution policy by using a previously described twinPE approach, 
where two overlapping pegRNAs are used in combination to install a 46bp attB site in the 
NOLC1 loci in murine hepatocyte cell line (Hepa1-6). Editing was quantified at NOLC1 loci using 
amplicon sequencing and NGS readout and the top-layer EVOLVEpro model was trained to 
predict the insertion efficiency (Fig. 3A). 
 
 Over successive rounds of optimization, we found that EVOLVEpro progressively 
learned the activity landscape of the RT of PE2, yielding improved variants after the initial 
random selection round and substantially improving upon PE2-based editing by round 4 (Fig. 
3B, fig. S5). To check for bias against this single loci in the genome, we took the top 4 
performing variants (A660S, L670C, L670K, and L671R) and surveyed their editing efficiency at 
three additional genomic loci (human AAVS1, human ALB, and mouse Factor IX) in two 
different cell lines and found statistically significant improvements for A660S in all four sites 
tested (Fig. 3C). These results point to the general protein activity improvement by our model, 
delivering an additional set of RT mutations specifically for larger edits.  
 
 Projecting the top mutations onto the Alphafold3-predicted structure of the RT reveals 
that most of them are clustered in the C-terminal RNase H domain (Fig. 3D), which is a 
surprising result since most PE evolution focuses on RT mutagenesis. We hypothesize that 
these mutations could alter the cleavage of the template DNA in the RNA-DNA heteroduplex by 
the RNaseH domain(45), facilitating the completion of the prime editing reaction, a route that 
has not been explored by traditional engineering of prime editors. We then further analyzed 
EVOLVEpro’s residue site preference during evolution and observed significant attention in 
residues like L670, L671, and A660, suggesting it was learning that these positions could be 
quite beneficial for improving activity (Fig. 3E). Analysis of predicted fitness (pMMS) scored by 
the bottom layer PLM again showed a divergence between fitness and activity for the prime 
editor (Fig. 3F), allowing EVOLVEpro to successfully use the top discrimination layer to navigate 
to the higher activity variants in later evolution rounds (Fig. 3F). 
 

Lastly, we try to understand the global mutational trajectory by projecting the activity 
landscape learned by the random forest regressor and base layer ESM2’s protein fitness 
landscape onto the first two PCAs of the embedding (Fig. 3G-H). We found almost no 
convergence between the two distributions with a negative correlation of 0.08 (Fig. 3I). This 
analysis points again to the divergence between the mutational landscape of a protein’s activity 
and the commonly used fitness landscape learned during a foundational model’s training on all 
protein sequences.  
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Bxb1 integrase evolution with EVOLVEpro 
 

Large serine recombinases (LSRs) are enzymes that facilitate precise DNA 
rearrangements, making them crucial tools for genome editing. Their ability to recognize specific 
DNA sequences and catalyze targeted recombination events allows for efficient and accurate 
modifications of genetic material, which is essential for advanced gene therapy, synthetic 
biology, and genetic research. We recently developed a gene insertion technology, PASTE, that 
leverages LSRs, specifically the Bxb1 integrase, for programmable gene insertion in eukaryotic 
cells(44). A limitation of Bxb1 integrase, however, is its activity saturates in the 20-60% range in 
cells, limiting the overall integration efficiency that can be achieved. We sought to therefore 
evolve Bxb1 using EVOLVEpro to improve its activity and demonstrate improved gene 
integration applications with PASTE in cells.  

 
To evolve Bxb1, we designed a simple integration assay in HEK293FT cells that 

involved the insertion of an AttP-containing DNA plasmid into an AttB target-containing plasmid 
(Fig. 4A). Integration can be measured by next-generation sequencing, and the evolution policy 
is designed to optimize this insertion efficiency. We started evolution with a round of 11 random 
Bxb1 point mutation variants and then over 8 rounds observed progressively increasing activity 
resulting in mutants with over 2-fold higher activity than wild-type (Fig. 4B, fig. S6A). As Bxb1 is 
already fairly active, this fold improvement is expected as we reach near-saturating levels of 
insertion. To validate the top hits from the evolution campaign, we performed a Bxb1 plasmid 
titration experiment in a separate cell line (Hela cells) and observed up to 4-fold improvement in 
recombination efficiency under low Bxb1 expression (Fig. 4C). We further validated the top hits 
by pre-installing attB sites into the genome of HEK293FT cells using lentivirus and then 
surveyed for integration efficiency of cargo in the genome. We found up to 4-fold improvement 
by EVOLVEpro’s mutants compared to wild-type (fig. S6B). We termed T166R the final 
EVOLVEpro Bxb1 candidate as enhanced Bxb1, or epBxb1.  

