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Abstract: Neurophysiological brain activity underpins cognitive functions and behavioural 
traits. Here, we sought to establish to what extent individual neurophysiological traits 
spontaneously expressed in ongoing brain activity are primarily driven by genetic variation. We 
also investigated whether changes in such neurophysiological features observed across the 
lifespan are supported by longitudinal changes in cortical gene expression. We studied the 
heritability of neurophysiological traits from task-free brain activity of monozygotic and dizygotic 
twins as well as non-related individuals recorded with magnetoencephalography. We found that 
these traits were more similar between monozygotic twins compared to dizygotic twins, and that 
these heritable core dynamical properties of brain activity are predominantly influenced by 
genes involved in neurotransmission processes. These genes are expressed in the cortex along a 
topographical gradient aligned with the distribution of major cognitive functions and 
psychological processes. Our data also show that the impact of these genetic determinants on 
cognitive and psychological traits increases with age. These findings collectively highlight the 
persistent genetic influence across the lifespan on neurophysiological brain activity that supports 
individual cognitive and behavioural traits. 
 

Lay summary 
Our study investigates how patterns of brain activity that shape our thinking and behaviour might 
be inherited. We compared the brain-activity profiles of identical twins, fraternal twins, and 
unrelated individuals and discovered a closer match between those of identical twins, compared 
to fraternal twins and unrelated individuals. This suggests that brain-activity profiles, akin to other 
biological attributes, are largely inherited. We identified a set of genes most strongly associated 
with individual brain-activity profiles. These genes are known to shape how brain cells 
communicate, along with other essential neurobiological functions, particularly in brain areas 
crucial for cognition and attention. The influence of these genes evolves and grows as we age. In 
summary, our study advances the understanding that our individual brain-activity profiles, much 
like our physical attributes, are significantly shaped by genetics throughout our lives, influencing 
the person we become. 
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Graphical abstract  
 

 
 
This study examines the relationship between individual patterns of neurophysiological brain 
activity and gene expression profiles. First, the researchers successfully differentiated individuals 
based on their brain activity at rest by comparing the similarity of 'snapshots' of brain activity at 
different time points. If the brain activity of a participant is most similar to themselves across two 
recordings, that participant is said to be correctly differentiated. The study reports that the brain-
fingerprints of monozygotic (MZ) twins are remarkably similar between siblings, unlike those of 
dizygotic (DZ) twins. Second, the study identified specific gene expression patterns associated with 
distinctive neurophysiological traits and major cognitive functions such as planning, multi-sensory 
processing, spatial attention, and visual attention. Third, the prominence of these gene expression 
patterns increases with neurodevelopment, suggesting that genetic factors contribute to the 
evolution of cognitive functions over the lifespan, from fetal stages through adulthood.  
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Main Text: 

Several recent neuroimaging studies have shown that ongoing brain activity at rest, without 
performing a specific task, defines a neurophysiological profile unique to each person. Unlike hand 
fingerprints, these brain-fingerprints are associated with individual cognitive traits and are altered 
by pathology (1–9), forming a distinct personal neurophysiological profile. Whether a person’s 
genotype is associated with their neurophysiological profile is currently unknown. Heritability 
studies of inter-individual variability (10) have reported some genetic associations with brain 
structures (11–14) and activity (15–20). Genetic factors determine, to some extent, inter-
individual variations in broad cognitive domains such as attentional and general intellectual 
abilities (21–25). Here, we studied how both individual neurophysiological and cognitive profiles 
relate to the expression of specific genes across the lifespan. 
 
We used task-free magnetoencephalographic (MEG) imaging (26) to derive the individual 
neurophysiological profiles (2) of monozygotic (MZ) and dizygotic (DZ) twins, along with unrelated 
individuals. We hypothesized that if neurophysiological brain activity is determined by genetic 
factors, then the neurophysiological profiles of MZ twins, who share nearly identical genomes, 
would be nearly identical, unlike those of DZ twins (27). We then identified which genes are related 
to the features that differentiate individuals based on their neurophysiological profiles. 
Additionally, we investigated whether the genetic influence on these neurophysiological traits is 
linked to major psychological processes that characterize individual traits and how this influence 
evolves across the lifespan. 
 

Results: 

Individual Neurophysiological Profiling and Differentiation  
We derived the neurophysiological profile of 89 individuals (17 pairs of monozygotic twins, 11 
pairs of dizygotic twins, and 33 unrelated individuals; 22-35 years old) from three 6-minute task-
free MEG recordings provided by the Human Connectome Project(28). We derived individual 
profiles from the distribution of neurophysiological signal power of MEG activity across the cortex 
for each recording (2) (see Methods). 
 
We first assessed the accuracy of inter-individual differentiation based on the neurophysiological 
profiles obtained from the three recordings of each participant (Figure 1A). The accuracy of inter-
individual differentiation from these neurophysiological profiles was 83.4% (95% bootstrapped CI 
[73.8, 90.0]) across a broad frequency spectrum of brain activity ([1-150 Hz]). The high temporal 
resolution of the data enabled to study how the accuracy of neurophysiological profiling varied 
between the prototypical frequency bands of electrophysiology. Inter-individual differentiation 
varied substantially across these frequency ranges, from 59.7% in the delta band (1-4 Hz; [57.5, 
73.8]) to 87.4% in the high-gamma band (50-150 Hz; [80.0, 92.5]) as detailed Figure 1B. 
  
We then evaluated the similarity between the neurophysiological profiles of siblings in a twin pair 
(Figure 1A), finding that those of monozygotic twins matched with 61.5% accuracy ([46.7, 76.7]). 
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In contrast, the profiles of dizygotic twins showed a considerably lower match accuracy of only 
5.2% ([0.0, 15.0]; Figure 1B). These differences in matching accuracies between monozygotic and 
dizygotic twins varied across the frequency bands of neurophysiological brain activity as shown in 
Figure 1B. The discrepancies were particularly pronounced in the alpha band (8-13 Hz), where MZ 
twins matched with an accuracy of 47.8% ([33.3, 66.7]) compared to only 1.2% for DZ twins ([0.0, 
5.0]). In the beta band (13-30 Hz), accuracies were 52.1% for MZ twins ([33.3, 70.0]) versus 7.1% 
for DZ twins ([0.0, 20.0]). 
 
Heritability of Neurophysiological Traits 
Leveraging intra-class correlation (ICC) statistics(2, 3, 29) (see Methods), we found that cortical 
activity in the theta (4-8 Hz; average ICC = 0.74), alpha (8-13 Hz; ICC = 0.83), and beta (13-30 Hz; 
ICC = 0.74) frequency bands are the most distinctive traits of neurophysiological profiles between 
individuals (Figure 1C). These traits are heritable, with Falconer’s method showing a mean 
heritability (H2) of 0.85 for theta-band traits, 0.76 for alpha-band traits, and 0.77 for beta-band 
traits across the temporal, frontal, and occipital cortex (Figure S4A). The neurophysiological traits 
of the occipital visual regions(30) were the most heritable, while those of the limbic network were 
the least heritable (Figure S4A, right). 
  
