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ABSTRACT 28 

Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution 29 

imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image 30 

inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We 31 

introduce CryoSamba, a self-supervised deep learning-based model designed for 32 

denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in 33 

tomograms by averaging motion-compensated nearby planes through deep learning 34 

interpolation, effectively mimicking increased exposure. This approach amplifies coherent 35 

signals and reduces high-frequency noise, substantially improving tomogram contrast 36 

and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, 37 

synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba 38 

suppresses high-frequency information less aggressively than do existing cryo-ET 39 

denoising methods, while retaining real information, as shown both by visual inspection 40 

and by Fourier shell correlation analysis of icosahedrally symmetric virus particles. Thus, 41 

CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.  42 
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INTRODUCTION 43 

Cryogenic electron tomography (cryo-ET) has become an important tool in structural biology for 44 

imaging three-dimensional biological structures with molecular resolution in their native context 45 

(Baumeister et al., 1999; Medalia et al., 2002). Achieving this dual capability requires an extremely 46 

low electron dose per tilt image to avoid sample damage, resulting in data with very low signal-47 

to-noise ratios (SNR) (Gan et al., 2012).  Enhancement of signal through downstream processing 48 

can be achieved by aligning and merging multiple instances of an invariant biological structure 49 

(when one exists), an approach known as subtomogram averaging (STA) (Wan et al., 2016). STA 50 

has effectively produced high-resolution electron density maps of viruses (Schur et al., 2016),  51 

ribosomes (Erdmann et al., 2021), and nuclear pores (Mosalaganti et al., 2022). 52 

 53 

Traditionally, contrast in cryoET volumes has been enhanced using low pass filtering and pixel 54 

binning (Lučić et al., 2005). Recently, deep learning approaches have emerged as superior 55 

alternatives (Buchholz et al., 2019; Bepler et al., 2020). These methods adapt to the  intricacies 56 

of the data, but because cryo-ET data generally lack ground truth high SNR images for direct 57 

supervision, most deep-learning denoising algorithms rely on self-supervision (Lehtinen et al., 58 

2018), using paired 3D volumes from an even/odd split of the cryo-ET tilt-series (Buchholz et al., 59 

2019; Bepler et al., 2020), synthetic or annotated data (Zeng et al., 2024), or noise modeling (Li 60 

et al., 2022). 61 

 62 

Despite their effectiveness in enhancing SNR, these approaches inevitably distort the original 63 

data, particularly by suppressing high-frequency details (Bepler et al., 2020). Consequently, 64 

denoised tomograms are typically reserved for interpretability tasks, such as identifying the 65 

regions of interest for STA or other downstream processing, which then uses the original raw 66 

data. These distortions can impede interpretability if high spatial frequency details are essential 67 

for distinguishing objects of interest. Therefore, it is desirable for cryo-ET pipelines to incorporate 68 

denoising methods that minimize such deformations. 69 

 70 

We have developed a deep learning-based denoising method for cryo-ET that enhances contrast 71 

with minimal deformation when compared to other current techniques. CryoSamba, the software 72 

that applies this approach, operates in a fully self-supervised manner, training directly on the raw 73 

three-dimensional volume without requiring additional data such as paired volumes or 74 

simulations. CryoSamba is very efficient, with only three million parameters, making it feasible to 75 

run even on GPU-equipped current laptops. 76 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.11.603117doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

 77 

We demonstrate CryoSamba's efficacy on five cryoET datasets with three distinct voxel 78 

resolutions (achieved by pixel binning). CryoSamba substantially increases SNR for all voxel 79 

resolutions, verified both visually and quantitatively. Analysis of spatial frequencies in Fourier 80 

space confirms that our approach suppresses higher frequencies less severely than do current 81 

methods. We benchmarked CryoSamba's performance by evaluating the Fourier Shell 82 

Correlation (FSC) (Harauz et al., 1986) for subtomogram-averaged virus-particle images, starting 83 

with tomograms before and after denoising.  Comparison with the known virus structure showed 84 

that CryoSamba denoising preserved higher resolution information more faithfully than did Topaz-85 

Denoise or CryoCARE, two widely used denoising methods.  86 
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RESULTS 87 

Cryo-ET data sets 88 

To assess the denoising capabilities of CryoSamba, we employed five distinct tomograms derived 89 

from cryo-ET of various biological samples. Two of these tomograms were obtained from the 90 

edges of plunge-frozen human BSC1 cells grown overnight on top of the electron microscopy 91 

grids, showcasing cross-sections of the plasma membrane, mitochondria, and an early 92 

endosome. These images also contained numerous free ribosomes and actin filaments within the 93 

cytosol, as well as rhesus rotavirus particles in the surrounding medium, from a study of the initial 94 

stages of virus entry (Herrmann et al., 2021; de Sautu et al., 2024). 95 

 96 

The remaining three tomograms came from lamellae prepared by cryo-focused ion beam (cryo-97 

FIB) milling of plunge-frozen yeast cells. These samples showed cross-sections of mitochondrial 98 

and endoplasmic reticulum (ER) membranes, ribosomes, either free in the cytosol or attached to 99 

the ER cytosolic face, and cross-sections of the double-membrane nuclear envelope. They also 100 

included some actin filaments in the cytosol. 101 

 102 

The 3D tomographic reconstructions were produced from tilted images recorded at a nominal 103 

(unbinned) pixel size of 2.62 Å. Before denoising, we applied 3D contrast transfer function (CTF) 104 

correction using NovaCTF (Turoňová et al., 2017) to mitigate potential confounding effects from 105 

defocus. The tomograms used in our denoising tests were derived from data at various binning 106 

levels: unbinned (2.62 Å/pixel), 3x binned (7.86 Å/pixel), or 6x binned (15.72 Å/pixel), and some 107 

tests used tomograms generated from the even or odd frames of tilt series. 108 

 109 

Deep learning CryoSamba training pipeline 110 

The general strategy is shown schematically in Fig. 1A.  It repurposes the deep learning model 111 

Enhanced Bi-Directional Motion Estimation (EBME) (Jin et al., 2023), initially designed to enhance 112 

the frame rate of 2D videos through synthetic video frame interpolation. We treat our tomograms 113 

as “videos”, converting the z spatial direction in the tomogram into the time dimension of EBME. 114 

EBME then generates a series of "motion-compensated" xy planes. For each plane, the model 115 

generates a set of "best guesses" from pairs of planes equally spaced to either side of the xy 116 

plane in question.  It then takes the average of these best guesses as the new estimate of that 117 

plane.  This averaging process produces a denoising effect like that obtained by an increase in 118 

imaging exposure time (Mildenhall et al., 2018). 119 

 120 
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To train the EBME model, we selected three sequential xy planes from a tomogram, spaced 121 

equally along the z-axis at positions z-L, z, and z+L (Fig. 1A). The outer planes were input into a 122 

neural network, depicted by the flow module in Fig. 1B, which computed two deformation fields to 123 

morph these planes towards the middle one. The transformed planes were merged using a U-Net 124 

(Ronneberger et al., 2015) represented by the fusion module in Fig. 1B, creating an interpolated 125 

copy of the central plane. We then minimized a loss function—reflecting the disparity between 126 

this interpolated plane and the original—by gradient descent and backpropagation (LeCun et al., 127 