 
To test whether the epBxb1 variant’s improved activity can improve the programmable 

insertion of cargo DNA into the chromosome, we tested this variant in the context of PASTE and 
compared it against the wild-type Bxb1 across five different genomic loci. We found up to ~4-
fold improvement in the final large cargo insertion rate into the genome, which highlights the 
generalizable gain in activity (Fig. 4D, fig. S6C).  

 
An AlphaFold3-predicted model of Bxb1 bound to attachment site DNA indicates that the 

top beneficial EVOLVEpro mutations clustered in the Bxb1 DNA-binding domains, likely 
increasing the affinity to its DNA targets (Fig. 4E). Of these residues, V292S could directly 
interact with the phosphate backbone of the target DNA based on its positioning relative to the 
attachment site, whereas the others likely modulate DNA binding via indirect interactions. 
Analysis of the residue exploration by the model revealed that multiple positions, including 
F439, V375, and L275, are visited up to 15 times; the DNA-interacting residue V292 was also 
visited multiple times. Overall, this highlights EVOLVEpro's ability to recognize the functional 
importance of certain regions in the protein, much like structure-guided engineering approaches 
(Fig. 4F).  

 
We then calculated the relationship between the fitness (pMMS) and activity (observed 

fold improvement) for Bxb1 integrase and found a weakly positive correlation between the two 
metrics contrary to the other proteins reported evolves. This likely reflects a subset of protein 
families where protein stability and fitness as learned by the PLM can predict activity as 
previously reported(46) (Fig. 4G). However, given that the relationship is weak, a model like 
EVOLVEpro is still needed to efficiently and quickly reach high-performing variants without 
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encountering many false positives. Lastly, we found that the global mutation landscape learned 
by EVOLVEpro was still divergent from the predicted fitness (pMMS) by ESM2 with an even 
weaker correlation, further highlighting the ability of EVOLVEpro to learn protein activity at a 
global scale and how stability/fitness prediction is not sufficient for rapid and efficient protein 
evolution (Fig. 4H-J). 
 
Evolving T7 RNA polymerase for efficient and highly pure RNA production 
 

We finally sought to engineer an enzyme broadly useful for medicine and science, while 
also demonstrating the versatility of EVOLVEpro to evolve an enzyme in a multi-objective 
setting. We selected the T7 RNA polymerase (RNAP) due to its critical role in RNA production 
for mRNA therapies, mRNA vaccines, cell engineering, and basic scientific studies. As mRNA 
production has numerous features characterizing its potency and quality, as opposed to 
genome editing where one feature matters the most, we designed a multi-objective optimization 
function to evolve a high-fidelity T7 RNAP for mRNA production with these three parameters: 1) 
RNA yield measured via UV-vis spectrophotometry, 2) mRNA translation in a dsRNA sensitive 
cell line measured via luciferase translation, and 3) RNA purity measured via immunogenicity in 
BJ fibroblast cells by IFN-beta RNA production (Fig. 5A). We weighted these features in the 
EVOLVEpro objective function by 20%, 40%, and 40%, respectively to prioritize the higher 
fidelity and lower immunogenicity aspects of this enzyme for clinical applications. To facilitate 
high throughput variant testing, we relied on SP6 in vitro transcription-translation coupled 
reaction kits to generate mutant T7 RNAP in a one-pot reaction and subsequently use the 
produced T7 RNAP to produce co-transcriptionally capped Cypridina luciferase mRNA for 
downstream in vitro testing. 

 
During the initial two rounds of evolution, improvements were observed but were only in 

the 2-4 fold improvement range. However, by rounds 3 and 4, we started observing significant 
improvements in all features, especially in translation and immunogenicity fold changes over the 
wild-type T7 RNAP (Fig. 5B-C, fig. S7A). By the end of round 4, we observed one T7 RNAP 
mutant, E643G, that could generate luciferase mRNA that produced 34x more translated 
luciferase and ~98% less immunogenicity (Fig. 5C). We sought to benchmark E643G against 
the previously engineered state of the art G47A/884G mutant T7 RNAP that has markedly 
reduced immunogenic byproduct in our IVTT assay(47). We found that our E643G mutant 
produces 7-fold higher translation in cells and ~2-fold less IFNB1 inflammation in BJ fibroblasts 
(fig. S7B).  
 