Although we reported above that the neurophysiological profiles of MZ twins match each other 
more closely than those of the general population, the neurophysiological profile of each MZ twin 
remains distinguishable from their sibling. This might suggest that individual-specific features 
stand apart from the heritable aspects of their neurophysiological profile. However, our results 
show that the most differentiable features of neurophysiological profiles tend to be heritable. To 
test this, we measured the spatial alignment between the ICC maps of the most salient individual 
features of neurophysiological profiles (Figure 1C) and the heritability maps (Figure S4A). We 
found positive spatial correlations across broadband cortical signals (1-150 Hz; r = 0.28, pspin = 
0.026), and specifically in the alpha (r = 0.62, pspin = 0.0009) and beta (r = 0.58, pspin = 0.0009) bands 
(Figure S4B). These findings confirm that the most distinctive features of neurophysiological 
profiles tend to be heritable, further emphasizing the genetic basis for the neurophysiological 
characteristics that distinguish individuals. 
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Fig. 1. Neurophysiological Profiling.  
(a) The color-coded array reports the similarity between the neurophysiological profiles within 
(self-similarity; diagonal elements) and between (similarity with others; off-diagonal elements) 
individuals. The similarity is measured using cross-correlation coefficients derived between the 
neurophysiological profiles of each individual across all three datasets. A participant is correctly 
differentiated based on their brain-fingerprint if their neurophysiological profile remains similar 
across the three datasets. Using these statistics, we also assessed how well the 
neurophysiological profile of a twin matched their sibling’s profile compared to any other 
individual in the cohort. 
(b) The purple bar graphs report the inter-individual differentiation accuracy between all 
individuals in the cohort. The bar graphs in shades of orange indicate the matching accuracy 
between twin pairs. The data are reported with 95% confidence intervals for broadband (1-150 
Hz) and specific frequency bands of neurophysiological brain activity: delta (1-4 Hz), theta (4-8 
Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-50 Hz), and high gamma (50-150 Hz). Control 
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statistics are presented to rule out the possibility that environmental conditions around each 
participant’s recording biased the accuracy of inter-individual differentiation (grey bar graphs). 
(c) Topographic maps highlight the regions with the most salient neurophysiological activity per 
frequency band that differentiate between individuals, as measured with intra-class correlation 
(ICC) statistics (see Main Text and Methods). 
 
Neurophysiological Profiles are Aligned with Cortical Gene Expression 
We then assessed whether the most salient individual traits of the neurophysiological profiles (ICC 
maps of Figure 1C) also align topographically with genetic cortical expressions. To do this, we 
studied the spatial covariation of the ICC of neurophysiological profiles with maps of cortical gene 
expressions with greater differential stability (>0.1) (31–35), retrieved from the microarray Allen 
Human Brain Atlas (33), using Partial Least Squares (PLS) correlation. We found a single PLS 
component significantly accounting for 85.2% of the covariance (CI [73.4, 90.1], pspin = 0.01; Figure 
S5A). This analysis revealed a topographical pattern where visual and somatomotor regions 
exhibited positive covariance with genetic expressions, while limbic regions exhibited negative 
covariance (Figure S5B). This indicates that the most differentiable traits of individual 
neurophysiological profiles are spatially aligned with specific gene expression patterns along the 
cortical surface. We cross-validated this observation with 1,000 permutations corrected for spatial 
autocorrelation, resulting in a median out-of-sample correlation of r = 0.64 (pspin = 0.002; Figure 
S5C). 
  
We then measured how each frequency range of cortical activity contributed to this alignment 
between cortical gene expression and the salient traits of neurophysiological profiles. We found 
that all frequency ranges contributed exclusively positively to this association: delta (r = 0.52, 95% 
CI [0.45, 0.61]), alpha (r = 0.63, 95% CI [0.58, 0.69]), beta (r = 0.52, 95% CI [0.42, 0.62]), gamma (r 
= 0.71, 95% CI [0.66, 0.76]), and high gamma bands (r = 0.43, 95% CI [0.34, 0.53]; Figure 2A) with 
the exception of the theta band (r = 0.07, 95% CI [-0.09, 0.22]). 
 
Genes and Cell Types Associated with Neurophysiological Traits 
We then investigated which genes’ expressions contribute the most to the reported association 
with neurophysiological traits, aiming to identify the biological functions associated with these 
genes and the specific cell types involved. We selected the top 2,208 genes based on their highest 
positive loadings in the PLS analysis and the top 2,344 genes based on their highest negative 
loadings. We performed a gene ontology (GO) analysis using the ShinyGO pipeline and resources 
from the GO database (36), which revealed distinct biological processes linked to these sets of 
genes (see Methods). Genes with positive loadings were enriched in biological processes such as 
ion transport, synaptic functioning, and neurotransmitter release, while genes with negative 
loadings were associated with processes like development, neurogenesis, and cell morphogenesis 
(Figure 2B, right panel; complete gene list in Supplemental Information). 
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To determine the types of cells corresponding to these genes, we analyzed gene sets that are 
preferentially expressed in seven cell types as determined by RNA sequencing studies(37–42). We 
found an overrepresentation of genes with positive loadings in excitatory neurons (pFDR= 0.002; 
1,000 gene permutations, two-tailed, FDR: corrected for false discovery rate) and inhibitory 
neurons (pFDR = 0.006). Conversely, genes with positive loadings were underrepresented in 
astrocytes (pFDR = 0.002) and oligodendrocyte precursor cells (OPCs; pFDR = 0.03). Genes with 
negative loadings were predominantly represented in astrocytes (pFDR = 0.002), microglia (pFDR = 
0.004), and oligodendrocytes (pFDR = 0.002), but were less represented in OPCs (pFDR = 0.002; 
Figure 2B left panel). 
  
These findings suggest a clear dichotomy: genes that show positive loadings and thus positively 
correlate with the distinctive traits of neurophysiological profiles are predominantly expressed in 
neurons, whereas genes with negative loadings, indicating a negative correlation with these traits, 
are more frequently expressed in neuron-supporting cells such as astrocytes and microglia. Our 
results are consistent with existing models of the physiological origins of MEG signals (26, 43, 44). 
 
Association with Neuropsychological Processes  
Building on prior work reporting associations between brain-fingerprint features and cognitive 
traits (1–3, 45, 46) as well as genetic influences on inter-individual variations in cognitive domains 
(21–25), we investigated how the gene-neurophysiological associations discovered in our data 
may relate to neuropsychological processes.  
  
To investigate this, we performed another PLS analysis to determine how cortical gene expression 
align topographically with typical cortical maps of neuroimaging activations associated with a 
range of psychological processes. A single significant component accounted for 67.2% of this 
covariance (CI [54.7, 72.2%], pspin = 0.002), highlighting a distinction between cognitive and 
emotional domains (Figure 2C): negative loadings were associated with processes related to 
emotions, mood, and arousal, whereas positive loadings were linked to attentional, planning, and 
multimodal sensory processes. 
 
We found that these patterns of covariance between gene expression and psychological processes 
were strongly aligned with those linking gene expression to individual neurophysiological traits 
(r=0.99, pspin < 0.001; Figure S6, middle and right panels; see also Supplemental Information). 
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Fig. 2. Associations Between Neurophysiological Traits, Cortical Gene Expression and 
Neuropsychological Processes.  
(a) Contribution of differentiable neurophysiological traits and specific genes to the gene-
differentiation signature identified in the PLS analysis. The top panel shows neurophysiological 
brain score patterns for positive and negative loadings, indicating which cortical parcels align with 
the observed covariance pattern. All frequency bands, except for theta, contribute significantly 
to the neurophysiological brain score.  
The bottom panel highlights the results of the biological processes gene ontology analysis for 
both positive and negative loadings. Each point represents a different biological process that is 
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enriched in the positive and negative gene sets. The size of each point indicates the p-value 
associated with each biological process. For visualization purposes, we grouped related terms 
together using horizontal bars. 
 
