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Abstract 
In recent years, a growing number of publications have reported the presence of microbial species in 
human tumors and of mixtures of microbes that appear to be highly specific to different cancer types. Our 
recent re-analysis of data from three cancer types revealed that technical errors have caused erroneous 
reports of numerous microbial species reportedly found in sequencing data from The Cancer Genome 
Atlas (TCGA) project. Here we have expanded our analysis to cover all 5,734 whole-genome sequencing 
(WGS) data sets currently available from The Cancer Genome Atlas (TCGA) project, covering 25 distinct 
types of cancer. We analyzed the microbial content using updated computational methods and databases, 
and compared our results to those from two major recent studies that focused on bacteria, viruses, and 
fungi in cancer. Our results expand upon and reinforce our recent findings, which showed that the 
presence of microbes is far smaller than had been previously reported, and that most species identified in 
TCGA data are either not present at all, or are known contaminants rather than microbes residing within 
tumors. As part of this expanded analysis, and to help others avoid being misled by flawed data, we have 
released a dataset that contains detailed read counts for bacteria, viruses, archaea, and fungi detected in all 
5,734 TCGA samples, which can serve as a public reference for future investigations. 
 
Introduction 
A number of recent studies have used the vast sequencing resource created by The Cancer 
Genome Atlas (TCGA) project to explore the potential role of microbial species in cancer. 
Although most of the TCGA data was collected with the goal of studying human genetic 
variation or gene expression, microbes present in the tumors–including viruses, bacteria, and 
fungi–might also be captured as an incidental side effect of sequencing experiments. Identifying 
microbes in a human tumor sample, in which the vast majority of the biomass is expected to be 
human in origin, requires great care in order not to be misled by contaminants, sequencing 
vectors, or other artifacts that might also be present in the data. In this study, our objective was to 
conduct an exhaustive and meticulous survey of microbial communities across thousands of 
whole-genome sequencing (WGS) samples from the TCGA project, with the goal of identifying 
any microbes within these samples. By making our results publicly available, we hope to spur 
additional research that may amplify or alternatively refute recent findings of microbiomes in a 
wide variety of tumor types. 
  
We also compare our findings to two recent studies that used much of the same TCGA data and 
described findings that were, in some instances, substantially affected by contamination. Those 
studies and others that have relied on their data have implicated the microbiome in various 
aspects of cancer, from modulating the tumor microenvironment to influencing treatment 
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responses. In the first study, Poore et al. 1 analyzed 17,625 samples from TCGA, and reported 
that they were able to use machine learning algorithms to construct highly discriminative 
microbial signatures in 32 of 33 types of cancer. Their classifiers, which used combinations of 
bacteria, archaea, and viruses, were remarkably accurate, obtaining 95-100% accuracy at 
discriminating each of the 32 cancer types against all others. They reported additional models 
with similar accuracy at distinguishing tumors from matched normal samples in 15 cancer types. 
In the second study, Narunsky-Haziza et al. 2 analyzed 17,401 samples from the TCGA project 
and other sources with the goal of identifying associations between cancer and fungi, which the 
first study had not considered. They reported distinctive fungal signatures of cancer in most of 
the 35 cancer types they considered 2. Our analysis here looks at many of the same TCGA 
samples in an effort to replicate some of these findings.   
 
One source of over-counts when analyzing human samples for microbial content is data 
contamination in public genome databases. As described previously, the inadvertent inclusion of 
human DNA within microbial genomes has affected thousands of genomes 3. When creating a 
microbial database to use in a microbiome study, it is crucial to be aware of this issue and to take 
rigorous steps to remove these computational contaminants, which otherwise will substantially 
skew the results of metagenomic analyses. Such contamination events can be especially 
problematic when working with low biomass samples, where the microbial content is expected to 
be a very small proportion of the total sample. This is precisely the scenario encountered when 
“mining” human DNA sequencing projects such as TCGA for microbial content. 
 
We should emphasize further that even a tiny amount of contamination in a genome can lead to 
enormous over-counts of bacterial species, for the following reason. The most common source of 
human contamination in bacterial genome databases is high-copy human repeats such as Alus, 
LINEs, and SINEs, as described earlier 3. Any WGS sample from human tissue is likely to 
contain large numbers of reads from these widespread repeats. Thus if one scans a human DNA 
sample against a bacterial genome that is contaminated with even one of these human repeats, 
many human reads will appear to match the bacterium. For a typical TCGA sample, it would not 
be surprising to find tens or even hundreds of thousands of reads incorrectly matching a bacterial 
genome in this circumstance 4. 
 
Vector contamination, in which reads deriving from vectors such as manufacturer-specific 
sequencing primers make their way into a genome assembly, further compounds the challenges 
associated with metagenomic analyses. Sequences originating from vectors have inadvertently 
found their way into genome databases, where they might be labeled as bacteria, fungi, plants, or 
animals. As we describe below, some fungal genome sequences in public databases are 
contaminated with vector or adaptor sequences, which can lead to large numbers of false positive 
matches to a sample that was sequenced using the same vectors. 
 