2015). Training proceeded by using plane triplets across all z values and spacings L, from L=1 128 

up to L=Lmax, and concluded when the loss stabilized. This training process effectively reduced 129 

high-frequency noise uncorrelated across planes, such as Gaussian and shot noise; these 130 

sources of noise were further damped by averaging the interpolated images for all L spacings 131 

corresponding to the same z.  132 

 133 

CryoSamba denoising pipeline 134 

The general strategy of the denoising steps is represented schematically in Fig. 1C. The inference 135 

phase of CryoSamba initiates upon completion of the training step carried out with the tomogram 136 

being denoised. For any given z in the tomogram, we input adjacent xy planes at z-L and z+L into 137 

the EBME model, to generate a denoised version at z. This process is repeated for a given z 138 

plane by varying L from 1 to Lmax and averaging them to create a final xy plane at the position z.  139 

In our tests, visual inspection was consistent with enhanced denoising. The interpolation quality 140 

decreased as L increased, leading to a tradeoff between denoising strength and blurring of fine 141 

details; an optimal image was achieved by visual ‘fine-tuning’ the value of Lmax.  Fig. 1 shows an 142 

example of the effect of this process in the appearance of rotavirus-particle cross section. The 143 

series of denoised images were obtained using different Lmax values (Fig. S1) with best chosen 144 

images obtained with Lmax of 3 (6), 6 (12) and 10 (20) for training (inference) and voxel resolutions 145 

of 15.72Å, 7.86Å and 2.62Å, respectively. 146 

 147 

We minimize loss of information introduced by the averaging process during the inference phase 148 

(Fig. S2) by using the "one step back, one step forward" strategy outlined in Fig. 1D. This strategy, 149 

like Samba dance steps (Guillermoprieto, 1991), involves generating synthetic xy planes at z-L/2 150 

and z+L/2, between the experimentally determined z-L and z, and between z and z+L, 151 

respectively, which are then used as additional input during inference. By restricting use of the 152 

"one step back, one step forward" approach to the inference phase, we prevent a potential model 153 
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collapse during training, that could have led for example to trivial solutions such as simply copying 154 

input frames (Reda et al., 2019). 155 

 156 

The inference phase for a given z finishes by averaging the interpolated planes associated with it 157 

and using the average to replace the data in the original xy plane (Fig. 1E); this process is 158 

repeated for all z positions, ultimately yielding a uniformly denoised 3D volume, as schematically 159 

illustrated in Fig. 1C. 160 

 161 

We note that in the CryoSamba denoising strategy, we train separately using each tomogram we 162 

wish to denoise. We found that the results using this approach were more reliable than those from 163 

one in which we performed a single training with many tomograms and then used the trained 164 

model to denoise naïve tomograms not included in the training pool. The fully self-supervised 165 

character of CryoSamba makes this approach possible, since it only requires for training the same 166 

3D volume that one then wishes to denoise. In practical terms, the underlying deep learning model 167 

is relatively light (approximately three million parameters), and the training times are quite short.  168 

 169 

To illustrate the effectiveness of CryoSamba, we visually compared tomograms before and after 170 

denoising. These tomograms were generated with 3x binning (7.86 Å/pixel) from yeast (Fig. 2A-171 

C) and mammalian BSC-1 cells (Fig. 2D). The denoised images show enhanced SNR, estimated 172 

as describe below, in a single xy plane, approximately at the tomogram midsection, orthogonal to 173 

the electron beam direction (z). Inspection of sequential planes in the 3D volumes from yeast 174 

samples (Movies 1 and 2) confirmed improved signal-to-noise throughout. 175 

 176 

Images denoised with CryoSamba distinctly showed the characteristic phospholipid bilayer 177 

profile, a "double track" with a spacing of ~5 nm, in membranes of the endoplasmic reticulum (ER) 178 

(Fig. 2A), mitochondria (Fig. 2B), and early endosomes (Fig. 2C, D). The enhanced clarity also 179 

resolved ribosomes in the yeast cytosol, either free (Fig. 2A, B) or interacting with the ER 180 

membrane (Fig. 2A), as well as the ~5 nm spacing of subunits along actin filaments in the 181 

mammalian cell (Fig. 2D). Additional examples of cross sections of the plasma membrane in a 182 

BSC-1 cell and membrane-less rotaviruses in the surrounding medium are shown in (Fig. 3, 183 

panels 1-4 and panels 5-7, respectively). 184 

 185 

To quantify the enhancement in visual quality, we assessed the signal-to-noise ratio (SNR) 186 

determined for single viral particles in two tomograms from BSC-1 cells and throughout three 187 
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tomograms from three yeast lamellae samples (Table 1). We determined SNR by two distinct 188 

methods. In one (Table 1), we generated pairs of tomograms using consecutive even and odd 189 

frames from the tilt series and calculated SNR by comparing identical xy planes in the raw data 190 

tomograms and those processed with either CryoSamba or the widely used cryo-ET denoising 191 

algorithm Topaz-denoise (Bepler et al, 2020). This method could not be used for data processed 192 

with CryoCARE (Buchholz et al, 2019), another widely used denoising algorithm, as it required 193 

consecutive even/odd tilt images for denoising; splitting them further would have degraded the 194 

CryoCARE output. To include CryoCARE in our evaluation, we used two additional approaches 195 

(Table 2): in one case, we computed the SNR using two adjacent xy planes in tomograms from 196 

the raw data and from tomograms denoised by CryoSamba, Topaz-Denoise and CryoCARE. In 197 

the second case, we estimated the SNR using the same xy plane in tomograms from the raw data 198 

and from tomograms denoised by CryoSamba, Topaz-denoise and CryoCARE. These results, 199 

summarized in Tables 1 and 2, showed comparable, substantial enhancements in SNR from both 200 

CryoSamba and Topaz-Denoise. Although CryoCARE also showed enhanced SNR, the increase 201 

came at the expense of the lower resolution imposed by the denoising algorithm (see below). 202 

 203 

Comparative Impact on Resolution by Denoising with CryoSamba, CryoCARE and Topaz-204 

Denoise  205 

We compared the impact on resolution of denoising with CryoSamba, Topaz-Denoise and 206 

CryoCARE, by direct visual analysis of selected 2D planes and by examining the corresponding 207 

2D Fourier transforms. As shown in Fig. 4A, while all denoising methods enhanced contrast, 208 

CryoSamba preserved high-frequency information more effectively, particularly evident by 209 

preservation of the double-track appearance of lipid bilayers in the membrane cross sections. Fig. 210 

2 shows additional examples of membranes surrounding the endoplasmic reticulum and 211 

endosomes imaged in the yeast and BSC-1 cell samples. Inspection of the 2D Fourier transform 212 

supported our conclusions from visual inspection of the images. CryoSamba retained higher 213 

spatial frequencies that Topaz-denoise and CryoCARE flattened.   214 

 215 

We also assessed by visual inspection the denoising performance of CryoSamba, Topaz-denoise 216 

and CryoCARE for the same tomogram processed with different voxel resolutions. We selected 217 

a BSC-1 cell region containing a membrane bound organelle and rotavirus particles, and 218 

generated tomograms to final voxel resolutions of 2.62 Å, 7.86 Å, and 15.72 Å, from unbinned, 3x 219 

and 6x binning, respectively. (Fig. 5). CryoSamba yielded less blurriness, higher contrast and 220 

better-preserved double-layer appearance of the cross section of the membrane and the 221 
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substructure of the virions across all resolutions, specially at 2.62 Å. Topaz-Denoise performed 222 

well at 7.86 Å, which is close to the resolution of its training data (~10 Å), but poorly at 2.62 Å and 223 