(b) Cell-type deconvolution analyses, revealing the ratio of genes (both positive and negative) 
preferentially expressed in seven distinct cell types as identified in prior single-cell and single-
nucleus RNA sequencing studies(37–41, 47). The significance of these ratios was evaluated using 
permutation tests (*p < 0.05). Points represent observed ratios, and box plots depict the 
distribution of ratios obtained from permuting gene sets. Key: ‘neuron I’ refers to inhibitory 
neurons, ‘neuron E’ to excitatory neurons, ‘endo’ to endothelial cells, ‘oligo’ to oligodendrocytes, 
‘OPC’ to oligodendrocyte precursor cells, ‘micro’ to microglia, and ‘astro’ to astrocytes. 
  
(c) Analysis of the Gene-Neuropsychological Processes PLS Latent Component: This panel 
illustrates the top 10 psychological terms that most significantly contribute negatively (cyan) and 
positively (pink) to the latent component identified in the gene-neuropsychological processes PLS 
analysis. The cortical maps show the brain score pattern for these neuropsychological terms with 
both positive and negative loadings. The bar graphs feature the loadings of neuropsychological 
terms, with pink for positive and cyan for negative terms. Confidence intervals were computed 
via bootstrapping and therefore are not necessarily symmetric. Terms in the top quartile of 
loadings delineate a cognitive-affective gradient, with positive loadings on cognitive processes 
like visual attention and negative loadings on affective processes such as emotion regulation. 
 
 
Developmental Trajectory of the Gene-Differentiation Signature  
Previous work has established that genetic influences on neuropsychological processes become 
more pronounced with development (23, 25, 48). Following our identification of the cortical 
topography of a gene-differentiation signature that aligns with brain activations associated with 
neuropsychological processes, we tested whether the strength of this gene-differentiation 
signature also increases throughout development. To test this hypothesis, we assessed the 
topographical alignment between the cortical expression of genes across life stages in 12 cortical 
regions (49) and that of the gene-differentiation signature. We found that this alignment (i.e., 
slope) was stronger in later life stages in all tested cortical regions, except for the hippocampus 
(Figure 3). These findings suggest that the association between gene expression patterns and 
individual neurophysiological profiles becomes more pronounced throughout development. 
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Fig. 3. Strengthening of the Gene-Differentiation Signature Across the Lifespan. 
The left panel illustrates the increasing prominence of gene scores through maturation across 12 
brain regions based on the BrainSpan data(49). The line with the grey shaded area indicates the 
trajectory of gene scores derived from random auto-correlation preserving permutations of the 
gene expression data. The right panel presents histograms of permuted slopes for each cortical 
region. A vertical tick mark shows the observed slope of gene score development, with asterisks 
denoting significant strengthening of the gene-differentiation signature across development 
(*pFDR < 0.05). 
 

Discussion: 

Patterns of brain activity can differentiate between individuals, akin to hand fingerprints (1–3, 50). 
However, these brain-fingerprints are associated with neuropsychological traits (1, 2, 45, 46) and 
pathophysiology (6, 7, 29). We investigated the genetic bases of individual neurophysiological 
profiles. 
  
Heritability of Neurophysiological Traits 
Our data show that some of the neurophysiological traits that shape individual profiles are 
heritable. The neurophysiological profiles of monozygotic twin pairs match each other beyond 
what can be explainable by mere neuroanatomical resemblances (Figure 1B & Figure S2). 
Conversely, the differences between the neurophysiological profiles of dizygotic twins are as 
significant as those between unrelated individuals. These observations underscore that 
neurophysiological traits are in part shaped by genetics.  
  
The neurophysiological traits of alpha and beta-band activity in parietal cortical regions showed 
particularly strong heritability (Figure S4), confirming previous observations of the heritability of 
the individual frequency of alpha activity in humans (15, 16). We observed a connection between 
these brain rhythms and brain transcriptome gradients. These gradients correlate with brain 
activations during cognitive tasks, suggesting a deeper genetic-based influence on 
neurophysiological variability. 
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A Gene-Differentiation Signature  
Gene expression profoundly impacts brain structures and functions (32, 47, 51–55), such as 
cortical folding and connectivity within brain networks (12, 56, 57). Our study extends these 
findings by demonstrating that, in addition to anatomical and brain-network properties, genetics 
also shape task-free, ongoing neurophysiological brain activity. This activity reflects a set of 
distinctive neurophysiological traits, uniquely defining an individual’s profile in relation to the 
cortical expression of specific genes, forming a gene-differentiation signature. 
 
Using gene expression atlases, we found that these traits are related to the expression of genes 
regulating ion transport and neurotransmission. Genetic variants and variations in gene expression 
levels likely influence the function of these genes, contributing to the observed inter-individual 
differences in neurophysiological profiles. Notable genes previously reported as major elements 
of neurochemical signalling include the catechol-O-methyltransferase (COMT) enzyme, crucial for 
dopamine metabolism(58); the adenosine A2A receptor gene (59); adenosine deaminase gene; 
regulators of glutamatergic receptor channels (16); and the GABAB receptor (GABABR1) (60), 
which are. This aligns with previous research that identified related genetic variants modulating 
alpha rhythms and other components of cortical neurodynamics (15, 17, 60). Our findings indicate 
that this gene signature is primarily active in both excitatory and inhibitory neurons (Figure 2B). 
Genetic influences on these cells likely manifest as observable differences in overall brain activity 
patterns, leading to distinct variations in macroscale brain signaling across individuals. 
 
Conversely, our study revealed that the cortical expression of genes involved in cell 
morphogenesis and neurogenesis, particularly in limbic regions, exhibits a negative correlation 
with individual neurophysiological differentiation (Figure 2B). In contrast to positively-loaded 
genes, which relate to neurochemical interactions between neurons, these negatively-loaded 
genes are mainly expressed in supportive cells such as astrocytes and microglia. This suggests that 
genetic influences on neurophysiological individual traits are more related to neuronal 
communication than to inherited structural brain features, consistent with existing models of the 
physiological origins of MEG signals(26, 43, 44). 
 
Our research highlights potential pathways for future studies on individual neurophysiology by 
providing a biologically grounded framework to understand behavioural variations. Animal models 
could be instrumental in manipulating alleles of the genes identified in our study to assess their 
impact on gene product functioning, large-scale brain signal characteristics, and ultimately, 
behaviour. This approach would provide further insights into how genetic variations influence both 
neurophysiological traits and behavioural differences. 
 
Our study demonstrates that genetic factors play a significant role in defining the uniqueness of 
neurophysiological profiles, yet they do not account for all observed variations. While the 
differentiation accuracy for monozygotic twins is substantial, it does not reach the same level as 
that for single individuals. This discrepancy suggests an explanatory gap likely attributable to 
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environmental influences. Environmental factors affect gene expression and behavior(24, 61, 62) 
and may also modulate certain neurophysiological traits. The inability to differentiate twin pairs 
with absolute precision underscores the need for further research with larger twin cohorts to fully 
elucidate the interplay between genetics and environment in shaping individual brain activity. 
 