Results 
We analyzed the microbial content of 5,734 WGS samples from TCGA, which comprised all of 
the available WGS samples as of late 2023. Despite the fact that TCGA also includes large 
numbers of RNA sequencing (RNA-seq) experiments, we excluded them because they used 
poly-A selection to capture messenger RNA. Bacterial transcripts do not have long poly-A tails 5 
and will not be captured, except very rarely, with poly-A selection protocols. Thus any bacterial 
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sequences found in a human RNA-seq experiment are almost certain to be contaminants, and the 
inclusion of human RNA-seq data in a search for bacterial signatures, as has been done 
occasionally in previous studies 1, simply does not make sense. 
  
We removed human sequences from the TCGA data by mapping the reads against both the 
GRCh38 reference genome and the CHM13 human genome (see Methods). As shown in Table 
1, after removal of human sequences, the number of reads remaining in most samples was 
relatively small, averaging 2.6 million reads per sample (0.48% of the total). Across all samples, 
a total of 15 billion reads remained after two-pass filtering. Of these, we identified 2.44 billion as 
vector contaminants after classification with Kraken. 
 
We used KrakenUniq 6 to classify the filtered reads against a microbial database containing 
50,651 genomes representing 30,355 species including bacteria, archaea, viruses, and fungi (see 
Methods). Across all samples, we identified 11,349 non-eukaryotic microbial species that 
occurred at least once. Table S1 reports the number of sequencing reads detected for every 
species in each of the samples. Table S2 includes normalized counts for the data in Table S1, 
where read counts are divided by the total number of reads sequenced for each sample, in 
millions. Table S3 further normalizes the counts by dividing by the genome size of each species, 
in kilobases. The vast majority of the entries in these tables are zero: out of >65 million entries, 
only 1,882,423 (2.9%) have non-zero values, and only 214,338 (0.3%) have raw read counts of 
10 or greater. We then classified reads that were not identified in the previous step against a 
comprehensive fungal genome database containing 557 species (see Methods). Table S4 reports 
the raw read counts for all 5,734 samples for each of these fungal species, with normalized 
counts reported in Tables S5-S6. 
 
Interestingly, a number of samples showed indications of an acute infection with a single 
pathogen. For example, although only a handful of samples contained more than 100 reads from 
Helicobacter pylori, one sample contained >175,000 reads. That sample was from stomach 
cancer (STAD) data but the source was normal tissue rather than a tumor. Similarly, only 13 
samples contained >10 reads from Alphapapillomavirus 9, a species that causes cervical cancer 7, 
but the highest count of 110 reads occurred in a tumor sample from the cervical cancer (CESC) 
dataset. (Note that for small genomes, such as the 8-kilobase papillomavirus genome, many 
fewer reads will be detected in a shotgun sequencing run as compared to bacterial genomes that 
are hundreds of times larger.) For Fusobacterium nucleatum, which has been associated with 
colon cancer, only 123 samples had >100 reads, but three samples had >100,000 reads with one 
having 372,665 reads, found in a tumor sample from head and neck cancer (HNSC).   
 
Despite these examples of possible infections, we did not find evidence for a community of 
microbes residing in the samples from any cancer type. 
 
Worth noting is that even after alignment against two human genomes, an average of ~124,000 
reads per sample were still classified as human by the Kraken program (Table 1). This highlights 
the necessity of including the human genome in any metagenomics database, even if the data are 
pre-filtered to remove human reads. Figure 1 shows the breakdown of bacterial, viral, and fungal 
read counts across the 25 cancer types. 
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Table 1. Overview of the 5,734 WGS samples analyzed in this study. Cancer type abbreviations are listed in 
Supplementary Table S7. Column 4 shows how many reads remained per sample after removing reads that 
mapped to the GRCh38 human genome. Column 6 shows the number of reads remaining after a second pass 
further removed reads matching the CHM13 genome. Columns 8 and 10 show the average numbers of reads 
from column 6 that were identified by Kraken as either human or vector. 