15.72 Å. CryoCARE had the poorest performance overall. The ability of CryoSamba to effectively 224 

handle a broad range of voxel resolutions highlights a useful versatility. 225 

 226 

CryoSamba and sub-tomogram averaging 227 

To compare CryoSamba with CryoCARE and Topaz-denoise, we used a basic STA procedure to 228 

identify and analyze rotavirus particles.  We used 3D template matching and manual classification 229 

to select 54 particles across two 3x binned tomograms of BSC-1 cells (Tang et al., 2007). We 230 

carried out a single iteration of template-based alignment and averaging with final icosahedral 231 

symmetrization to achieve a simple average for feature analysis (see Methods for details). Further 232 

iterations did not improve map resolution. Since the template did not include rotavirus VP4 spikes, 233 

the presence of those spikes in the final averages indicated minimal template bias.  234 

 235 

This analysis revealed notable differences in final map resolution. STA from tomograms derived 236 

from the raw data directly and from denoising by CryoSamba and Topaz-Denoise clearly 237 

delineated outlines of rotavirus proteins VP6 and VP7, in a T=13 icosahedral arrangement, and 238 

the projecting rotavirus VP4 spikes (Fig. 6B). The subtomogram average of the image denoised 239 

with CryoSamba also revealed VP1, the RNA polymerase surrounded by the dsRNA of the viral 240 

genome and thus in a particularly noisy environment (Fig. 6B, far right).  Topaz-Denoise barely 241 

detected VP1 while CryoCARE could not.  242 

 243 

We made a quantitative test of the impact of denoising on resolution by calculating a Fourier Shell 244 

Correlation (FSC) (Harauz et al., 1986) between half maps obtained by splitting the STA particles 245 

into even and odd sets and independently reconstructing separate subtomogram averages (the 246 

“gold standard” approach). CryoSamba maintained the closest correspondence to the raw data; 247 

Topaz-Denoise deviated at spatial frequencies beyond 28 Å-1 while CryoCARE deviated 248 

significantly at 37 Å-1. In other words, Topaz-Denoise and CryoCARE tend to smooth high-spatial-249 

frequency data more severely than does CryoSamba (Fig. 6C). By preferentially enhancing 250 

contrast at the expense of losing high-resolution data, denoising with Topaz-Denoise or 251 

CryoCARE may promote self-correlation or overfitting. This potential overfitting in the Topaz-252 

Denoise and CryoCARE data is suggested by the initial rise of their FSC curves before it reaches 253 

zero, a pattern consistent with non-independence in the masked data (Scheres et al., 2012).  254 

255 
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DISCUSSION 256 

Our comparisons suggest that CryoSamba enhances both contrast and SNR without suppressing 257 

or distorting signal in the 3D tomogram, particularly at higher spatial frequencies. Its capabilities 258 

derive from its fully self-supervised algorithm, which denoises by directly engaging the 3D image 259 

itself. The optical flow interpolation method (Fig. 1B) reproduces 2D planes by reutilizing adjacent 260 

planes, not by generating new ones from scratch. This approach decreases artifacts and aids in 261 

the accurate reconstruction of high-frequency signals, which are often challenging for 262 

convolutional neural networks to capture (Rahaman et al., 2019).  Moreover, the "one step back, 263 

one step forward" feature (Fig. 1C) further increases fidelity by amending residual deformations 264 

along the Z axis, effectively recycling information from the target plane to its copies. 265 

 266 

CryoSamba circumvents the inherent limitations common to denoising techniques that rely on 267 

synthetic data (Zeng et al., 2024), which may not generalize effectively to experimental images of 268 

varying characteristics or resolutions. It also avoids the pitfalls of methods that depend on noise 269 

modeling (Li et al., 2022), which can fail to fully grasp the complexities of noise in experimental 270 

data. Moreover, CryoSamba is not contingent on the use of paired volumes (Buchholz et al., 2019; 271 

Bepler et al., 2020), which are prone to misalignments or subtle signal discrepancies. 272 

 273 

A noteworthy advantage of CryoSamba is its ability to effectively denoise images with extremely 274 

low SNR in the raw data. For example, in Fig. 3, CryoSamba successfully denoised a tomogram 275 

processed at 2.62 Å/voxel, making apparent image details that in the raw image were almost 276 

indistinguishable from background. This capability of CryoSamba significantly broadens the direct 277 

visual inspection and potential analytical possibilities for postprocessing of data that might 278 

otherwise be considered unusable, particularly in cases involving thicker samples or data 279 

collected with reduced electron beam exposure times. The SNR and the improved contrast of the 280 

high-resolution raw image processed with CryoSamba matched those of the same volume 281 

typically associated with higher SNRs when down sampled by 3x or 6x pixel binning.  282 

 283 

In contrast to denoising with Topaz-Denoise and CryoCARE, which in part function as low-pass 284 

filters by eliminating higher frequencies, CryoSamba better preserves most high-frequency 285 

information. This ability of CryoSamba to maintain high resolution in denoised tomograms opens 286 

new avenues for using the denoised images in post-processing tasks that would traditionally 287 

require downsampling the raw image, potentially compromising the visibility of finer details and 288 

smaller structures. 289 
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 290 

A visual comparison of averaged subtomograms of rotavirus particles added to BSC-1 cells, 291 

together with a quantitative analysis of the corresponding 3D Fourier domain spectrum from the 292 

raw and denoised data using CryoSamba, Topaz-Denoise, and CryoCARE (Fig. 6), shows  that 293 

CryoSamba can reduce noise while preserving essential features of the structure. It therefore has 294 

the potential to enhance the reliability of template-based particle picking and associated 295 

automated segmentation in cellular tomography. 296 

 297 

Finally, we have engineered CryoSamba to be relatively computationally lightweight and 298 

compatible with most commercially available workstations. It is offered in two equivalent forms: 299 

one as a command-line tool and the other as a graphical user interface (GUI) executable, 300 

enhancing ease of installation and use. Upon approval of the peer-reviewed version of this 301 

manuscript, both versions of CryoSamba, along with tomograms suitable for testing, will be freely 302 

accessible via GitHub. 303 

 304 

CONCLUSION 305 

One important advantage of CryoSamba is that it operates directly on 3D reconstructed 306 

tomograms, therefore bypassing the need for accessing the original tilt series data or employing 307 

specific tomography reconstruction algorithms. Consequently, CryoSamba denoising can be 308 

incorporated at earlier stages of post-processing While this direct approach to denoising 3D 309 

images significantly broadens its applicability, it is important to note that CryoSamba does not 310 

correct for imaging defects inherent in current tomographic data acquisition protocols, such as 311 

the missing wedge.  312 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.11.603117doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12 