 
Alignment of the Gene-Differentiation Signature with Neuropsychological Processes 
We found that, across the cortex, the gene-differentiation signature of neurophysiological profiles 
aligns with maps of cortical activations related to specific cognitive and emotional processes 
(Figure 2C). This alignment was pronounced for cognitive functions such as attention and, 
unexpectedly, for affective processes such as emotion regulation, challenging the traditional 
separation between cognition and emotions (63). This suggests that both cognitive abilities and 
emotional regulation are linked to gene expression related to neuronal communication. As shown 
above, genes involved in neuronal communication exhibited the strongest cortical expression 
alignment with the most differentiating traits of neurophysiological profiles. This linkage between 
cortical mapping of cognitive abilities and emotional regulation with the gene-differentiation 
signature supports a more integrated model of neuropsychological processes, bridging cognitive 
and affective functions.  
 
Our research also highlights the importance of limbic brain regions, including the anterior 
cingulate cortex (Figure 2C), which are often linked to mental health disorders (64–67). We found 
that limbic regions involved in affective processes are associated with gene expression related to 
cell morphogenesis, primarily expressed in astrocytes and microglia (Figure 2B & Figure S6). This 
relationship, indicated by negative gene scores (Figure 2B & C), underscores the potential role of 
neuron-support cells in mental health. Furthermore, our data suggest that the neurophysiological 
signals in limbic regions, particularly those related to emotional processes, may not be distinct 
enough to differentiate individuals effectively (Figure 2A). This insight is particularly relevant for 
the application of personalized medicine in mental health. 
 
Trajectory of the Neurophysiological Profile Through the Lifespan 
We report that the gene-differentiation signature becomes more pronounced with age (Figure 3). 
This observation aligns with previous neuroimaging studies showing that individual brain-
fingerprint features become more stable and unique as people age (5, 68) (Figure 3). It is also 
consistent with findings that the influence of genetics on cognitive processes increases across the 
lifespan (23, 25, 48). Our data demonstrate that while the overall neurophysiological profile 
becomes more distinct and individualized with age, the specific traits that are most salient can 
change over the lifespan, paralleling the maturation of cortical gene expression. These findings 
provide new biological insights into the widely reported changes in neurophysiological brain 
activity associated with aging (69–74). 
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Methodological Considerations and Future Directions  
Previous neuroimaging studies with fMRI have shown how gene expression modulates functional 
connectivity in the frontoparietal network, a key feature of inter-individual differentiation in fMRI 
brain-fingerprints (75). In contrast, our study highlights the role of posterior unimodal sensory 
cortical regions in driving inter-individual differentiation based on neurophysiological traits. This 
disparity between neuroimaging modalities underscores the distinct biological underpinnings of 
hemodynamic fMRI and electrophysiological signals (1, 2, 50, 76). Specifically, while fMRI 
connectome-based individual profiles partially reflect the structural connections between network 
nodes (77, 78), our findings indicate that individual neurophysiological profiles are predominantly 
shaped by processes of neuronal communication, particularly through the expression of genes 
involved in ion transport and neurotransmission. This distinction underscores the critical role of 
these genes in mediating neuronal signalling and brain activity patterns, providing novel insight 
into the mechanisms underlying neurophysiological individuality. 
 
We must also underscore potential limitations in the interpretation of our findings. Heritability 
estimates were derived using Falconer’s formula, which does not account for variance due to 
environmental factors. As already mentioned above, future studies with larger twin samples and 
comprehensive documentation of demographics and socioeconomic factors are warranted to 
address this limitation. Our genomics analysis is based on rare, albeit limited, data from a small 
sample of post-mortem brain tissue. The tissue sampling process has inherent biases, such as a 
focus on the left hemisphere and sex imbalance. Future research should aim to mitigate these 
biases. Additionally, we acknowledge that post-mortem gene expression measures may not 
accurately reflect in vivo conditions (79). 
 
The correlational nature of our findings highlights the need for further experimental validation, 
potentially through animal models, to establish causative links between gene expression and 
neurophysiological and behavioural traits. The gene-differentiation signature and its relationship 
to neuropsychological processes highlighted in our study were derived from meta-analytic findings 
(80). While we believe these findings are novel and biologically meaningful, they do not provide a 
complete picture of the neural basis of behaviour. The inherent limitations of meta-analytic 
approaches and the limited scope of behaviours analyzed here will need to be expanded upon in 
future studies. 
 
In conclusion, our research elucidates the relationship between molecular variations, brain 
activity, and individual differences. Using a multiscale, data-driven approach, the present study 
suggests new avenues for understanding the biological foundations of individual variability. Our 
findings lay the groundwork for future studies to further explore these complex interconnections, 
thereby enriching our understanding of the neural underpinnings of human behaviour and 
cognition. We hope that our work will inspire continued exploration and innovation in the field, 
ultimately advancing our knowledge of how genetic and neurophysiological factors shape the 
human experience. 
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Methods: 
Participants: MRI and MEG data from 89 healthy young adults (22-35 years old; mean= 28.6, SD= 
3.8 years) were collected from the Human Connectome Project (HCP)(28). Among these 89 
participants, 34 were monozygotic twins, and 22 were dizygotic twins. The zygosity of the 
participants was confirmed with genotyping tests. All participants underwent three approximately 
six-minute resting-state eyes-open MEG recordings using a 248-magnetometer whole-head 
Magnes 3600 system (4DNeuroimaging, San Diego, CA). All sessions were conducted at the same 
location with a sampling rate of 2034.5 Hz, as detailed in HCP protocols(28). 
 
Ethics: The procedures for the curation and analysis were reviewed and approved according to 
the institutional ethics policies of McGill University ’s and the Montreal Neurological Institute’s 
Research Ethics Boards (ref no. 22-06-079).  
 
MEG Data Preprocessing & Source Mapping: MEG data were preprocessed following good 
practice guidelines(81) using Brainstorm(82). Source maps for each participant’s recordings were 
computed using a linearly-constrained minimum-variance (LCMV) beamformer and were 
clustered into 200 cortical parcels of the Schaefer atlas(83), as detailed in Supplemental 
Information Methods. 

Neurophysiological Profiles: Power spectrum density (PSD) estimates at each cortical parcel were 
derived using Welch’s method (sliding window of 2 s, 50% overlap). The neurophysiological profile 
(or brain-fingerprint) of each participant consisted of PSD values defined at 301 frequency bins 
(range: 0-150Hz; ½ Hz resolution) for each of the 200 cortical parcels. Neurophysiological profiles 
were generated for each of the three MEG recordings per participant.  

Individual Differentiation: Individual neurophysiological profiling was conducted following our 
previous work (Figure 1A)(2). We assessed the correlational similarity between participants’ 
neurophysiological profiles across recordings. For each probe participant, we computed Pearson’s 
correlation coefficients between their neurophysiological profile from one their three recordings 
available and a test set consisting of the neurophysiological profiles of all participants derived from 
another one of the other two recordings (between-participants similarity), including the probe 
participant’s profile (within-participant similarity). A participant was correctly differentiated if the 
highest correlation coefficient between their neurophysiological profile and the test set was 
obtained from their own neurophysiological profile from the other recording. This procedure was 
repeated for all participants. We then computed the percentage of correctly differentiated 
participants across the cohort, yielding a score of differentiation accuracy for the 
neurophysiological profiling approach. This procedure was repeated for all possible pairs of data 
recordings from the three available for each participant, and the mean differentiation accuracy 
was reported. 
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Matching Neurophysiological Profiles Between Twin Pairs:  We declared that the 
neurophysiological profiles of twin siblings matched with one another if their Pearson’s correlation 
coefficients were higher than with any other participant. This matching procedure was repeated 
for all twin pairs in the cohort, and we reported the percentage of correctly matched pairs 
separately for monozygotic and dizygotic twin pairs. 