Given the plethora of mutants tested in the first 4 rounds along with the existing G47A 
mutation that is known to reduce dsRNA formation, we then used EVOLVEpro to generate 
multi-mutants that involved the combination of up to 7 previously tested mutations. Typically in 
rational mutagenesis for higher activity mutants, rational combinations of single beneficial 
mutations are combined according to their spatial location under the assumption of synergistic 
effects of these mutations. Here, we relied on EVOLVEpro’s ability to learn the activity 
landscape to nominate multi-mutants in an unbiased fashion. Surprisingly, the top nominated 
mutant in Round 5 is a combination of previously reported G47A and the best single mutant 
E643G as normal rational mutagenesis would do. However, it is worth noting that this 
combination resulted in a protein with worse performance than E643G alone (fig. S7B). This 
points to the vast unknown epistatic effect between residues at different spatial positions in a 
protein and the utility of EVOLVEpro in nominating multi-mutants. By round 6, EVOLVEpro was 
able to nominate one particular variant that had ~57x more translation from luciferase mRNA 
and ~515x less immunogenicity than the original wild-type T7 RNAP (Fig. 5C). Moreover, this 
variant was substantially more effective at translation and less immunogenic than the 
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G47A/884G mutant. This multi-mutant, T7 RNAPT3M/G47A/E643G, was chosen as the final 
EVOLVEpro evolution candidate and termed enhanced T7 RNAP, or epT7.  
 

Given the high throughput testing of mutant T7 RNAPs in the IVTT reaction, we 
hypothesized that the unoptimized IVT buffer could change these mutant’s mRNA 
production(48) and sought to compare the performance of top mutants in clinically relevant IVT 
settings with NEB’s HiScribe transcription kit, followed by Vaccinia cap-1 capping and polyA 
tailing. We therefore purified the top performing single mutant (E643G), previously reported 
state-of-the-art mutant (G47A/884G)(47), and our epT7 (T3M/G47A/E643G) along with WT to 
compare their performance. We compared the production of six different mRNA sequences, 
ranging in size from 500 nt to 6,500 nt, between epT7, T7E643G, and wild-type T7. Consistent 
with our IVTT-based experiment, we found that epT7 and E643G produced significantly higher 
mRNA in a 2-hour transcription scheme than both wild-type T7 RNAP and the G47A/884G 
variant (fig. S7C). Analysis of the 3 different mRNA products by both E-gel EX and TapeStation 
gel electrophoresis systems confirmed the presence of a single on-target product across all four 
enzymes (fig. S7D-F). Looking at the translation and immunogenicity aspects of the mRNAs 
produced by these enzymes, we found that in all cases epT7 produced mRNA had 4 to 120-fold 
higher translation than wild type and 4 to 256-fold lower immunogenicity (Fig. 5D, fig. S8A). 
Functional testing of SpCas9 mRNA also shows significantly higher editing from epT7’s 
produced mRNA in two separate cell lines (fig. S8B). These results validate that the 
EVOLVEpro derived epT7 mutants are not buffer or template-specific and are genuinely 
improving the quality of mRNA produced by the polymerase. We next investigated the 
mechanism of the epT7 performance enhancements by investigating the quality of the RNA. 
Using an established ELISA for dsRNA, we found that the dsRNA in the epT7-produced mRNA 
was 5-fold lower than wild-type T7-produced RNA and it performed equally well as the RNA 
produced by the state-of-the-art G47A/884G mutant(47) (Fig. 5E).  
 

Previous efforts to reduce dsRNA production relied on adding a glycine residue at the C-
terminal “foot” region of the enzyme (884G insertion)(47). Our model revealed the functional 
importance of E643 in transcription and, surprisingly, mutating this residue rendered the same 
effect as 884G (Fig. 5F, fig. S7B). Indeed, analysis of the T7 RNAP structure reveals that E643 
is close to the DNA template, suggesting that E643G improves template binding and RNA 
production (Fig. 5F). However, E643K/E643R did not improve the fidelity of transcription (fig. 
S7A), suggesting that these bulky residues sterically clash with the template DNA. Therefore, it 
is likely that EVOLVEpro is able to identify a unique mechanism, interrogate the effect of this 
mechanism, and determine the right balance biochemically to mutagenize, thereby producing a 
novel, SOTA T7 RNAP variant that has never been described before. G47A has been 
previously reported to increase helix formation, and EVOLVEpro took advantage of this helix-
favoring mutation in our multi-mutant generation. The third mutated residue in epT7 is in a 
disordered region (T3M), suggesting a role independent of DNA template binding. T3M might be 
involved in improving protein stability or other aspects that can modulate the polymerase 
activities. These residues further highlight the insightfulness of EVOLVEpro to identify novel 
mutants that one would not test via rational mutagenesis. Further analysis of EVOLVEpro’s 
residue exploration in evolution revealed that E643 was found first in round 3 with the most 
beneficial mutation being E643N (Fig. 5G). The model quickly gained an understanding of the 
functional importance of this residue and zoomed into this region by exploring it 5 more times in 
round 4, yielding E643G the best single mutant (Fig. 5G). This trend is similar to the evolution of 
proteins reported above, where a beneficial mutation at a certain residue is capitalized by the 
model in the next round by exploring additional mutations around that region. 
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We next calculated the relationship between the activity (observed data) and fitness 
(pMMS) for T7 RNAP and found a negative correlation of 0.13 in this case, denoting the lack of 
association between the two metrics. EVOLVEpro successfully navigated through this 
divergence by selecting mutants with higher activity but not fitness in later rounds (Fig. 5H). 
Lastly, we investigated the global evolutionary landscape of epT7 and EVOLVEpro’s mutational 
trajectory. At a high level, as with the previous proteins evolved, the activity map learned by 
EVOLVEpro diverged from the fitness map predicted by ESM-2, showing that fitness predictions 
would not be able to predict the mutants that were ultimately discovered to improve protein 
activity and other parameters (Fig. 5I-K).   