Cancer 
type 

Total # 
samples 

Average 
read count 
(millions) 

Unmapped reads after 
mapping to GRCh38 

(avg, thousands) 
 

Unmapped reads after 
mapping to 

GRCh38+CHM13 (avg, 
thousands) 

 

Kraken-identified 
human reads (avg, 

thousands) 
 

Kraken-identified 
vector reads (avg, 

thousands) 
 

BLCA 288 284 5,983 (2.10%) 4,829 (1.70%) 199.5 (0.07%) 14 (0.00%) 

BRCA 245 690 1,738 (0.25%) 1,532 (0.22%) 35.0 (0.01%) 418 (0.06%) 

CESC 130 375 3,347 (0.89%) 2,675 (0.71%) 113.9 (0.03%) 83 (0.02%) 

COAD 262 354 5,195 (1.47%) 4,496 (1.27%) 183.9 (0.05%) 745 (0.21%) 

DLBC 14 926 381 (0.04%) 381 (0.04%) 0.1 (0.00%) 363 (0.04%) 

ESCA 115 349 3,546 (1.02%) 2,620 (0.75%) 88.2 (0.03%) 584 (0.17%) 

GBM 117 777 898 (0.12%) 758 (0.10%) 108.6 (0.01%) 28 (0.00%) 

HNSC 335 388 5,334 (1.38%) 4,348 (1.12%) 235.4 (0.06%) 279 (0.07%) 

KICH 100 869 454 (0.05%) 453 (0.05%) 0.2 (0.00%) 436 (0.05%) 

KIRC 87 705 1,054 (0.15%) 1,054 (0.15%) 0.1 (0.00%) 400 (0.06%) 

KIRP 77 866 340 (0.04%) 340 (0.04%) 0.2 (0.00%) 324 (0.04%) 

LAML 110 742 3,165 (0.43%) 2,205 (0.30%) 264.0 (0.04%) 899 (0.12%) 

LGG 185 444 3,546 (0.80%) 2,804 (0.63%) 98.6 (0.02%) 2 (0.00%) 

LIHC 108 905 391 (0.04%) 391 (0.04%) 0.2 (0.00%) 368 (0.04%) 

LUAD 577 473 4,808 (1.02%) 4,185 (0.88%) 126.3 (0.03%) 1,964 (0.42%) 

LUSC 100 906 194 (0.02%) 194 (0.02%) 0.1 (0.00%) 2 (0.00%) 

OV 121 747 454 (0.06%) 454 (0.06%) 0.3 (0.00%) 346 (0.05%) 

PRAD 272 304 6,680 (2.20%) 5,152 (1.69%) 305.7 (0.10%) 15 (0.01%) 

READ 120 283 6,620 (2.34%) 5,704 (2.02%) 230.2 (0.08%) 969 (0.34%) 

SARC 82 733 181 (0.02%) 181 (0.02%) 0.1 (0.00%) 159 (0.02%) 

SKCM 320 311 3,826 (1.23%) 3,134 (1.01%) 116.7 (0.04%) 632 (0.20%) 

STAD 299 368 5,292 (1.44%) 3,877 (1.05%) 284.7 (0.08%) 28 (0.01%) 

THCA 1,248 784 676 (0.09%) 527 (0.07%) 20.6 (0.00%) 43 (0.01%) 

UCEC 320 383 4,590 (1.20%) 3,811 (1.00%) 290.7 (0.08%) 461 (0.12%) 

UVM 102 156 3,599 (2.31%) 2,548 (1.64%) 103.1 (0.07%) 2 (0.00%) 

Total 5,734 3,099,077 18,420,684 (0.59%) 14,998,914 (0.48%) 713,538 (0.02%) 2,444,357 (0.08%) 

Average 229 540 3,213 0.59% 2,616 0.48% 124 0.02% 426 0.08% 
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Figure 1. Microbial content found in TCGA data from 25 cancer types. Box plots show the inter-quartile 
range of read counts for the samples from each cancer type, with a horizontal line indicating the mean 
value. On average, bacterial reads (blue) had much higher counts than fungal (green), followed by viral 
(orange) across the board. Read counts were normalized by the number of reads sequenced in each 
sample, in millions; i.e., a value of 10 indicates 10 reads for every million reads in the sequencing run. 
Note that no adjustments were made for genome size here, which explains the much smaller read counts 
for viruses. For clarity, the y-axis uses a log scale. 
 
 
Abundant bacteria, viruses, and fungi are likely to be contaminants 

 
The most abundant species across all 5,734 samples, in our analysis, were Delftia acidovorans, 
Rothia mucilaginsa, Human mastadenovirus C, Pseudomonas sp. J380, Escherichia coli, 
Bacteroides fragilis, Prevotella intermedia, and other Delftia and Rothia species. Each of these is
known to be present on human skin, in the oral cavity, or in the gut, and each was found in large 
numbers of both tumor and normal samples, ranging from 378 samples containing Human 
mastadenovirus C to 1,968 samples with D. acidovorans and 4,440 samples with E. coli. The 
mundane and thus most likely explanation is that all of these findings represent contamination, 
with possible sources including the sequencing facilities and the multiple people handling each 
of the samples. The most frequently observed fungal species, appearing in 2,312 samples, was 
Saccharomyces cerevisiae, a widely-used model organism that is not a human pathogen and that 
frequently appears as a cross-contaminant in sequencing centers.  