MATERIALS AND METHODS 313 

Sample Preparation 314 

S. cerevisiae cells were grown overnight in YPD medium, before being diluted to 0.2 OD. One 315 

yeast strain was arrested at the metaphase-anaphase transition by degrading CDC20 using an 316 

auxin-inducible degron tag; the other strain was synchronized by α-factor for two hours, then 317 

released from G1 phase and plunge-frozen approximately 80 minutes later, such that most cells 318 

should have been in metaphase. Cells were deposited on Quantifoil R2/2 copper grids (Electron 319 

Microscopy Science) and plunge-frozen using a Leica EM-GP2 plunge (Leica). 320 

 321 

For rotavirus samples, BSC-1 cells grown on gold grids and plunge frozen after incubation with 322 

rotavirus particles was performed as described in (Abdelhakim et al., 2014). Quantifoil gold grids 323 

R 2/2 200 mesh coated with a holey SiO2 film (Electron Microscopy Science) were glow 324 

discharged at 15 mA for 30 sec and then sterilized with 70% ethanol for 15 min. After washing 4 325 

times with sterile water the grids were incubated overnight with 0.1% poly-L-lysine hydrobromide 326 

(Gibco). BSC-1 cells (at a concentration of 5x105 cells/ml) were plated on the grids in DMEM 327 

(Thermo Fisher Scientific) supplemented with 10% hi-FBS (Thermo Fisher Scientific) and 1% 328 

Glutamax (Thermo Fisher Scientific) and incubated for 5 h at 37 °C and 5 % CO2. Cells on grids 329 

were washed 3 times with DMEM (without FBS) and then the virus previously activated with 5 330 

µg/ml trypsin was added at a MOI of 10 and incubated at 37 °C and 5 % CO2 for 10 min. The 331 

grids were then blotted from the back with filter paper using the sensor blotting of the Leica Em 332 

GP2 Plunge Freezer, frozen in liquid ethane, and stored in liquid nitrogen. 333 

 334 

Tomogram Collection and Reconstruction 335 

We collected five tomograms for this study. All five tomograms were collected on a Thermo Fisher 336 

Krios G3i, with a BioQuantum energy filter and a K3 direct electron detector camera. All were 337 

collected in dose-fractionation mode. Yeast tomograms were collected in counting mode at 0.15 338 

s per frame for 1.348 s and positioning of collection was controlled by PACEtomo (Eisenstein et 339 

al., 2023). Virus tomograms were collected in counting mode at 0.15 s per frame for 1.198 s and 340 

positioning of the collection was controlled by SerialEM (Mastronarde, 2005). All collection was 341 

done at 2.620 Å/pix, or a magnification of 33k. The total dose was ~140 e/Å2. Motion correction 342 

and initial alignment were done using an in-house on-the-fly pipeline, taking advantage of 343 

MotionCor2 (Zheng et al., 2017) and alignframes from IMOD (Kremer et al., 1996), respectively. 344 

Defocus files were generated by CTFFIND4 (Rohou et al., 2015). 345 

 346 
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After initial alignment, tilt series were then 3D-CTF-corrected and reconstructed using the 347 

NovaCTF pipeline (Turoňová et al., 2017), such that the whole tomogram was CTF-corrected 348 

prior to denoising and subtomogram averaging. Briefly, defocus files with a user-specified defocus 349 

step of 15 nm were applied to the CTFFIND4 files. Then, NovaCTF generated a CTF-corrected 350 

tilt series for each specified defocus step. Those CTF-corrected tilt series were individually aligned 351 

using Aretomo (Zheng et al., 2022). The resultant images were then flipped (preserving 352 

handedness of tomograms) using IMOD before filtering using the NovaCTF’s implementation in 353 

the IMOD radial filtering package. Then, tomograms were reconstructed with the NovaCTF’s 3D-354 

CTF feature, using the relevant voxels from each CTF-corrected tilt series to reconstruct the final 355 

volume. 356 

 357 

Deep learning model architecture 358 

CryoSamba uses the motion-based video frame interpolation model EBME (Jin et al., 2023), 359 

which takes as input two images (implicitly belonging to a temporal sequence) and returns a new 360 

one at an arbitrary time-point between them. As shown in Fig. 1B, this model has two main steps: 361 

bi-directional motion estimation and frame fusion. 362 

 363 

In the motion estimation step, each input frame is initially down sampled by increasing factors of 364 

two, to form an “inverted pyramid” of images with a predetermined number of levels. At the lowest 365 

resolution level, the two corresponding downsampled images are each processed by a 366 

convolutional neural network (CNN); the correlation of the CNN output features is used to estimate 367 

two deformation fields. These fields, which can be used to “warp” one image to the other and vice-368 

versa, are known as Optical Flow (Horn et al., 1981) and represent the (directional) pixel motion 369 

between the two frames. EBME uses a warping process known as Softmax Splatting (Niklaus et 370 

al., 2020), which directly deforms the frames to each other and combines them by a small U-Net 371 

(Ronneberger et al., 2015). At every subsequent pyramid level, the images are warped towards 372 

each other by the (upscaled) corresponding estimated flow, processed by the CNN, correlated 373 

with each other, and combined with the previous level’s outputs (as in a recurrent network (Jin et 374 

al., 2023)) to produce a refined version of the bi-directional flow. After the final level, the output 375 

flows are upscaled to the frame’s native resolution and taken to the next step. 376 

 377 

In the fusion step, the two images are first warped towards an arbitrary time-point between them 378 

by the estimated bi-directional flow. This process assumes a linear motion model (Jin et al., 2023; 379 

Xu et al., 2019), where each flow is simply scaled by the temporal distance between the 380 
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destination and its origin. In parallel, each image is also processed by a “context” CNN. The flows, 381 

warped frames, and contextual features are all combined as input to a “refinement” U-Net, which 382 

synthesizes the desired intermediate frame. 383 

 384 

We used EBME with three pyramid levels for both training and inference, as lower values 385 

decreased performance and higher values, which increase computational costs, did not bring 386 

noticeable improvements. We also used the “high synthesis” mode (Jin et al., 2023) of EBME, 387 

which upscales flows and images by a factor of two before the fusion step, subsequently 388 

downscaling the final output to the native resolution at the end. This mode allows high-resolution 389 

processing and greatly increases the interpolation quality of small objects. The arbitrary time-point 390 

in the fusion step was always chosen to be exactly halfway between the two input images, as 391 

“asymmetric” interpolation did not work well when training the model with our chosen datasets. 392 

Finally, we used the “reflect” padding mode in all convolutional layers, to reduce the typical CNN 393 

artifacts (Alsallakh et al., 2021) at the borders of the synthesized frames, which were especially 394 

prominent after the “Samba” processes. The final model had 2.9 million weights. 395 