 
Circular RNA production with epT7 
 
 Circular RNA has emerged as a promising therapeutic modality for protein replacement 
therapy thanks to its enhanced stability and prolonged expression of proteins(49). Since we 
observed significantly lower dsRNA production and higher fidelity of transcription with epT7, we 
hypothesized that epT7 would enhance circular RNA production since the use of RNAse R 
during post-IVT processing typically enriches for both circular RNA and dsRNA species that are 
immunogenic (Fig. 6A). We thus applied epT7 to the circularization of four different RNA 
sequences, finding that the translation obtained by circRNA from epT7 is 3 to 30 fold higher 
than RNA produced by WT T7 RNAP (Fig. 6B, fig. S9A-D, fig. S9J). We then used TapeStation 
gel electrophoresis to quantify the relative ratio of circular products post IVT and found reduced 
long concatemer formation in the circular RNA produced by epT7 (Fig. 6C). To better 
understand the mechanism behind better translation of circular RNA made by epT7, we 
performed gel electrophoresis using 2% E-gel EX as previously validated to check for relative 
ratio of precursor, nicked, intermediate and full circular RNA both pre and post-RNaseR 
treatment (Fig. 6D). We noticed reduced intermediate and nicked byproducts in circular RNA 
produced by epT7, showing higher fidelity of transcription by epT7. We used the gel 
electrophoresis results to quantify the ratio of circular RNA across three different templates and 
found significantly higher circular RNA production at around 25% efficiency, which was ~2 fold 
higher than the efficiency of WT T7 RNAP, higher circRNA purity, and lower concatemer 
production (Fig. 6E, fig. S9G-I). Lastly, we used dsRNA ELISA to detect the amount of dsRNA 
left in the product after RNAse R cleanup. Consistent with our hypothesis, there is a large 
increase in dsRNA percentage at around 1.5% from WT T7’s produced dsRNA (Fig. 6F). This 
dsRNA ratio is significantly reduced to 0.2% using epT7, highlighting the fidelity of epT7 during 
long transcription that is needed to accommodate circular RNA production (Fig. 6F). To confirm 
the higher stability of circular-eGFP RNA, we transfected both wild-type T7 and epT7’s 
produced circRNA in HEK293FT cells and imaged them 24 hours and 72 hours post-
transfection (fig. S9E-F). We observed higher GFP fluorescence from epT7 than wild-type T7 
RNAP and stable expression of GFP at 72 hours similar to previously reported(49).  
 
mRNA for in vivo bioluminescent imaging 
 

Given the high fidelity of epT7, we compared the performance of epT7 with WT T7 
RNAP in producing 100% N1-Methylpseudouridine-5'-Triphosphate-modified firefly luciferase 
mRNA that is commonly used for in vivo deep tissue imaging (Fig. 6G). This production 
process, including the modified bases, mimics the clinical production of therapeutic mRNAs, 
allowing for a translationally relevant evaluation of epT7. We packaged the produced mRNA 
with lipid nanoparticles (LNPs) that traffic to the liver for bioluminescent imaging. After 24 hours 
post-injection of the LNP formulations, we observed ~10-fold higher luminescence for our epT7-
produced mRNA compared to mRNA produced by WT T7 RNAP (Fig. 6H). Moreover, we 
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tracked the kinetics of both mRNA formulations for 96 hours and found consistently higher 
translation with the epT7-produced Fluc mRNA for a longer period of time (Fig. 6I, fig. S9K).  