 

 is 
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Associations between microbes and cancer types 
 
To determine if any of the microbial species detected in our analysis might be associated with 
cancer, we examined the most abundant microbes in each of the cancer types, using the 
normalized values in Table S3, and also looked specifically for bacteria and viruses that have 
known associations with cancer. The top species for each cancer type are shown in 
Supplementary Figure S1. 
 
We noted that after normalization, a few known cancer-associated microbes appeared relatively 
abundant, as expected: HPV was the most abundant species in the cervical cancer samples, 
Bacteroides fragilis was the top species for rectal adenocarcinoma (READ) and the fourth-most 
abundant microbe in colon adenocarcinoma (COAD), and H. pylori was the 17th-most common 
microbe in stomach adenocarcinoma (STAD). However, the vast majority of the abundant 
species across the 25 cancer types appear to represent simple contamination. For example, the 
bacterium Cutibacterium acnes, a common human skin bacterium and a common contaminant in 
sequencing projects, was abundant in most of the cancer types. Another abundant species was 
Rosellinia necatrix partitivirus 8, a virus that infects plant fungi and has no known associations 
with human disease 8,9.  
 
A small number of abundant species might represent acute infections from the original patient 
samples. Metamycoplasma salivarium, an oral pathogen that may be pathogenic in 
immunocompromised individuals, was the top species in esophageal carcinoma 10, and this 
finding might merit further investigation. Overall, though, the microbes present in these samples 
are consistent with contamination, and we found no evidence to support claims of a microbiome–
i.e., a community of microbes–in any of the cancer types. 
 
Comparison of bacterial and viral read counts to previous reports 
In a recent re-analysis 4 of TCGA sequence data from three cancer types–bladder cancer, breast 
cancer, and head and neck cancer–we reported that an earlier study by Poore et al. of the same 
data 1 had described read counts that were far too high. In particular, we found that >95% of the 

read counts in the earlier study were 
inflated by at least a factor of 10 4. Using 
the more-comprehensive data here, we can 
now confirm the previous findings and 
extend them to all 25 cancer types for 
which WGS data is available. (Note: due in 
part to our findings 4, the journal Nature 
retracted the Poore et al. study in July of 
2024 11.) 
 
The Poore et al. study 1 reported read 
counts for 1,993 microbial genera, 
including bacteria, archaea, and viruses. 
Out of the 5,734 WGS samples analyzed in 
this study, we identified 4,550 samples that 

 
Figure 2. Comparison of bacterial, viral, and 
archaeal genera found in 4,550 TCGA samples 
versus those found in an earlier study. We found a 
total of 2,857 genera while a previous study 1 found 
1,993, with 1,289 found in both studies. 
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matched those from the Poore et al. study; the remaining samples were added to TCGA more 
recently and thus were excluded from this comparison. Our analysis found reads from 2,857 
genera across the same 4,550 samples, which included 1,289 found in the previous study. The 
union of the two sets yielded 3,561 genera found in one or both studies (Figure 2). 
 
Supplementary Tables S8 and S9 contain read counts for all 4,550 samples and for the 3,561 
genera found in either study, with Table S8 containing the results for this study and Table S9 
showing the corresponding counts from Poore et al. We compared the findings by computing the 
ratio of counts (S9/S8), replacing any zero values with 1 to avoid division by zero. We then 
analyzed the ratios of read counts for all cells with a count ≥10 in at least one study, which 
comprised 2,197,510 entries.  
 

This analysis showed that the 
microbial read counts reported 
by Poore et al. were vastly 
higher than the counts found in 
this study. The median ratio was 
56; i.e., half of the read counts in 
the earlier study were at least 56 
times too high, and 90% of the 
values were at least 11 times too 
high. As shown in Figure 3, the 
top 5% (109,863) of the Poore et 
al. read counts are more than 
9225-fold too high. The primary 
reason for these extreme over-
estimates, as explained 
previously 4, was the use of a 
database containing thousands of 
incomplete ("draft") bacterial 
genomes, which themselves 
were contaminated with human 
sequences. As a result, millions 

of human reads in the TCGA data were mistakenly identified by Poore et al. as bacterial reads.  
 
To provide another comparison, we identified the top 10 most-abundant microbial genera across 
all 4,550 WGS samples reported in the earlier study and compared them to our read counts for 
the same genera. As shown in Figure 4, the top three genera in Poore et al. were Streptococcus, 
Mycobacterium, and Staphylococcus, with average read counts per sample of 1,780,000, 
1,400,000, and 922,000, respectively. In our re-analysis of the same samples, we found average 
read counts of 1129, 31, and 39 reads in those genera, values that range from 1,500 to 45,000 
times smaller.  
 