Band-limited Neurophysiological Profiles: We replicated the individual and twin pair 
neurophysiological profiling analyses, restricting the PSD features to those averaged over the 
typical electrophysiological frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 
(13–30 Hz), gamma (30–50 Hz), and high-gamma (50–150 Hz). 

Bootstrapping of Differentiation Accuracy Scores: To derive confidence intervals for the reported 
differentiation accuracies, we employed a bootstrapping method. We randomly selected a subset 
of participants representing approximately 90% of the tested cohort (i.e., 30 MZ, 20 DZ, and 30 
non-twins), derived a differentiation accuracy score, and repeated this procedure 1000 times with 
random subsamples of participants. We report 95% confidence intervals from the 2.5th and 97.5th 
percentiles of the resulting empirical distribution of differentiation accuracies. For deriving 
confidence intervals for the differentiation of twin pairs, we randomly subsampled 15 MZ twin 
pairs and 10 DZ twin pairs for each iteration of the random subsampling. 

Saliency of Neurophysiological Traits: We calculated intraclass correlations (ICC) to quantify the 
contribution of each cortical parcel and frequency band toward differentiating between 
individuals across the cohort. ICC quantifies the ratio of within-participant to between-participant 
variance. High ICC values indicate the saliency of a feature of the neurophysiological profile (a 
neurophysiological trait) in distinguishing individuals, as it reflects high within-participant 
consistency and low between-participant variability. To avoid potential bias due to twin pairs, we 
computed ICC across all individuals in the cohort and across 100 random subsamples, ensuring 
only one twin from each pair was included in each subsample (i.e., for each subsample, we 
randomly selected either twin A or twin B to include in the calculation of ICC). The ICC values 
obtained from bootstrapping were nearly identical to those obtained from the entire cohort 
(98.6% correlation). We proceeded with the ICC values averaged across bootstraps for all analyses. 
 
Heritability of Neurophysiological Traits: We calculated the heritability of individual 
neurophysiological profiles, considered as phenotypes, using the Falconer formula(10). This 
method estimates the relative contribution of genetics versus environmental factors in 
determining a phenotype. A phenotype in this context refers to the overall neurophysiological 
profile of an individual, while a trait refers to specific aspects or features within this profile, such 
as power spectrum density in a particular frequency band or cortical region. If the similarity in a 
phenotype between monozygotic (MZ) twins is greater than that between dizygotic (DZ) twins, 
the trait is considered heritable: 
 

H2 = 2(rMZ – rDZ), 
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where rMZ  (and rDZ, respectively) is the intraclass correlation between MZ (and DZ, respectively) 
twin pairs for a given neurophysiological trait. It is important to note that heritability reflects the 
similarity within twin pairs for a given phenotype, whereas ICC reflects the stability of a trait within 
a person relative to others in the cohort. 
 
Gene Expression Data: Gene expression data was obtained from the six postmortem brains 
provided by the Allen Human Brain Atlas (AHBA; http://human.brain-map.org/)(33)using the 
abagen python package(35). Our analyses followed a similar pipeline to prior studies(32). Gene 
expression was obtained by averaging across donors. We retained 9104 genes with a differential 
stability above 0.1 for all future analyses, following good-practice guidelines and previous 
literature(32, 34, 35, 84). See Supplemental Information Methods for further details.  
 
PLS Derivation of a Gene-Differentiation Signature: We related salient features for participant 
differentiation to gene expression gradients using a partial least squares (PLS)(85–87) analysis. We 
z-scored the columns of two data arrays: one containing the most salient neurophysiological traits 
(ICC values) and the other containing gene expression levels. The neurophysiological traits array 
(denoted as Y) had 6 columns representing each frequency band of interest and 200 rows 
representing the cortical parcels of the Schaefer atlas. The gene expression array (denoted as X) 
had 9104 columns representing genes and 200 rows representing the same cortical parcels. We 
applied singular value decomposition (SVD) to the covariation matrix of X and Y such that: 
 

Cov(𝑋, 𝑌) = 𝑈𝑆𝑉!, 
 
where U and V are the left and right singular vectors, and S is the diagonal matrix of singular values. 
As typical with PLS, this decomposition allowed us to identify the latent variables that maximally 
covary between the gene expression data and the neurophysiological traits. Each singular value 
indicates the amount of covariance explained by its corresponding latent component. The vectors 
U and V provide the weights for the genes and frequency bands, respectively, for each latent 
component. High weights in U correspond to genes that strongly covary with high weights in V, 
which correspond to specific frequency bands. Positively weighted genes covary with positively 
weighted frequency bands, elucidating the relationship between genetic and neurophysiological 
variability. 
 
Gene expression and ICC scores were computed for each cortical parcel by projecting the original 
data matrices X and Y onto the singular vector weights obtained from the PLS analysis. Specifically, 
these scores represent the covariance between the gene expression data and the 
neurophysiological traits. For example, cortical parcels with positive scores indicate covariance 
between positively weighted genes and positively weighted frequency bands, which are important 
for participant differentiation. 
  
Loadings were computed as Pearson’s correlation coefficients between each variable’s regional 
spatial distribution over the cortex (i.e., gene expression and ICC data) and the corresponding 
cortical score pattern (i.e., correlating gene expression with ICC scores). We used Pearson’s 
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correlation coefficients for our loadings because they provide a standardized measure of the 
strength and direction of the linear relationship between variables, facilitating interpretation. 
Variables with large absolute loadings are highly correlated with the observed score pattern and 
strongly relate to the latent component of covariance. 
 
To assess the significance of the latent components, we conducted permutation tests that 
preserved the spatial autocorrelation of cortical maps (see below). Specifically, we performed 
1,000 spin tests and computed a null distribution of singular values. P-values were computed as 
the proportion of null singular values that achieved a greater magnitude than the empirical 
singular values. Additionally, we computed bootstrapped confidence intervals for the singular 
values by randomly resampling the rows (corresponding to the cortical parcels) of both data 
matrices 1,000 times. We report the 2.5th and 97.5th percentiles of the resulting distribution of 
singular values. 
 
Gene Ontology Analysis: To determine the biological processes that strongly contributed to the 
set of positively and negatively loaded genes, we conducted an enrichment analysis using gene 
ontology(88, 89), a framework for categorizing gene products based on their molecular function 
and associated biological processes(36, 88). 
 
For negatively and positively loaded genes, we separately selected the 50% with the largest 
absolute loadings (e.g., genes with the 50% most negative or positive loadings) and input these 
genes into the ShinyGO v.0.77 gene ontology tool(36) using the GO biological processes pathway 
databases(89). Genes without Enrtez IDs were excluded from the analysis. P-values associated 
with fold enrichment for all terms were FDR corrected. See Supplemental Data for a 
comprehensive list of all biological processes and their corresponding fold enrichment values. 
 