 
 
Discussion 
 

We demonstrate EVOLVEpro as an ensemble model for few-shot active learning to 
evolve protein activities. Over consecutive rounds of improvement, EVOLVEpro yields variants 
with 2- to 515-fold improvements in desired properties, including binding, catalytic efficiency, 
and immunogenic byproducts. Using both evolutionary scale PLMs and a regression layer, 
EVOLVEpro learns general rules of protein activity, generating highly active mutants with only a 
few cycles of evolution. Moreover, because of the rich latent space generated by PLM and 
powerful feature selections present in the top-layer module, EVOLVEpro evolution is a low-N 
learning approach that requires minimal wet lab experimentation. We benchmark EVOLVEpro 
across 12 different DMS datasets covering 8 protein classes, showing its superiority in the low-
N evolution setting. In this benchmarking work, we evaluate all currently available embedding-
based PLMs and perform a grid search to optimize over top-layer regression models, active 
learning selection strategies, and different normalization techniques toward the embeddings and 
fitness measurements. We find that PLMs are essential and their representations of protein 
sequence outperform traditional encoding methods like one-hot encoding and integer encoding 
(Fig. 1B). Interestingly, even in the extreme scarcity of data relative to the size of the input 
vector, dimensionality reduction of the embedding space through PCA did not improve 
performance (see methods and Data S1). The modular design of EVOLVEpro allows the 
integration of future improvements in autoregressive PLMs.  

 
The success of EVOLVEpro speaks to the inherent limitations of PLMs, which are 

trained to learn a masked sequence reconstruction task across evolutionary diversity. As natural 
sequences do not necessarily select for optimal protein activity, the PLM’s learned fitness 
landscape will often not be correlated with a protein’s activity landscape. In scenarios of 
correlations between fitness and activity, such as antibodies, zero-shot PLM protein evolution 
may work with some success(6, 50), but enzyme optimization has proven more challenging. It 
has been shown that PLMs can scale with increasing parameters just like large language 
models, but recent analyses have shown saturating scaling effects of PLMs with limited input 
training datasets (Uniref) on larger models (51–53). Thus, it is likely that simply increasing the 
parameters of these PLMs will not enable better prediction of protein activities and other 
downstream tasks. Alternatively, generative PLMs have yielded functional de novo proteins, 
such as GFP and CRISPR nucleases(7, 10). However, variants generated by these methods do 
not have improved activities relative to wild-type proteins, and the functional success rate of 
generated proteins is low. With these limitations in mind, future generative PLMs with improved 
architectures and training data may be suitable for combination with EVOLVEpro to create a 
design framework where de novo generated sequences can be rapidly optimized for activity.  
  
Using EVOLVEpro, we present the first comprehensive evaluation of AI protein engineering 
models across five therapeutically relevant proteins. These proteins have a low correlation 
between activity and PLM-estimated fitness, and in some cases require multiple properties to be 
optimized simultaneously. Critically, the assays used for measuring protein activity in this work 
are incompatible with pooled screening approaches, precluding typical directed evolution 
strategies. Across the multi-mutant landscape of protein activity, EVOLVEpro is able to select 
highly active single mutants out of more than 16,000 possible sequences and multi-mutants 
from more than 780 billion possible sequences. We thoroughly validate the five protein variants 
generated by EVOLVEpro for genome editing, binding, and RNA generation tasks beyond the 
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training set, finding SOTA performance. Structural analysis of top mutations reveals many 
distinct mechanisms of activity improvement, suggesting future directions of improvement for 
these enzymes. These insights include RNaseH engineering as a means to improve prime 
editing and T7 polymerase engineering that potentially improves binding to the DNA template. In 
the context of protein design, EVOLVEpro is a highly capable protein engineering model. 
EVOLVEpro 1) has high rates of success, 2) requires no special knowledge about the protein, 
3) can be used for multi-objective function optimization, and 4) is highly modular, allowing for 
any property with a quantifiable assay to be used as an input without extensive finetuning. We 
anticipate EVOLVEpro will continue to improve with new foundation models and enhanced 
search strategies and will be broadly useful for protein engineering.  
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Figure Legends 
 