Only 2.3% of the values in our study were higher than those in the previous study. Among the 
1,568 genera found exclusively in our study, the average read count per sample was just 0.81, 
suggesting that most are either false positives or low-level contaminants. The most abundant 

Figure 3. Distribution of ratios between read counts found by 
Poore et al.  (Poore et al. 2020) and this study, for all samples in 
which either study found at least 10 microbial reads. The 
boxplot shows the median (56) and interquartile range. The top 
5% of points, comprising 109,863 values, are shown as a cloud 
above the value 9225. 
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species found exclusively in our analysis was Schaalia turicensis (previously called Actinomyces 
turicensis 12), a bacterium that is commonly found in the oral and gut microbiome.  
 

 
Figure 4. Comparison of read counts for the top 10 microbial genera from a previous study. Shown are 
the top ten most-abundant genera ranked by the average number of reads reported in Poore et al. 1 across 
4,550 WGS samples from 25 cancer types. The left axis shows read counts as reported by Poore et al., 
and the right axis shows read counts as computed in our re-analysis of the same samples and the same 
species. Note that the y-axis scales differ by a factor of ~700. The x-axis shows genus names. 
 
Comparison of fungal content to previous reports 
 
In another recent study using the TCGA data, Narunsky-Haziza et al. 2 reported a strong 
association between mixtures of fungal species, which the authors called a "mycobiome," and 
multiple cancer types. Out of the 5,734 WGS samples analyzed here, we identified 4,271 that 
were identical to those used in the Narunsky-Haziza et al. study. We re-analyzed these samples 
for fungal content using a separate fungal genome database that contained 557 species, including 
all 224 of the species included in the Narunsky-Haziza study (see Methods). The full set of read 
counts for the 4,271 samples used in both studies can be found in Supplementary Table S10 and 
S11, where the counts in Table S11 were taken from Narunsky-Haziza et al. 2 Note that because 
we used a superset of the fungal species, we identified many reads from species not found in the 
previous study; however, these were observed at very low levels, with an average read count of 
3.8 reads per sample in species unique to our analysis. 
 
Although our average read counts were in rough agreement, we found highly divergent results 
for a small number of species that were estimated in Narunsky-Haziza et al. to be highly 
abundant. These are illustrated in Figure 5, which compares the maximum read counts from any 
sample for the top 10 most-abundant fungal species from Narunsky-Haziza et al. These include 
samples containing 2,013,180 reads from Ramularia collo-cygni, 656,503 reads from 
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Trichosporon asahii, 101,344 reads from Candida albicans, and 54,641 reads from Malassezia 
globosa. In contrast, our counts for the same samples were 332, 4622, 266, and 4, values that 
range from 142-fold to 13,660-fold smaller.  
 
Notably, the species with large over-counts were considered particularly important by Narunsky-
Haziza et al., and were used by them to define three fungi-driven “mycotypes,” labeled F1 
(Malassezia, Ramularia, and Trichosporon), F2 (Candida, Aspergillus), and F3 (multiple genera 
including Yarrowia), which they reported were associated with distinct immune responses and 
overall survival 2. Below we explain how contamination in the genomes themselves led to at 
least some of the higher read counts. We hypothesize that if the raw counts are corrected, these 
mycotypes and their association with cancer will likely disappear. 
 
Table 2. Contaminants found in fungal genomes in GenBank. Columns 1-3 show the species name, 
GenBank accession number of the genome, and accession number of the scaffold in which the 
contaminant was found. Columns 4-6 show the starting location of the contaminant within the 
scaffold, its length, and the correct source of the DNA sequence. 
Organism  Accession Scaffold Accession Start Length Contamination Source 
M. globosa GCF_000181695.1 NW_001849834.1 1 897 Human 
M. globosa GCF_000181695.1 NW_001849877.1 1 557 Human 
T. asahii GCF_000293215.1 NW_014040855.1 924,646 58 Vector: NGB00360.1, 

Illumina PCR Primer 
T. asahii GCF_000293215.1 NW_014040868.1 203,990 64 Vector: NGB00852.1, 

NEBNext Index 6 Primer 
R. collo-cygni GCF_900074925.1 NW_019716264.1 394,971 58 Vector: NGB00360.1, 

Illumina PCR Primer 
R. collo-cygni GCF_900074925.1 NW_019716256.1 1,478,660 58 Vector: NGB00360.1, 

Illumina PCR Primer 
 
 
Contamination in the Malassezia globosa genome 
The highest read count for M. globosa as reported by Narunsky-Haziza et al. was 54,641 reads 
from sample h2540, a blood-derived normal sample from the head and neck cancer (HNSC) 
dataset, in which our re-analysis found only 4 M. globosa reads. We subsequently aligned all 
reads (without filtering) from sample h2540 against the M. globosa reference genome (see 
Methods) and found a very large number of matches, nearly all aligning to just two locations: an 
897-bp contig and a 557-bp contig (Table 2). We then used BLAST 13,14 to confirm that both 
contigs were human sequences that were mis-labeled as M. globosa. Note that the M. globosa 
genome assembly was revised in December 2023 (GenBank accession GCF_000181695.2), and 
the contigs shown in Table 2 were removed by NCBI because they were determined to be 
contaminated. 
 