Cell-type Deconvolution: We aggregated cell-specific gene sets for seven cell types using data 
from five human adult postmortem single-cell and single-nucleus RNA sequencing studies(37–41, 
47). The seven cell classes were determined based on hierarchical clustering, resulting in the 
following cell types: astrocytes, endothelial cells, microglia, excitatory neurons, inhibitory neurons, 
oligodendrocytes, and oligodendrocyte precursor cells (OPC). 
  
We assessed the preferential expression of cell-specific gene sets by 1) computing the ratio of 
positively loaded genes that overlapped with the cell-specific gene set; and 2) permuting gene sets 
1,000 times to assess statistical significance. 
  
This approach allowed us to determine the statistical significance of the overlap between the 
loaded genes and the cell-specific gene sets, providing insights into the cell-type-specific 
expression patterns of the genes contributing to the neurophysiological traits. 
 
Gene Expression & Neuropsychological Processes PLS Analysis: We repeated the above-
described PLS analysis to relate gene expression to neuropsychological processes, as indexed by 
brain activation maps obtained from Neurosynth(80). This analysis replicated the approach of 
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Hansen and colleagues(32), using the Schaefer-200 atlas(83). For detailed methodology, see 
Supplemental Information Methods.  
 
Gene-Signature Evolution Across Developmental Stages: We used brain gene expression data 
available from BrainSpan(49) ,which features gene expression levels from different developmental 
stages ranging from 8 post-conception weeks to 40 years of age. We computed gene scores for 12 
cortical regions across neurodevelopmental stages by multiplying the gene expression matrix 
obtained from BrainSpan with the PLS-derived gene weights (columns of U above). 
 
We fitted linear slopes—using the MATLAB polyfit() function—to the gene scores across 
neurodevelopment for each cortical parcel separately. These slopes were then compared to 
statistical null slope values obtained by performing spatially autocorrelation-preserving 
permutations, then running the PLS analysis pipeline, and multiplying the null gene weights with 
BrainSpan gene expression data. This resulted in a null distribution of slopes (1,000 permutations). 
See Supplemental Information Methods for further details. 

Visualization: We plotted brain maps of ICC, heritability, and PLS brain scores using the ggSchaefer 
and ggseg R packages. All other plots were generated using the ggplot2 package in R(90). 

Correction for Spatial Autocorrelation of Cortical Maps: We corrected for spatial autocorrelation 
of cortical map data, where applicable, using SPIN tests. SPIN tests preserve the spatial 
autocorrelation of cortical topographies by rotating the cortex surface data, effectively permuting 
the spatial positions while maintaining the spatial structure. This generates a null distribution that 
accounts for spatial autocorrelation. We conducted 1,000 spin permutations of our brain maps 
using the Hungarian method(91, 92).  
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Supplemental Materials: 
 
Methods (Cont'd.) 
MEG data preprocessing. MEG data were preprocessed following good practice guidelines(81) 
using Brainstorm(82) March-2023 distribution running MATLAB 2020b (Mathworks Inc., 
Massachusetts, USA). Our preprocessing pipeline was adapted from previous published work(2, 
29). Line noise artifacts (60Hz) along with their first 9 harmonics were removed using notch filters. 
Slow-wave and DC artifacts were attenuated with a high-pass FIR filter above 0.3 Hz. To remove 
ocular and cardiac physiological artifacts, we defined Signal-Space Projections (SSPs) based on the 
activity of concurrent electro-cardiogram and -oculogram recordings. We additionally attenuated 
low-frequency eye saccades (1-7 Hz) and high-frequency (40-240 Hz) muscle noise components 
with SSPs. 
 
MEG source mapping. We source imaged the resting-state MEG sensor data using the 
coregistered anatomy folder provided by HCP(28). We computed MEG biophysical head models 
for each participant using the Brainstorm overlapping-spheres model (default parameters) applied 
to 15,000 locations distributed over the entire cortex. Source maps for each participants’ 
recording were computed using linearly-constrained minimum-variance (LCMV) beamforming 
(using Brainstorm‘s default parameters: 2018 version). Noise statistics were estimated from the 
empty-room recordings collected on the respective day of visit of each participant. Individual 
source maps were then projected onto a default anatomy template, spatially smoothed (3mm) 
and clustered into the 200 cortical regions of the Schaefer atlas(83) using the first principal 
component within each region as representative time series of brain activity. Brain-fingerprints 
were derived from the power spectrum densities (PSD) of these regional source timeseries 
computed using Welch’s method with a sliding window of 2 seconds and 50% overlap. 
 
Correspondence of salient neurophysiological traits and heritable brain phenotypes. We 
determined whether the salient features for individual differentiation were aligned 
topographically with heritable brain phenotypes. To do this, we computed the Pearson’s spatial 
correlation of ICC neurophysiological profile topographies with the brain maps obtained from the 
heritability analyses (see Heritability of brain phenotypes) across the 200 regions of the Schaefer 
atlas(83). We controlled for the spatial autocorrelation of the data using the Hungarian method 
(91, 92) (see Correction for spatial autocorrelation of brain maps).  
 
Neuroanatomy. We verified that the neurophysiological profiles of MZ twin pairs matched in spite 
of heritable neuroanatomical features. We, therefore, derived structural statistics for each region 
of the Desikan-Killiany atlas from Freesurfer(93). We then i) computed the heritability of these 
features following the procedure described in the main text, and ii) tested for a possible linear 
association between anatomical and spectral similarity across twin pairs. The results are reported 
separately for MZ, and DZ twin pairs (see The Matching Between the Neurophysiological Profiles 
of Monozygotic Twins Is Not Driven by Anatomy). 
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Biophysical and environmental artifacts. We investigated whether MEG recording artifacts might 
have overly contributed to the differentiation between individuals. We computed the root-mean-
squares (RMS) of ocular and cardiac reference signals (ECG, HEOG, VEOG, respectively) collected 
simultaneously with MEG data. We then linearly regressed these measures from the 
neurophysiological profiles and used the residuals of this regression to differentiate individuals.  
We then tested whether the environmental and instrument noise conditions on the day of the 
MEG recordings biased individual differentiation(2). We, therefore, used the empty-room 
recordings collected on the same day of the MEG session for each participant to derive pseudo 
neurophysiological profiles. These empty-room recordings were preprocessed using the same 
filters as the resting-state data and projected onto the participant’s brain using the same imaging 
kernels. We computed the differentiation accuracies obtained based on these pseudo-profiles.  
 
Gene expression data. Gene expression data were obtained from the six postmortem brains 
provided by the AHBA (http://human.brain-map.org/)(33) using the abagen Python package(35), 
following a pipeline published previously(32). In brief, we first used microarray probes with the 
highest differential stability to represent gene expression for each gene (20,232 in total). Tissue 
samples were assigned to each of the 200 brain regions of the Schaefer atlas using Montreal 
Neurological Institute (MNI) coordinates generated via nonlinear registrations. We ignored tissue 
samples further than 2 mm away from each brain region. To reduce potential misassignment, 
sample-to-region matching was constrained by hemisphere and to the cortex. If a region of the 
Schaefer atlas was not assigned a sample, the closest sample in Euclidian distance to the centroid 
of the region was selected. Gene expression was normalized across tissue samples and subjects, 
and for each of the retained genes, was obtained by averaging across donors. We retained 9104 
genes with a differential stability above 0.1 in further analyses, following good-practice guidelines 
and previous literature(32, 34, 35, 84).  
 