 396 

Data preprocessing 397 

CryoSamba directly accepts as input a list of 3D image volumes in three different formats (which 398 

are automatically recognized), with no need for preprocessing and/or conversion by the user: as 399 

a single “.mrc” (or “.rec”) file, as a single “.tif” file, or as a folder containing an alphanumerically 400 

ordered sequence of 2D “.tif” images. The volumes are then initialized as memory-mapped arrays, 401 

which means that only the subregions that are currently being processed are loaded in memory, 402 

being freed afterwards. This allows us to fit very large volumes (which are typical in Cryo-ET) into 403 

systems with limited RAM. 404 

 405 

For preprocessing, the data were converted (if necessary) to floating point values, and the 406 

intensity of each whole volume was normalized between -1 and 1. The volumes were then divided 407 

into overlapping planes of shape 256x256x1 (xyz), each of which corresponded to a square crop 408 

of a single xy plane.  The crops overlapped with each other by 16 pixels along both x and y. If the 409 

number of voxels along x and/or y was not divisible by the corresponding plane size (considering 410 

the overlaps), the smaller cropped arrays at the edges were padded until they had the same 411 

shape (256x256 pixels) as the others. The padded pixels were filled not with a constant value, 412 

but with the original crop’s pixel values reflected from its border, to preserve the continuity and 413 

smoothness of the full, padded crop.  414 
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 415 

The plane crops were then combined into blocks, each consisting of three planes at the same 416 

position in x and y and at the positions z-L, z, and z+L along Z. The values of L ranged from L=1 417 

to a fixed value L=Lmax, while z covered the whole z-axis except for the border values z<Lmax and 418 

z>zmax - Lmax that were not included. The final dataset, which consisted of the full set of blocks, 419 

was loaded into eight Nvidia A100 GPUs via Pytorch’s Distributed Data Parallel protocol (DDP) 420 

(Paszke et al., 2019; Zhao et al., 2020), in batches of 32 blocks each via 4 CPU workers. 421 

 422 

Training pipeline 423 

For training, the Lmax of the datasets was chosen as 3, 6 and 10 for pixel bins of 6x, 3x and 1x, 424 

respectively (Fig. S1). The resulting datasets were separated into training (95%) and validation 425 

(5%) splits, which were used to train the EBME model by backpropagation with the Adam 426 

optimizer (Kingma et al., 2015), with learning rate of 2e-4, a warmup scheduler for 300 iterations 427 

and a learning rate decay scheduler with a multiplicative factor of 0.99995. For each training 428 

iteration (i.e., when a single data point was passed through the model), the first and last planes 429 

of a (three-plane) block were fed into the EBME model, whose output was then compared with 430 

the block’s middle plane by photometric loss, i.e., a measure of their pixel intensity differences. 431 

The latter was a combination of a Charbonnier loss (Charbonnier et al., 1994) (a regularized 432 

version of mean squared error) with α=0.5 and ϵ=1e-3 and a ternary Census loss (a photometric 433 

loss invariant to illumination changes (Meister et al., 2018)) weighted by λ=0.1. 434 

 435 

After every epoch, i.e., after every block of the full dataset had been passed through the model 436 

once, the block order of the training split was randomly shuffled. Furthermore, each block was 437 

transformed by randomly flipping along any of the three spatial dimensions. This 438 

transformation/deformation process, known as data augmentation (Shorten et al., 2019), 439 

increases data diversity without fundamentally altering its nature and reduces overfitting in neural 440 

networks. Training ended when both training and validation losses stabilized, which on average 441 

occurred after Lmax*30k iterations.  442 

 443 

Inference pipeline 444 

For inference, Lmax was chosen as 6, 12 and 20 for pixel bins of 6x, 3x and 1x, respectively (Fig. 445 

S1). Each dataset block was passed into a Samba module (Fig. 1D) with the underlying EBME 446 

model trained on the same data. The corresponding outputs for blocks with different inter-plane 447 

spacings L but same middle plane z were then averaged and used to compose the final volume. 448 
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During inference, the latter was memory-mapped as a binary file, to fit into memory and to allow 449 

resuming the whole procedure from the last step in case it had to be interrupted. After running 450 

over the whole dataset, the final volume was converted back to its original intensity range, data 451 

type and file format. 452 

 453 

The dataset blocks were also flipped with respect to x, y, and both x and y, and separately 454 

processed by the deep learning model. The three outputs were flipped again (undoing their 455 

transformation) and averaged with the original denoised output. This procedure (which can be 456 

optionally turned on or off in CryoSamba’s final version), known as Test-Time Augmentation (TTA) 457 

(Ayhan et al., 2018), led to a small increase in inference quality at the cost of a nearly four-fold 458 

increase in inference time. 459 

 460 

Hyperparameter tuning 461 

The data block’s xy dimensions were chosen as 256x256 to include sufficient contextual 462 

information in each block, to ensure that border artifacts would not occupy a significant portion of 463 

the blocks, and to take a reasonable training/inference time without overloading the GPUs. Note 464 

that the x and y values can be chosen with a certain freedom  due to the convolutional nature of 465 

the EBME model, which accepts inputs of different shapes without having to be modified or re-466 

trained. 467 

 468 

The loss and optimizer hyperparameters were chosen to minimize the resulting loss functions. 469 

The number of EBME pyramid levels, which is flexible enough to have different values for training 470 

and inference (Jin et al., 2023), was chosen as 3 for both routines through a grid search aimed at 471 

maximizing the final denoising performance as assessed by visual inspection. 472 

 473 

The most important hyperparameter to tune was Lmax. For training, larger values improve the final 474 

denoising results up to a certain point, after which the improvements are negligible and increasing 475 

Lmax only increases the computational burden (longer processing times and/or more memory 476 

usage). For inference, increasing this parameter increases the contrast enhancement effect but 477 

also the overall blurriness, so an optimized value must be found to maximize the final denoising 478 

quality. To do this, we made a simple script that, after a training run with a sufficiently large Lmax, 479 

performed inference on a small crop of the whole dataset with varying values of Lmax and displayed 480 

the results side by side. The optimal inference value of Lmax was then chosen by visual inspection 481 

of these results (Fig. S1), and the optimal training value was retroactively chosen (to be useful for 482 
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the subsequent training runs) as half of this value. The reason for this choice is that, while training 483 

does interpolation with the z-L and z+L plane pairs of each data block, inference only does so for 484 

the corresponding (z-L, z) and (z, z+L) pairs (due to the Samba procedure), which are separated 485 

at half the distance than the former. We chose inference (training) Lmax values of 6 (3), 12 (6) and 486 

20 (10) for pixel bins of 6x, 3x and 1x, respectively. 487 

 488 

Computational requirements 489 

The experiments reported in this work were each run on eight Nvidia A-100 Tensor Core GPUs 490 

(Table 3). Model training used about 31 GB of VRAM in each GPU and took, on average, 0.4 491 

seconds for each iteration, with total training time (number of iterations) depending on the 492 

convergence speeds. Inference (using the trained model to denoise the data) used about 8GB of 493 

VRAM in each GPU, took about 0.9 seconds per iteration, with a completion time that was linearly 494 

proportional to the size of the volume data and the chosen Lmax. Even though training times in 495 

deep learning are usually longer than inference times, due to calculation of losses and 496 

propagation of gradients, this situation was inverted in our case due to the “Samba” and TTA 497 

procedures, which lead to 12 (3 times 4) forward passes in each iteration instead of just one. 498 