Contamination in the Trichosporon asahii genome 
Trichosporon asahii also had an unusually high read count in the Narunsky-Haziza et al. study, 
which reported a maximum count of 656,503 reads in sample h1948 (a solid tissue normal 
sample from TCGA-LUAD). Upon aligning all reads (unfiltered) from that sample to the 
Trichosporon genome, we found an even higher number of matches, over 54 million; however, 
99.99% of the matches hit the same 80-bp interval in the genome. We investigated and found 
that 58bp from this 80bp sequence was identical to an Illumina sequencing vector (accession 
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NGB00360.1); i.e., it is a contaminant in the genome assembly. The vector contaminant occurs 
in the middle of a large, 2.7 Mbp scaffold (NCBI accession NW_014040855.1, see Table 2). 
Also worth noting here is that sample h1948 was a failed sequencing run, in which 95.4% of the 
read pairs (160 million out of a total of 179 million) were vector.  
 
We found similar results for other samples; e.g., Narunsky-Haziza et al. reported 302,882 
Trichosoporon reads in sample h1325, a lung cancer tumor sample. When we aligned the entire 
set of reads (unfiltered) from this sample to T. asahii, we found 12,235,713 matching reads, and 
all except for 18 reads aligned to the same 58-bp vector contaminant mentioned above. In a 
different sample, we found 1980 reads matching a 64-bp interval in the T. asahii genome that 
turns out to be another vector (accession NGB00852.1), also shown in Table 2. Thus for these 
and other samples, the large numbers of apparent matches to Trichosporon appear to have been 
the result of vector contaminants in the fungal genome sequence. 
 
Contamination in the Ramularia collo-cygni genome 
Sample h1948, a normal tissue sample from the lung cancer (LUAD) dataset, was reported by 
Narunsky-Haziza et al. to contain 2,013,180 reads from R. collo-cygni, whereas we found only 
322 reads. We re-aligned the filtered reads to the R. collo-cygni genome using the same Bowtie2 
parameters as used by Narunsky-Haziza et al., and found ~34M matching reads, all matching 
just two locations: a 77-bp sequence on RCC_scaffold10 (NCBI accession NW_019716264.1) 
and a 77-bp sequence on RCC_scaffold02 (NCBI accession NW_019716256.1, see Table 2). 
Both of these sequences contain a 58-bp subsequence identical to an Illumina PCR primer, one 
of the two that we found in Trichosporon. Thus these apparent matches to Ramularia appear to 
have been the result of vector contamination.  
 
Analysis of high read counts for Candida albicans 
The highest read count reported by Narunsky-Haziza et al. for C. albicans was 101,344 reads 
from sample h949, a primary tumor sample from the head and neck cancer (HNSC) dataset. We 
attempted to replicate this finding by processing the sample using the host depletion pipeline 
described in the original study, which left only 93,556 reads, a number already lower than the 
reported count for C. albicans. We aligned these reads to the C. albicans genome using Bowtie2 
15, which detected only 230 matching reads. Using the same procedures, we analyzed the sample 
with the second highest C. albicans read count, h5103, a normal tissue sample from the lung 
cancer (LUSC) dataset with 75,799 reported matches, and found only 544 matching reads. We 
were similarly unable to replicate high read counts for C. albicans in other samples. 
 
To attempt to explain the far higher read counts reported by Narunsky-Haziza et al., we aligned 
the entire set of unfiltered reads (i.e., without first removing human-matching reads) from the 
HNSC and LUSC samples to the C. albicans genome, which yielded 75,392 and 133,576 

matching reads, respectively, values closer to the original report. However, 91% of the 75,392 
reads from the HNSC sample were originally mapped to human in the raw TCGA data, and thus 
should not have been included in the "non-human" read sets. We investigated further and 
determined that nearly all these reads matched ribosomal RNA (rRNA) genes in both human and 
C. albicans, although the matches to C. albicans were far better. This analysis suggests that C. 
albicans was genuinely present in the samples (whether it was in the tissues or a contaminant), 
but it is unclear how the pipeline in the original study yielded these high read counts.  
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Figure 5. Comparison of read counts in fungal species. Shown are the top ten most-abundant fungal 
species ranked by the maximum number of reads reported in Narunsky-Haziza et al. 2, across 4,271 WGS 
samples from 25 cancer types. The left axis shows read counts as reported by Narunsky-Haziza et al., and 
the right axis shows read counts as computed in our re-analysis for the same samples and the same 
species. Note that the y-axis scales differ by a factor of 50. Note also that Narunsky-Haziza et al. reported 
a maximum of ~441K reads from one sample matching S. cerevisiae, a finding that we were unable to 
replicate. In our analysis of the same sample using reads filtered to remove human (see Methods), we 
found ~40K reads matching S. cerevisiae, as shown in the figure. These matches predominantly fell 
within a region of the yeast genome that contains the 18S rRNA gene and that has significant similarity to 
human, suggesting that these were human reads that slipped past the filtering step.  
 