Fig. 1. Developing and benchmarking EVOLVEpro for protein language model-guided 
engineering. (A) Schematic describing the EVOLVEpro method. Proteins of interest go through 
iterative rounds of low-N screening. A foundational PLM generates embeddings for all mutants 
of a protein and the average embedding by pooling across all residues is used as input for the 
top-layer model. Each mutant’s activity is experimentally determined and used to train a domain 
expert top-layer model with PLM embedding as input. The top-layer model then nominates the 
top-N mutants for the next round of testing and the weights are updated iteratively in an active 
learning format. (B) Benchmarking of foundational models across a panel of 12 comprehensive 
deep mutational scanning (DMS) datasets. Each point is a unique protein and its DMS data. 
ESM2-15B has the highest average percent success in high activity variants prediction. (C) 
Comparison between EVOLVEpro in active learning format, in zero-shot pretraining format, and 
an existing zero-shot prediction method using protein language model (6) across 12 DMS 
datasets. Each point is a unique protein using its DMS data. (D) Performance over 10 rounds of 
EVOLVEpro with 16 mutants per round, compared to two different non-language model 
encoding schemes (one-hot encoding and integer encoding). Model performance is 
benchmarked on four datasets(17, 22, 26, 54) and compared to zero-shot ESM2 nomination 
success rate and background random sampling (6). Error bar represents the standard deviation 
for n=10 random simulations. (E) Engineering of REGN10987 over five rounds of EVOLVEpro. 
Data shows cumulative top 10 mutants’ fold improvement over wild-type binding affinity to the 
target antigen across 5 evolution rounds. Percentages show the percent of mutants that have 
higher activity than wild-type REGN10987 each round. (F)  Mapping of the top mutations on the 
structure of REGN10987 (PDB: 6XDG). 
 
Fig. 2. Evolution of highly active miniature CRISPR nucleases with EVOLVEpro. (A) 
Schematic of the evolution strategy with EVOLVEpro for engineering a miniature Cas12f. (B) 
Engineering of PsaCas12f over four rounds of EVOLVEpro and a rational combination multi-
mutant round. Data shows cumulative top 10 mutants from current and preceding rounds, as 
measured by fold improvement of indel activity at the endogenous RNF2 genomic locus. (C) 
Indel activities of WT PsaCas12f, epPsaCas12f, and a panel of published Cas12a and Cas12f 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.17.604015doi: bioRxiv preprint 

https://github.com/mat10d/EvolvePro
https://github.com/idmjky/EvolvePro
https://paperpile.com/c/HnPMZE/fZ4c6
https://paperpile.com/c/HnPMZE/fZ4c6
https://paperpile.com/c/HnPMZE/fZ4c6
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/y477o+hLwzw+bGrQZ+MboEU
https://paperpile.com/c/HnPMZE/fZ4c6
https://paperpile.com/c/HnPMZE/fZ4c6
https://paperpile.com/c/HnPMZE/fZ4c6
https://doi.org/10.1101/2024.07.17.604015
http://creativecommons.org/licenses/by-nc/4.0/


 

 

nucleases on 10 different genomic targets across five genes (two guides per gene). The fold 
change on top of each guide denotes the relative fold increase of epPsaCas12f compared to the 
average of the other published Cas12a and Cas12f nucleases. A one-way ANOVA is performed 
for each guide sequence shown (****, p<0.0001). (D) Next-generation sequencing quantified 
indel formation at murine PCSK9 genomic loci by epPsaCas12f, WT PsaCas12f, and SpCas9. 
A one-way ANOVA is performed for each guide sequence shown (****, p<0.0001). (E) 
Schematic of the in vivo validation assay for EnPsaCas12f editing at the murine PCSK9 locus 

for PCSK9 reduction. (F) Serum PCSK9 levels at three different time points from −2 days of 
injection to +14 days. The percent of control PCSK9 was calculated by normalizing to the 

control group with PBS injected. A two-sided Student’s t-test was run on each time point relative 

to −2 days’ baseline PCSK9 level (ns, non-significant, *, p<0.05). (G) Mapping of the top 
mutations on the AlphaFold3 model of PsaCas12f. The RuvC active site is indicated by a red 
circle. (H) Heatmap showing most common PsaCas12f mutations explored by EVOLVEpro over 
rounds of evolution. Any position explored more than once is shown on a cumulative basis 
across rounds. (I) Scatter plot comparing the predicted naive ESM-2 protein fitness (predicted 
masked marginal score) and scaled tested activity of nominated mutants across evolution, 
scatter points are colored by rounds in evolution. (J-K) Comparison of the PsaCas12f 
embedding latent space with either predicted naive ESM-2 protein fitness landscape or 
EVOLVEpro protein activity landscape. (L) A kernel density estimate plot of protein fitness as 
predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and 
linear regression line are shown in red and the R square of the correlation is reported.  
 