 499 

In CryoSamba, the main parameters that affect VRAM usage without significantly altering 500 

performance are batch size and number of GPUs, which defaulted to 32 and 8, respectively. Batch 501 

size defines the quantity of data passed at once to the GPUs, and running the model on N devices 502 

allows us to increase effective batch size N fold without increasing computational time. For multi-503 

GPU runs we used DDP: the deep learning model was run independently on each device by 504 

copying all model weights for each of them and dividing the data batches among them, while 505 

using advanced procedures to synchronize their gradients during training (Zhao et al., 2020). DDP 506 

drastically improves iteration times at the cost of massively increasing VRAM usage (divided 507 

across all GPUs). We also ran the models with mixed precision (Micikevicius et al., 2017) and the 508 

optimization routines of Pytorch’s Compiler (Ansel et al., 2024) when possible (depending on the 509 

GPU’s capabilities and operating system), both of which further improved the overall 510 

computational times. 511 

 512 

By tuning all these parameters, we could also run CryoSamba with as little as 3GB of VRAM 513 

(using batch size of 2), which fits into most personal laptop GPUs. In Table 3, we show practical 514 

VRAM usage and iteration times for a low budget laptop setup with 6 GB of VRAM and one GPU. 515 
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CryoSamba is a democratic algorithm: it can run on workstations currently available to most 516 

research groups. 517 

 518 

Denoising using Benchmarking Algorithms 519 

Implementation of Topaz-Denoise was done using Topaz version 0.2.5_cu11.2 (SBGrid build). 520 

The prebuilt U-Net model was used in all cases as we found it to provide superior results over 521 

self-trained models. We used the 8 GPUs available in our workstations with a patch size of 96, 522 

patch padding of 48 and no gaussian filter.  523 

 524 

For CryoCARE, We used the CryoCARE memory efficient version 525 

(https://github.com/juglab/cryoCARE_pip) with default parameters, except for training batch size 526 

and inference number of tiles, which were chosen in order to fit the data into GPU memory. 527 

Training and inference were performed with one GPU. 528 

 529 

Subtomogram Averaging 530 

Particles were selected from two rotavirus tomograms with the command e2spt_tempmatch.py in 531 

EMAN2 (Tang et al., 2007), using an atomic model of a rotavirus particle with the VP4 spikes and 532 

the interior masked out. 64 targets were selected automatically and extracted using 533 

e2spt_boxer.py. After manual inspection and removal of incorrectly selected particles, particles 534 

were aligned and averaged using e2spt_classaverage.py.  Initial alignment was in c1, and 535 

icosahedral symmetry was then applied to the final map. The coordinates of particles were taken 536 

from the autogenerated “info” file by e2spt_tempmatch.py and used to extract sub volumes in 537 

each of the denoised volumes. The same subtomogram averaging protocol was applied to each 538 

denoised particle set. Subtomogram averages were visualized in ChimeraX (Pettersen et al., 539 

2021) and sharpened to equivalent relevant levels.  540 

 541 

Signal-to-Noise Calculations 542 

We estimated SNR as in Bepler et al (Bepler et al., 2020), as originally described by Frank and 543 

Al-Ali (Frank et al., 1975). The cross-correlation coefficient (CCC) was calculated between 544 

tomograms reconstructed from even tilts and tomograms denoised with CryoSamba or Topaz-545 

Denoise reconstructed from odd tilts, and the SNR obtained from: 546 

 547 

𝑆𝑁𝑅 = 10 ∗ log!"	(
𝐶𝐶𝐶

1 − 𝐶𝐶𝐶
) 548 
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 549 

SNR was calculated for three different complete yeast tomograms and for two rotavirus particles, 550 

each selected from a different BSC-1 cell tomogram (Fig. S1, Table 1).   This approach is not 551 

applicable to data denoised with CryoCARE because it requires information from all adjacent tilted 552 

frames, and hence using alternate tilts weakens its denoising capability. As a potential 553 

complementary approach, we obtained SNR values by comparing adjacent xy planes along the z 554 

axis within the raw and denoised tomograms (Table 2). We also obtained SNR values by 555 

comparing the same xy plane between the raw and denoised tomograms (Table 2). These values, 556 

however, were less informative because they correlated with the contrast enhancement 557 

regardless of preservation of the high frequency information.   558 
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FIGURE LEGENDS 559 

Figure 1. CryoSamba Pipeline for Deep-Learning Neural Network Denoising 560 

(A) Training Pipeline: This component uses sets of three xy planes at z-axis positions z-L, z, and 561 

z+L. The planes at z-L and z+L are input into the EBME deep learning model. The model’s loss 562 

function evaluates the mismatch between its output and the middle plane at position z, supervising 563 

and refining the training. This iterative process is repeated for every z position (ranging from 1 to 564 

500 in this example), with updates to the learned model weights at each step. A complete cycle 565 

(“epoch”) involves iterating through the entire dataset of images. Reaching a predetermined 566 

convergence criterion generally requires several epochs. 567 

(B) EBME Model: This model comprises two main modules. The Flow module assesses the bi-568 

directional optical flow between the two input images; the Fusion module integrates the input 569 

images along with the calculated flow to predict an interpolated image. This interpolated image is 570 

positioned as if halfway between the two inputs when viewed as part of a temporal sequence. 571 

(C) Denoising Pipeline: Each xy plane from the tomogram is grouped with its adjacent z-1 and 572 

z+1 planes and processed through the trained CryoSamba module. This results in a denoised xy 573 

plane that supplants the original in the completed volume. 574 

(D) Inference Module: For each triplet, the extremal planes z-1 and z+1, along with the middle z 575 

plane, are fed separately into the EBME model. The outputs from these inputs are then 576 

reintroduced to the EBME model to refine and produce the final version of the middle z plane. 577 

(E) CryoSamba Module: This phase involves iterative processing, in which a specific plane z and 578 

a series of up to Lmax surrounding planes are input into the inference module. Each triplet, z-L, z, 579 

z+L (where 1 ≤ L ≤ Lmax), is processed through the Samba module as described in (D). The results 580 

are then averaged to produce a final, denoised version of plane z. 581 

 582 

Figure 2. Visual Comparison of Raw and CryoSamba Denoised 3D Images of Cryo-Electron 583 

Tomograms. 584 

Visual comparison of the same xy planes from representative raw and CryoSamba denoised 3D 585 

images of cryo-tomograms, binned at 3x with a voxel resolution of 7.86 Å. 586 

(A-C) Different tomograms derived from three distinct yeast cells. (A) Cross-sections of the 587 

endoplasmic reticulum and ribosomes. (B) Cross-section of mitochondria. (C) Endosome 588 
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containing intraluminal vesicles. The denoised images highlight the preservation of the double-589 

layer appearance of the membranes, separated by approximately 4-5 nm. 590 

(D) Tomogram from a BSC1 cell illustrating actin filaments and the cross-section of a membrane-591 

bound organelle of unknown identity. Distance between the arrowheads is consistent with the 592 

expected 5.5 - 6 nm periodicity of actin monomers along the helical actin filament. 593 

Scale bars: 50 nm (A-C) and 100 nm (D). 594 

 595 

Figure 3. Denoising using CryoSamba of a BSC-1 Cell Incubated with Non-Enveloped 596 