Cross-validation of gene-differentiation PLS analysis. We assessed the robustness of our PLS 
model through cross-validation of Pearson’s correlation between the observed gene scores and 
ICC statistics. We followed the same cross-validation procedures as Hansen and colleagues(32), 
splitting brain regions into one testing and one training set. A random seed was used to determine 
the training set: 75% of the brain regions the closest in Euclidian distance to the seed location 
were used to train the PLS model. The quartile of regions were held out to test the PLS model by 
computing the correlation between predicted gene scores and ICC statistics [Corr(XtestUtrain, 
YtestVtrain)]. This procedure was repeated 100 times to produce a distribution of correlations. 
The significance of the cross-validation outcomes was assessed against a null model obtained from 
spatial autocorrelation-preserving permutations of the gene expression matrix and repeated the 
cross-validation procedure 1,000 times (Figure S5c).  
 
Gene expression & psychological-processes PLS analysis. We assessed the relationship between 
gene expression and psychological processes as indexed by brain activation maps obtained from 
Neurosynth(80).  
 
The brain map associated with each psychological-process term represents the probabilistic 
association between this term (e.g., attention) and brain activations observed at each voxel from 
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published studies reporting on that psychological process. This meta-analytic approach combines 
data from >14,000 published fMRI studies. We focused our analyses on the 123 terms reported 
by Hansen and colleagues(32) at the intersection between Neurosynth(80) and the Cognitive 
Atlas(94), a public ontology of cognitive science. This data-driven approach did not distinguish 
between activations and deactivations, nor did it consider the degree of activation of a given brain 
area. Here too, we used the Schaefer-200 atlas(83) to sample the resulting cortical maps. 
 
We assessed the alignment between the respective latent components associated with gene-
psychological processes and gene-differentiation by computing the Pearson’s correlation between 
gene scores and PLS loadings (Figure S6). 
 
Gene ontology analysis. To determine the biological processes contributing to positively and 
negatively loaded genes, we performed an enrichment analysis for the 50% largest loadings (e.g., 
genes with the 50% most negative and positive loadings) using the ShinyGO V 0.77 (Dec 20th 2023) 
gene ontology tool(36) and the GO pathway databases of biological processes(89).  Genes with no 
Entrez Ids were ignored. Fold enrichment for each biological process was computed by comparing 
the frequency of a given biological process in the set of positive genes to the frequency of that 
process in the entire genome. P-values associated with fold enrichment for all terms were 
corrected for false discovery rate (FDR). See Supplemental Data for a comprehensive list of all 
biological processes and their corresponding fold enrichment values. 
 
Development of the gene signature. We binned gene expression data from BrainSpan(49) into 
five life stages: fetal (8–37 post-conception weeks), infant (4 months–1 year), child (2–8 years), 
adolescent (11–19 years) and adult (21–40 years)(95). For each life stage, we computed the gene 
expression of the top 50% of positively and negatively loaded genes for each cortical region. 
Additionally, we computed gene expression at every neurodevelopmental stage for a random set 
of genes (Figure S7B). Note that of the 16 cortical regions with gene expression data, four regions 
only had samples for the fetal stage; therefore, we report data for the 12 cortical regions with data  
across all neurodevelopmental stages. 
 
Human accelerated region analyses. We defined genes associated with human accelerated 
regions (HARs) based on previous work by Wei et al.(96). Of the 1711 genes featured in AHBA, 
they reported that 415 genes were significantly more expressed in brain tissues than other 
available body samples (see Supplementary Data 2 therein). We used these 415 HAR-brain genes 
for further analyses, including 313 genes that were differential stable in our analysis (see Gene 
expression data).  We first assessed the overrepresentation of HAR-brain genes in the identified 
gene signature (top 50% positive and negative loadings) through permutation analyses. We then 
assessed the spatial correspondence of gene expression of HAR-brain genes and the computed 
gene brain score (see Correction for spatial autocorrelation of brain maps). 
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Supplementary Results 
 
Assessing the Robustness of Neurophysiological Profiles  
We performed a series of sensitivity analyses to rule out the possibility of environmental and 
physiological artifacts affecting our results. 
 
We first evaluated the influence of environmental factors that may affected the MEG recordings. 
We processed empty-room recordings in the same way as the actual participant data to derive 
pseudo neurophysiological profiles related to the environmental conditions around each 
participant’s visit. Individual differentiation was poor based on these pseudo neurophysiological 
profiles (<1.7%; Figures 1B). 
 
We then used linear regression models to remove the variance associated with physiological 
artifacts from the neurophysiological profiles (see Methods (Cont'd.) Biophysical and 
environmental artifacts). Using the same analysis pipeline, we observed that identification 
accuracy remained largely unaffected: 82.6% [74.7, 89.3] differentiation accuracy across all 
participants, 55.2% [46.7, 66.7] matching accuracy between monozygotic twins, and 5.8% [0.0, 
15.0] between dizygotic twins, using broadband features (Figure S1). The robustness of the 
results indicates that individual differentiation is not significantly driven by physiological 
artefacts. 
 

 
Fig. S1. Physiological artifacts do not impact differentiation accuracy. 
Comparison of the differentiation and twin-matching accuracy scores before and after regressing 
out the influence of artifacts on neurophysiological profiles, for singletons (left panel), MZ twin 
pairs (middle panel) and DZ twin pairs (right panel). 
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The Matching Between the Neurophysiological Profiles of Monozygotic Twins Is Not 
Driven by Anatomy  
We tested whether the matching between the neurophysiological profiles of MZ twins may have 
been driven by similarities in their brain anatomy. The brain structural features of MZ siblings 
extracted from Freesurfer(93) were indeed more similar than those of DZ twins or unrelated 
participants (see Methods): they showed high correlation between MZ siblings (r= 0.99), and lower 
for DZ twin pairs (r= 0.93). The most heritable brain anatomical features the most heritable were 
related to the curvature (h= 1.75) and thickness (h= 1.75) of the cortex.  
 
To assess the extent to which these brain structural features contributed to the heritability of 
neurophysiological profiles, we estimated the linear correlation between the matching of 
neurophysiological profiles of twin siblings and the similarity of their respective brain anatomical 
features (Figure S2A and Methods). These relationships were not statistically significant between 
MZ siblings (r= 0.32, p= 0.06) not between DZ siblings (r= -0.22, p= 0.32; see Figure S2B right panel). 
The outcome was similar when we replicated this analysis for neurophysiological profiles derived 
from alpha-band (MZ: r= 0.31, p= 0.08; DZ: r= -0.17, p= 0.45) and beta-band (MZ: r= 0.32, p= 0.07; 
DZ: r= -0.15, p= 0.51) brain activity. Bayes factor analyses corroborated that there was little 
evidence for a relationship between similarities of structural and neurophysiological traits 
(Supplemental Table S1). To conclude, while brain curvature and cortical thickness are heritable 
brain phenotypes, they did not contribute significantly to individual differentiation based on their 
neurophysiological profiles.  
 