Fig. 3. Evolution of prime editor with EVOLVEpro. (A) Schematic of the evolution strategy 
with EVOLVEpro for engineering a prime editor to be more efficient in attB insertion. (B)  
Engineering of the prime editor PE2 with twinPE guides over seven rounds of EVOLVEpro. Data 
shows cumulative top 10 mutants from current and preceding rounds, as measured by fold 
improvement of prime editing activity to install a 46 bp AttB site at the murine NOLC1 genomic 
locus. (C) Validation of 4 evolved prime editors in the installation of attB sites at four different 
endogenous sites in either mouse or human genomes. A two-sided unpaired t-test was run 
between WT and each evolved prime editor (ns, non-significant, *, p<0.05, **, p<0.01, ***, 
p<0.001, ****, p<0.0001). Fold change over wild-type PE2 is shown for the best mutant on each 
genomic locus. Error bars represent standard deviation with n=3 biological replicates. (D) 
Mapping of the top mutations on the AlphaFold3 model of M-MLV RT. The RT active site is 
indicated by a red circle. (E) Heatmap showing most common PE2 mutations explored by 
EVOLVEpro over rounds of evolution. Any position explored more than once is shown on a 
cumulative basis across rounds. (F) Scatter plot comparing the predicted naive ESM-2 protein 
fitness (predicted masked marginal score) and scaled tested activity of nominated mutants 
across evolution, scatter points are colored by rounds in evolution. (G-H) Comparison of the 
PE2 embedding latent space with either predicted naive ESM-2 protein fitness landscape or 
EVOLVEpro protein activity landscape. (I) A kernel density estimate plot of protein fitness as 
predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and 
linear regression line are shown in red and the R square of correlation is reported.  
 
 
Fig. 4. EVOLVEpro engineers enhanced large serine recombinases. (A) Schematic of the 
evolution strategy for evolving the Bxb1 serine integrase from the Mycobacteriophage. (B) 
Engineering of the Bxb1 integrase over 8 rounds of EVOLVEpro. Data shows cumulative top 10 
mutants from current and preceding rounds, as measured by fold improvement of plasmid 
integration over wild-type. (C) Performance of top Bxb1 mutants for plasmid recombination with 
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low Bxb1 expression in Hela cell. A two-sided Student’s t-test was run between WT and each 
evolved Bxb1 integrase (***, p<0.001, ****, p<0.0001). Fold change over wild-type Bxb1 is 
shown for the best mutant. Error bars represent standard deviation with n=3 biological 
replicates. (D) Validation of epBxb1 with PASTE at four genomic sites across human and mice 
genomes. A two-sided Student’s t-test was run between WT and each evolved Bxb1 integrase 
(*, p<0.05, **, p<0.01). Fold change over wild-type Bxb1 integrase is shown for each genomic 
locus. Error bars represent standard deviation with n=3 biological replicates. (E) Mapping of the 
top mutations on the AlphaFold3 model of the Bxb1 monomer bound to DNA. Bxb1 forms a 
tetrameric synaptic complex during recombination between two DNA molecules. The active site 
is indicated by a red circle. (F) Heatmap showing most common Bxb1 mutations explored by 
EVOLVEpro over rounds of evolution. Any position explored more than once is shown on a 
cumulative basis across rounds. (G)  Scatter plot comparing the predicted ESM-2 protein fitness 
score versus experimentally measured bxb1 integration efficiency (scaled) across evolution 
rounds. The correlation and linear regression line are shown in the plot. (H-I) Comparison of the 
Bxb1 latent space with either predicted ESM-2 protein fitness (masked marginal score) or 
EVOLVEpro protein activity fold improvement. (J) A kernel density estimate of protein fitness as 
predicted by ESM-2 versus protein activity as predicted by EVOLVEpro. The correlation and 
linear regression line are shown in red and the R square of correlation is reported.  
 