Rotavirus. 597 

This figure illustrates the effects of CryoSamba denoising on a representative cryo-electron 598 

tomography image of a BSC-1 cell incubated with rotavirus. 599 

(A) Representative xy plane from a 3D cryo-electron tomogram obtained at 2.62 Å/voxel 600 

resolution and reconstructed to 7.86 Å/voxel resolution after 3x binning. The comparison shows 601 

the raw image before (left) and after (right) denoising. Selected regions of interest are indicated. 602 

(B) Enlarged xy and zx views of the selected regions before and after denoising, showing 603 

improved clarity in the images post-denoising. These enhancements are particularly noticeable in 604 

the cross-section views, showing the double-track appearance of membranes and the 605 

substructure within the virus particles. Scale bars: 100 nm (A) and 50 nm (B). 606 

 607 

Figure 4. Comparison of CryoSamba, Topaz-Denoise, and CryoCARE in the 2D Fourier 608 

Plane. 609 

(A) Representative image from a tomogram of a BSC1 cell at 7.86 Å voxel resolution (3x binning), 610 

depicting the middle section of an organelle surrounded by two sets of membranes. The left 611 

column shows a selected xy view of a single plane of the raw image or of ones denoised using 612 

CryoSamba, Topaz-Denoise, or CryoCARE. The right column shows the (logarithm of) magnitude 613 

of the 3D Fourier transform for the corresponding regions on the left, averaged over 64 planes 614 

along the Z axis to reduce noise. The more populated higher frequency regions observed after 615 

denoising with CryoSamba are consistent with relatively better preservation of high-frequency 616 

information and the clearer double-track appearance of the membrane cross sections. 617 

(B) Orthogonal view of (A) corresponding to the xz plane. Inspection of the 2D Fourier transforms 618 

illustrates the extent to which high-frequency information is retained in the sample denoised using 619 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.11.603117doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603117
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 22 

CryoSamba, the modest suppression of high spatial frequencies by Topaz-Denoise, and the 620 

dramatic loss of high spatial frequencies after denoising by CryoCARE. 621 

Scale bars: 50 nm (A, B). 622 

  623 

Figure 5. Comparison of CryoSamba, Topaz-Denoise, and CryoCARE Performance at 624 

Different Image Resolutions. 625 

Visual comparison of the same xy plane selected from the 3D reconstructed tomogram of a BSC1 626 

cell incubated with rotaviruses, shown at voxel resolutions of 2.62 Å (left column), 7.86 Å (middle 627 

column), and 15.72 Å (right column). The images are presented before denoising (raw) and after 628 

denoising using CryoSamba, Topaz-Denoise, or CryoCARE. Scale bars: 100 nm. The images 629 

denoised with CryoSamba appear less blurred, particularly at 2.62 Å resolution and highlight the 630 

preservation of the bilayer appearance of the membrane, spaced 4-5 nm and the fine structure 631 

within the rotavirus particles. 632 

 633 

Figure 6. Comparison of CryoSamba, Topaz-Denoise, and CryoCARE in Information 634 

Content. 635 

(A) Comparison of the same xy plane selected from the 3D reconstructed tomogram of a rotavirus 636 

particle present in the sample of a BSC1 cell incubated with rotaviruses, shown at voxel 637 

resolutions of 2.62 Å (no binning) and denoised with CryoSamba, Topaz-Denoise, or CryoCARE. 638 

Spikes are visible in the particle denoised using CryoSamba and Topaz but absent in the sample 639 

denoised with CryoCARE. Scale bar: 35 nm. 640 

(B) Comparison of subtomogram averaging results obtained using raw and denoised images. The 641 

far-left column shows projected averaged maps, and the middle columns show surface renditions 642 

of the corresponding electron density maps obtained using ChimeraX. The renditions were 643 

adjusted to equivalent intensity levels of the top and middle slices. The enlarged region is centered 644 

on the location of VP1 and highlights its detection in the raw and denoised images using 645 

CryoSamba or Topaz-Denoise, but its absence in the image denoised using CryoCARE. 646 

(C) Comparison of the Fourier Shell Correlation calculated for the averaged subtomograms of the 647 

rotavirus before (raw) or after denoising with CryoSamba, Topaz-Denoise, or CryoCARE. The 648 

comparison highlights the similar behavior of the Fourier Shell Correlations of the raw and 649 

CryoSamba-denoised images, in contrast to the increasing values at high resolution observed for 650 
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the denoised data obtained using Topaz-Denoise or CryoCARE, which appear to create high-651 

frequency "signal" from the high-frequency noise. 652 

 653 

Figure S1. Effect of Maximum Plane Gap Lmax on CryoSamba Denoised Images. 654 

2D xy plane (top rows) and corresponding 2D Fourier transform magnitudes (bottom rows) of a 655 

3D reconstructed tomogram of a BSC1 cell at voxel resolutions of (A) 15.72 Å, (B) 7.86 Å, and 656 

(C) 2.62 Å, displaying the cross-section of a defective rotavirus without spikes. Each series of 657 

images starts with the raw xy plane and is followed by the same plane after CryoSamba denoising 658 

with increasing values of the maximum plane gap hyperparameter Lmax. As Lmax increases, both 659 

the contrast enhancement (desirable) and blurriness (undesirable) effects increase. An optimal 660 

“balancing” point (image boxed in red) is chosen based on visual inspection of these images over 661 

a reasonable range of values. The blurriness effect, which limits Lmax, is more pronounced when 662 

the relative size of structures of interest is smaller with respect to the voxel size (which dictates 663 

the “thickness” of each 2D plane), leading to smaller values of Lmax for higher pixel binning’s. 664 

Scale bars: 50 nm. 665 

 666 

Figure S2. Fourier Plane Modulation Effects of Simple Averaging, Direct Interpolation, and 667 

the Samba Procedure. 668 

We apply three different denoising procedures to the xy planes of a small 3D region of a BSC1 669 

cell cryoET tomogram and show the resulting xz Fourier transform magnitudes. The raw data 670 

image on the left displays a bundle of tilted lines characteristic of cryoET reconstructions. 671 

For the first row of data, each xy plane at its z position was directly replaced by the average of all 672 

planes between z-Lmax and z+Lmax, for Lmax ranging from 1 to 5. This “naïve” denoising approach 673 

enhances the imaging contrast at the cost of severe distortions, evidenced by the cosine 674 

modulations along the Z axis of the Fourier images. 675 

 676 

In the second row, the data was denoised with our trained deep learning model using a direct 677 

interpolation approach, where planes z-L and z+L are directly passed through the EBME module, 678 

and the outputs for L=1…, Lmax are averaged. Depending on the trained model’s performance, 679 

the result could range from perfect denoising to merely averaging its inputs. The result lies 680 
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between these extremes, with denoising coupled with undesirable modulation reminiscent of the 681 

averaging process. 682 

 683 

In the third row, we show the results of the CryoSamba module applied to this 3D region. The 684 

Samba procedure is designed to suppress the modulations seen in the second row. By including 685 

the original plane z in the interpolation process, we ensure that information not easily inferred 686 

from neighboring planes is propagated to the result, avoiding most of the information loss that 687 

causes the xz Fourier plane modulations. Drawings from yeast, monkey, ER and mitochondria 688 

are based on images from Servier Medical Art. Servier Medical Art by Servier is licensed under a 689 