 

 
Fig. S2. Twin Matching is Not Driven by Brain Anatomical Similarity. 
(a) Analysis pipeline to test for a possible linear association between brain anatomical and 
neurophysiological traits. The anatomical and neurophysiological features across MZ and DZ twin 
pairs were Fisher-transformed and their association tested for linear relationship. (b) Scatter 
plots and best linear model of the association between brain anatomical neurophysiological traits 
across MZ and DZ twin pairs.  
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 Pearson’s r BF10 
 MZ DZ MZ DZ 

Anatomy vs. broadband neurophysiology  0.32 -0.22 1.65 0.68 
Anatomy vs. alpha-band neurophysiology 0.31 -0.17 1.46 0.57 
Anatomy vs. Beta-band neurophysiology 0.31 -0.15 1.60 0.54 

 
Table S1: Pearson’s Correlations Between the Similarity of Brain Anatomy and Neurophysiological 
Profiles.  
We fit linear models relating the similarity of brain anatomical similarity and neurophysiological 
profiles derived from broadband, alpha band, and beta band activity between MZ and DZ twin 
siblings. There was little Bayes factor evidence (BF10) of such a relationship.  
 
 
 
Salient Features for Participant Differentiation are Heritable 

 
Fig. S3. Salient regions (measured with ICC) of the broadband neurophysiological profile and its 
heritable brain phenotypes. 
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Figure S4: Differentiable Neurophysiological Traits are Heritable. 
 (a) Left panel: Cortical maps of heritability of neurophysiological traits derived from Falconer's 
equation. High heritability values highlight the regions which neurophysiological activity is most 
influenced by genetics. 
Right panel: Heritability scores of broadband neurophysiological traits are reported per region of 
the 7 Yeo-Krienen atlas of resting-state networks, highlighting variations in heritability across 
brain systems.  
(b) Left panel: Pearson’s correlation between the neurophysiological traits that are the most 
salient for individual differentiation and their heritability, for each tested frequency band of 
electrophysiology. The blue dots indicate the correlation statistics and the boxplots depict the 
null distributions obtained by spin-test permutations. 
Right panel: Scatter plot of best linear model relating the heritability and saliency of alpha-band 
neurophysiological traits. Each dot represents a region of the Schaefer-200 atlas. The saliency of 
the alpha-band neurophysiological traits for individual differentiation is linearly related to their 
heritability. This further demonstrates the genetic influence on neurophysiological traits.  
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PLS Analysis Pipeline & Gene-Differentiation Signature 
 

 
Figure S5: Analysis Pipeline and Outcomes of Gene-Differentiation PLS Analysis.  
(a) Analysis Pipeline: Two data matrices were submitted to a Partial-Least-Squares (PLS) and gene 
ontology analysis: i) the first data matrix gathered the most salient traits for neurophysiological 
profiling; ii) the second data matrix contained scores of gene expression across the regions of the 
Schaefer-200 cortical atlas(83). The PLS analysis resulted in latent components capturing the 
modes of largest covariance between these variables. Using the elements with top loadings, we 
performed a gene ontology analysis to determine if the contributing genes were enriched for 
specific molecular processes.  
(b) Cortical Topographies of Latent Components: The left panel shows the PLS latent components 
with pink dots, ordered by decreasing effect size. Statistical significance was determined with 
1,000 permutations of the observed data, with spatial autocorrelation correction applied, 
highlighting only the first latent component. The right panel shows the related cortical 
topographies of gene-expression and ICC scores derived by projecting this first latent component 
onto the observed data. 
(c) Cross-validation Process of the Gene-Differentiability PLS Analysis: We trained the PLS model 
using 75% of the cortical regions, selected based on their proximity in Euclidean distance to a 
randomly selected seed (dark purple regions), and tested the relationship between gene-
expression and ICC scores on the rest of the data. The median out-of-sample relationship 
observed was r= 0.64 (pspin= 0.002). 
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Psychological Processes and Differentiation  
We assessed the similarity in gene-expression brain score between the outcomes of the gene-
differentiation and gene-psychological processes PLS analyses. We found strong linear 
relationships between the identified gene scores and the PLS loadings (Figure S6 and The Gene-
Differentiation Gradient Correlates with Psychological Processes). 
 
 

 
Figure S6: Covariance of Gene Latent Component with Psychological Processes and 
Neurophysiological Differentiation. 
The middle panel features a scatter plot of gene-expression scores from both the outcomes of 
the gene-differentiation and gene-psychological processes PLS analyses. We found a strong linear 
relationship indicative of similar patterns in gene expression relating both neurophysiological 
differentiation and psychological functioning.  
The right panel shows a scatter plot of gene loadings for both PLS analyses, again indicating a 
high degree of correspondence, with genes contributing to differentiation also relevant to 
psychological processes. The correlation coefficients and p-values indicated report the statistical 
significance of these relationships.  
 
We further tested whether the outcome of the PLS analysis for psychological processes (see Main 
Text) covaried with individual differentiation. We anticipated such a relationship as both 
psychological processes and individual differentiation covary with similar gene expression 
signatures. The PLS of psychological-process and individual differentiation featured a single 
significant latent variable (p= 0.002) that explained 87.0% of the covariance between these 
variables (85.2% covariance explained, pSPIN= 0.002, 95% CI = [54.24., 87.37]). The ICC loadings and 
psychological process term loadings were linearly related to the loadings obtained from the 
previously reported PLS analysis (ICC loadings similarity, r=0.78; term loading similarity, r= 0.92). 
 
The Gene-Differentiation Signature Overexpresses Genes Involved in Human Evolution  
To assess the evolutionary significance of the gene-differentiation signature, we examined its 
association with human-accelerated regions (HARs) of the genome. HARs are critical loci linked to 
the evolutionary expansion of cortical areas involved in higher-order cognition(96–99). We found 
an overrepresentation of HAR-Brain genes in the gene-differentiation signature (p = 0.004; 
Supplemental Data 2). Further, there was a significant topographical alignment (negative spatial 
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correlation) between the cortical distribution of these HAR-Brain genes and the gene-
differentiation signature (r= -0.63, pspin= 0.001; Figure S7A). 
 
This finding highlights the evolutionary and developmental significance of these genomic regions. 
HARs, the most rapidly evolving segments of the human genome, are crucial in 
neurodevelopment(98) and modulate susceptibility to psychiatric neurodevelopmental 
disorders(97, 100). Additionally, HAR gene expression is linked to cortical expansion and 
predominantly occurs in regions involved in higher-order cognitive processes(96, 101).  
 
 

 
Figure S7: Relationship Between Gene Signature, Human Evolutionary Expansion, and 
Neurodevelopmental Maturation  
(a) Evolutionary Genomics and Gene Score Correlation: The left panel displays a scatter plot 
contrasting gene scores from the PLS analysis against the expression of HAR-brain genes, which 
are implicated in the evolutionary expansion of the human brain. Dots are color-coded, with pink 
(blue) indicating regions of positive (negative) gene scores. There is a linear negative relationship 
between these gene scores and the expression of HAR genes. The right panel shows z-scored 
maps of the cortical distribution of HAR gene expression.  
(b) Developmental Trajectory of Gene Expression: The line plot displays the gene expression of 
the top-50% negatively (blue) and positively (pink) loaded genes across five developmental 
stages (fetal, infant, child, adolescent, and adult). Dotted lines represent the cortical regions 
shown in the top right corner, with their respective averages shown with solid lines. The grey line 
shows the mean expression trajectory of randomly selected gene sets. 
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