Fig. 5. Engineering RNA polymerases for high yield and low immunogenicity mRNA 
production. (A) Schematic of the strategy for high throughput T7 RNA polymerases mutant 
testing and evolution policy setup for evolving a high fidelity T7 RNAP. (B) Engineering of T7 
RNAP over six rounds of EVOLVEpro. Data shows the top 10 mutants from current and 
preceding rounds, as measured by fold improvement of transcription fidelity over wild-type. (C) 
Performance of T7 mutants from six EVOLVEpro rounds and previously engineered G47A/884G 
SOTA T7 RNAP in Cluc mRNA translation and immunogenicity in BJ Fibroblast cells. (D) 
Validation of epT7 for production of 6 mRNA sequences ranging from 513nt to 6496nt. Purified 
WT or mutant RNAP is used to produce these sequences, and they were transfected into BJ 
fibroblast cells for either protein translation readout or targeted IFNB1 gene expression analysis 
using qPCR 24 hours after transfection. A two-sided Student’s t-test was run between WT and 
each evolved T7 RNAP (**, p<0.01, ***, p<0.001, ****, p<0.0001). Error bars represent standard 
deviation with n=3 biological replicates. (E) dsRNA ELISA is used to analyze the amount of 
dsRNA during transcription of a 1662 nt Cypridina luciferase mRNA. 500 ng of post-transcription 
product is used as input for the dsRNA ELISA. A two-sided Student’s t-test was run between 
WT and each evolved T7 RNAP (****, p<0.0001). Error bars represent standard deviation with 
n=3 biological replicates. (F) Mapping of the top mutations on the T7 RNAP structure (PDB: 
3E2E). The active site is indicated by a red circle. (G) Heatmap showing most common T7 
RNAP mutations explored by EVOLVEpro over rounds of evolution. Any position explored more 
than once is shown on a cumulative basis across rounds. (H) Scatter plot comparing the 
predicted ESM-2 protein fitness score versus experimentally measured T7 RNAP transcription 
fidelity scaled score across evolution rounds. The correlation and linear regression line are 
shown in the plot. (I-J) Comparison of the T7 RNAP latent space with either predicted ESM-2 
protein fitness (masked marginal score) or EVOLVEpro protein activity fold improvement. (K) A 
kernel density estimate of protein fitness as predicted by ESM-2 versus protein activity as 
predicted by EVOLVEpro. The correlation and linear regression line are shown in red and the R 
square of correlation is reported.  
 
 
Fig. 6. Application of epT7 for circular RNA production and in vivo bioluminescence.  
(A) Schematic of circular RNA production. (B) Validation of epT7 produced circRNA on four 
different template sequences compared to both T7E643G and wild-type T7. Translation of each 
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protein is measured in HEK293FT cells 48 hours after transfection. A two-sided Student’s t-test 
was run between WT and each evolved T7 RNAP ( ***, p<0.001, ****, p<0.0001). Error bars 
represent standard deviation with n=3 biological replicates. (C) Tapestation gel electrophoresis 
analysis of circular Fluc RNA produced by either epT7 or WT RNAP. epT7 shows reduced 
concatemer production. (D) Comparison of RNA products for Fluc circRNA produced by epT7 
compared to wild-type T7 via gel electrophoresis using 2% E-gel EX at different steps in the 
production process: post-initial IVT and post-RNaseR processing. The panel on the right shows 
quantification of intermediate and nicked RNA ratio in the post IVT samples. Error bars 
represent standard deviation with n=3 biological replicates. (E) Comparison of purified GFP, 
nanoluc (Nluc), and Fluc circRNA yield by epT7 compared to wild-type T7 after the initial 
RNaseR clean-up. The panel on the left shows the raw mass percentage left after the cleanup. 
The panel on the right shows the purity of the circular RNA in the post clean-up reaction as 
determined by quantification using a TapeStation analysis. A two-sided Student’s t-test was run 
between WT and epT7 (**, p<0.01, ****, p<0.0001). (F) Comparison of dsRNA content for 
nanoluc circRNA produced by epT7 compared to wild-type T7 using either 2 hours of IVT or 12 
hours of IVT. Input into the dsRNA ELISA assay involves 500 ng of post-RNAseR cleaned-up 
samples. A two-sided Student’s t-test was run between WT and evolved T7 RNAP (**, p<0.01). 
Error bars represent standard deviation with n=3 biological replicates. (G) Schematic of the in 
vivo mRNA assay for measuring mRNA expression in the liver via non-invasive luminescent 
imaging. (H) In vivo luminescent signal detected 24 hours post-injection in mice injected with 
mRNA produced by either epT7 or wild-type T7 or PBS controls. A two-sided Student’s t-test 
was run between WT, wild-type T7 RNAP, and epT7 (*, p<0.05). Error bars represent standard 
deviation with n=3 biological replicates. (I) Time-course of in vivo luminescent signal detected 
up to 96 hours post-injection of LNP-mRNA produced by either epT7 or wild-type T7, or PBS 
controls. A two-sided paired Student’s t-test was run between WT, wild-type T7 RNAP, and 
epT7 (*, p<0.05) for each time point. Error bars represent the standard error of mean with n=3 
biological replicates. (J) A schematic showing the evolution of higher activity variants with 
EVOLVEpro. The mutagenesis landscape of proteins is often conceptualized as a complex 
terrain with numerous potential paths. Shown here is a gray road that conceptualizes the protein 
mutagenesis landscape where traversing upwards results in higher protein activity and 
traversing downwards reduces protein fitness. Traditional frameworks of evolutionary plausibility 
attempt to navigate this terrain based on natural selection, which is constrained by historical and 
environmental factors.  
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