Discussion 
Using updated computational methods and databases, we have analyzed the non-human content 
in a large collection of whole-genome sequencing data sets in TCGA covering 25 distinct types 
of cancer, and created a comprehensive dataset encompassing detailed read counts for bacteria, 
viruses, archaea, fungi, and other microbes in 5,734 samples from tumors and normal tissue. Our 
data show that read counts reported in a previously-published dataset are greatly inflated, often 
exceeding the true counts by factors exceeding 1,000. As we explained previously 4, these over-
counts can be attributed in part to the inclusion of numerous draft genomes (which themselves 
contain contaminants) in the database used for the metagenomic analysis. The work of Poore et 
al. 1 has been used in at least a dozen other studies 16–27 that downloaded their read count data 
and then published findings based on that data, and another recent study 28 similarly based its 
results on the “mycobiome” data from Narunsky-Haziza et al. 2 Our analyses here used a much 
cleaner database, containing only complete bacterial genomes, which in turn yielded much lower 
and more accurate counts for the microbial species we identified. We hope that by providing a 
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more accurate set of read counts for the same TCGA samples, our new dataset can serve as a 
valuable public resource, enabling researchers to better distinguish genuine microbial signals 
from background noise and contaminants in future investigations. 
 
We also extended our previous work to add a comparison with a recent study that focused on 
fungi in cancer, and that claimed to find highly specific fungal signatures in multiple cancer 
types 2 . Upon looking at the data published with that study, we discovered that several of the key 
fungal species used to create those signatures had excessively high read counts, and that at least 
some of those counts were the result of contamination in the fungal genome sequences. The 
contaminants included both human DNA and vector contaminants, either of which can lead to 
high numbers of false positives when doing metagenomic analysis. 
 
Multiple other studies have recently reported microbiomes in cancer, including a widely 
publicized report of a fungal mycobiome in pancreatic cancer 29 that was only recently (in 2023) 
shown to be deeply flawed 30, likely due to mis-identification of fungal reads in the original data. 
Similarly, a 2020 study reported tumor type-specific microbes in seven types of cancer 31, but an 
attempt to replicate those findings in breast cancer found no evidence of microbes at all 32. Taken 
together with the results described here, these reports suggest that claims regarding microbiomes 
and cancer need to be scrutinized more rigorously than they have been in the recent past, and that 
contamination of human samples with environmental microbes can easily be mistaken for a 
genuine signal. 
 
Finally, we did serendipitously find a few individual microbes present in high abundance in 
some samples, and that these were either consistent with prior knowledge or worthy of further 
investigation. These findings can be assessed further using additional, independent experimental 
data.  
 
Methods 
We downloaded sequence data from the Genome Data Commons at the U.S. National Cancer 
Institute (gdc.cancer.gov) for 25 cancer types from the TCGA project. Metadata on all samples 
used in this study and previous studies, including unique sample identifiers from TCGA, can be 
found in Table S12. In total, data from 5,734 WGS samples were downloaded from the NCI data 
portal, which had aligned the reads to either hg19 or GRCh38 using bwa 33. Of these samples, 
2824 represented solid tumors, 569 were solid normal tissue, 64 were blood-derived cancer, and 
2277 were blood-derived normal. We downloaded all reads that were unmapped by TCGA to 
their reference genome, which included the human genome (either hg19 or GRCh38, depending 
on the date of data collection) as well as human papilloma virus 16, HPV33, and Epstein-Barr 
virus. We then aligned the unmapped reads against the CHM13 human reference using Bowtie2 
15 to remove more human reads (Table 1). 
 
We classified these two-pass filtered read sets using KrakenUniq 6 using its default parameters in 
paired-read mode, which treats each pair of reads as a single discontiguous sequence. We 
classified the two-pass filtered read pairs against a curated database, Microbial2023, containing 
all RefSeq bacterial, archaeal, and viral complete genomes, a collection of curated eukaryotic 
pathogen genomes from EuPathDB54, 10,798 vector sequences from UniVec and EmVec, the 
CHM13v2.0 genome, and the GRCh38.p14 human genome. In total, Microbial2023 contains 
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50,079 genomes (29,798 species) divided into 34,452 bacteria (16,150 species), 14,018 viruses 
(12,910 species), 534 archaea (422 species) and 503 eukaryotic microbes (316 species). The list 
of species and their GenBank accessions can be found in Table S13. The Microbial2023 
database, which is 535GB in size, can be downloaded from https://benlangmead.github.io/aws-
indexes/k2. 
 
In order to conduct a more comprehensive search against fungi, we created a separate database 
containing all 572 fungal genomes (557 species) in the NCBI RefSeq database as of mid-2023, 
which we designate as Fungi_RefSeq. The list of species and their GenBank accessions can be 
found in Table S14.  After processing each sample using Microbial2023, we extracted all reads 
that were either failed to match or were classified as fungi (taxid=4751), and screened them 
against Fungi_RefSeq using KrakenUniq with default parameters. These steps yield read counts 
for all 5,734 samples against the 557 fungal species.   
 
To compare our bacterial, archaeal, and viral read counts to Poore et al.’s results, we compared 
the sample metadata and species and determined that 4,550 out of 5,734 TCGA samples were 
analyzed in both studies, and 1,289 out of 1,993 microbial genera were reported in both studies. 
(Note that because Microbial2023 is a newer database, it has some species missing from the 
Poore et al. study. Conversely, because Microbial2023 only includes finished genomes while 
Poore et al. included draft genomes, some species and genera used in Poore et al. are missing 
from Microbial2023.) Similarly for Narunsky-Haziza et al.’s results, we matched 4,271 out of 
5,734 TCGA samples. All 224 fungal species used in Narunsky-Haziza et al. were included in 
our re-analysis. A list of species name changes from RefSeq200 to RefSeq220 involving some of 
these fungi can be found in Table S15. 
 
In our analysis of the high read counts in M. globosa, T. asahii, R. collo-cygni, and C. albicans, 
we aligned human-filtered reads from the samples against their respective reference genomes 
using the same Bowtie2 parameters as used by Narunsky-Haziza et al. (--end-to-end --very-
sensitive -k 16 --np 1 --mp 1,1 --rdg 0,1 --rfg 0,1 --score-min L,0,-0.05). 
 
Data Availability 
All supplemental files and tables from this study are available at 
https://github.com/yge15/TCGA_Microbial_Content. 
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Supplementary figure captions 
 
Figure S1. Top 10 microbial species in primary tumor samples for each of 24 cancer types. 
The X-axis shows the species names, sorted by maximum normalized counts, measured as reads 
per kilobase of genome per million reads sequenced. Notably Alphapapillomavirus 9 (α-9 HPV) 
appeared as the most abundant for CESC (cervical squamous cell carcinoma and endocervical 
adenocarcinoma). LAML (acute myeloid leukemia) is not included because TCAG contained no 
whole-genome sequencing tumor samples from that cancer type. 
 
Supplementary table captions 
 
Table S1. Raw counts of 5,734 TCGA WGS samples classified at the species level against the 
Kraken Microbial2023 database, excluding eukaryotes. The contents of Microbial2023 are 
described in the main text. This resulted in 11,349 species that have non-zero counts. 

Table S2. Normalized counts of the values in Table S1, converted to counts per million reads 
sequenced. 

Table S3. Normalized counts of the values in Table S2, converted to reads per kilobase of 
genome per million reads sequenced. 
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Table S4. Raw counts of 5,734 TCGA WGS samples classified at the species level against 
Fungi_RefSeq database. The contents of Fungi_RefSeq include all 557 fungal species in RefSeq 
as of late 2023. 

Table S5. Normalized counts of TableS4, converted to counts per million reads sequenced. 

Table S6. Normalized counts of TableS4, converted to reads per kilobase of genome per million 
reads sequenced. 

Table S7. TCGA study abbreviations. 

Table S8. Raw counts of 4,550 TCGA WGS samples classified at the genus level against 
Microbial2023 database, for samples used in both this study and in the Poore et al. study. This 
dataset contains counts for all 3,561 genera that had non-zero counts in either study. 

Table S9. Raw counts from the Poore et al. study at the genus level, for samples used in both this 
study and Poore et al. This set contains 4,550 samples and 3,561 genera. Raw counts included 
here were taken directly from Poore et al. (2020). 

Table S10. Raw counts of TCGA WGS samples classified at the species level against the 
Fungi_RefSeq database, for samples matched with the Narunsky-Haziza et al. study. This 
resulted in 4,271 samples and 557 species. 

Table S11. Raw counts from the Narunsky-Haziza et al. study at the species level, for samples 
matched with this study. This resulted in 4,271 samples and 557 species. Raw counts included 
here were taken directly from Narunsky-Haziza et al. (2022). 

Table S12. TCGA metadata for 5,734 samples, including unique IDs for this study, IDs used by 
Poore et al., IDs used by Narunsky-Haziza et al., and the original TCGA identifiers. 

Table S13. List of species in the Microbial2023 Kraken database, with RefSeq accessions. 

Table S14. List of species in the Fungi_RefSeq Kraken database, with RefSeq accessions. 

Table S15. RefSeq v200 to v220 name conversion list, for 14 of the 557 fungal species whose 
names were changed between the two releases of RefSeq. 
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