Creative Commons Attribution 3.0 Unported License 690 

(https://creativecommons.org/licenses/by/3.0/).  691 
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MOVIE LEGENDS 692 

Movie S1. CryoSamba denoising of a representative plane in a 3D tomogram from a BSC-693 

1 cell.  694 

Comparison of the same image corresponding to a xy plane in a 3D tomogram volume of a BSC-695 

1 cell incubated with rotaviruses, before and after CryoSamba denoising. The data were acquired 696 

with a per-voxel resolution of 2.62 Å and subsequently 3x pixel binned, resulting in a final 697 

resolution of 7.86 Å per voxel. 698 

 699 

Movie S2. CryoSamba denoising of a representative plane in a 3D tomogram from a yeast 700 

cell.  701 

Comparison of the same image corresponding to a xy plane in a 3D tomogram volume of a yeast 702 

cell highlighting the cross section of a portion of endoplasmic reticulum (ER) and ribosomes, free 703 

in the cytosol or associated with the ER, before and after CryoSamba denoising. The data were 704 

acquired with a per-voxel resolution of 2.62 Å. 705 

 706 

Movie S3. CryoSamba denoising of a 3D tomogram from a yeast cell.  707 

Comparison of the same tomogram volume of a yeast cell highlighting the cross section of a 708 

portion of endoplasmic reticulum (ER) and ribosomes, free in the cytosol or associated with the 709 

ER, before and after CryoSamba denoising. The data were acquired with a per-voxel resolution 710 

of 2.62 Å.  711 
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TABLE LEGENDS 712 

Table 1. SNR for images determined using alternate tilt planes and SNR ratios between raw 713 

and images denoised using CryoSamba or Topaz-Denoise. 714 

Data for two raw tomograms per experimental condition were obtained using independent sets of 715 

alternate xy tilt plane images acquired with an unbinned voxel size of 2.62 Å. SNR data for each 716 

tomogram (in dB) were calculated by correlating each xy plane throughout the volume of the two 717 

tomogram subsets (see Methods). Values in parentheses represent SNR ratios derived from the 718 

SNR values of the raw images and the corresponding SNR values of the same images denoised 719 

using CryoSamba or Topaz-Denoise (see Methods). The BSC-1 cell sample data sets capture 720 

two different rotavirus particles selected from different tomograms. The yeast sample data sets 721 

are complete tomograms obtained from three lamellae. These results, which compare raw and 722 

denoised images with the same information content, demonstrate the similar extent of SNR 723 

improvement achieved using both denoising methods. 724 

 725 

Table 2. SNR for images determined at different resolutions using all tilt planes and SNR 726 

ratios between raw and images denoised using CryoSamba, Topaz-Denoise or Cryo-CARE. 727 

Data from the tomograms obtained using all xy tilt plane images of the BSC-1 cell depicted in 728 

Fig.5 acquired with voxel size of 2.62 A and processed at voxel size of 2.62 A (unbinned), 7.86 A 729 

(3x binned) and 15.72 (6x binned). SNRs were determined (see Methods) by correlating alternate 730 

xy planes (with slightly different information content) along the z axis of a given cryo-ET 731 

(Even/Odd plane) or by correlating the same xy plane (with the same information content) along 732 

the z axis determined between the raw image and the same image denoised using CryoSamba, 733 

Topaz-Denoise or Cryo-CARE (Denoise/Raw); these values are trivially infinity when the 734 

comparison is between raw and itself.  The highest SNR value within a given column is highlighted 735 

in red. The results, obtained by relating raw and denoise images with the same information 736 

content highlight the extent of SNR improvement obtained using CryoSamba. 737 

 738 

Table 3. Comparison of training and inference times and VRAM usage for two 739 

workstations. 740 

The table presents a comparison of typical training and inference times, as well as VRAM usage, 741 

for two workstations employed to denoise the same tomogram using CryoSamba. The DGX-A 742 

workstation, equipped with 8 Nvidia A-100 GPUs (40GB VRAM each), utilized PyTorch’s 743 

distributed data parallel (DDP) protocol to split the training across all GPUs, and the PyTorch 744 

Compiler function to speed up computations. The LENOVO Legion Pro 5 laptop, containing a 745 
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single Nvidia Geforce RTX 3070 GPU card (8GB VRAM), operated under Windows OS and could 746 

not use the PyTorch Compiler due to OS constraints. Batch sizes were adjusted to fit the available 747 

GPU memory for each workstation.  748 

 749 

Denoising calculations from a tomogram of 682 x 960 x 333 voxels, with a voxel resolution of 750 

15.72 Å (6x binning) of a BSC-1 cell incubated with rotavirus were performed with Lmax gaps of 751 

3 and 6 for training and inference, respectively. Times for training (per epoch) and total inference 752 

were approximately linearly proportional to the volume dimensions and maximum frame gap. 753 

Total training time is dependent on the convergence of the loss functions and tended to stabilize 754 

after around 30 epochs of training.   755 
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Table 1 
 

 SNR for the images (in dB) and its ratio between raw and 
denoised data 

Source Raw Topaz-Denoise CryoSamba 
Rotavirus in BSC1 

cell (1) 
-32.4 (0.0) -22.9 (+9.4) -25.7 (+6.7) 

Rotavirus in BSC1 
cell (2) 

-26.3 (0.0) -16.4 (+9.9) -16.3 (+10.0) 

Yeast lamella (1) -20.2 (0.0) -14.7 (+5.5) -14.3 (+5.9) 
Yeast lamella (2) -22.9 (0.0) -16.9 (+6.0) -17.3 (+5.6) 
Yeast lamella (3) -36.2 (0.0) -34.4 (+1.8) -34.2 (+2.0) 
Total average -27.6 (0.0) -21.1 (+6.5) -21.6 (+6.0) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2024. ; https://doi.org/10.1101/2024.07.11.603117doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.11.603117
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2 
 
 

 
SNR (in dB) for different voxel resolutions 

 Even/Odd plane SNR  Denoised/Raw SNR 
2.62 Å 7.86 Å 15.72 Å 2.62 Å 7.86 Å 15.72 Å 

Raw -1.07 1.74 -0.26 N/A N/A N/A 
CryoCARE -1.72 11.98 17.77 -28.73 -21.83 -22.95 

Topaz 8.86 12.49 13.21 0.87 -1.08 0.38 
CryoSamba 7.29 8.10 8.85 3.02 2.64 6.91 
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Table 3 
 
 
 

 Time and VRAM usage for two workstations 
 DGX workstation 

(batch size 32, 8 GPUS) 
Personal laptop 

(batch size 4, 1 GPU) 
Training VRAM 

(per GPU) 
31 GB 6 GB 

Training time 
(per epoch) 

24 sec 742 sec 
(12 min 22 sec) 

Training time 
(total: 30 epochs) 

720 sec 
(12 min) 

22260 sec  
(6 h 11 min) 

Inference VRAM 
(per GPU) 

8 GB 1 GB 

Inference time 
(total) 

95 sec 
(1 min 35 sec) 

3973 sec 
(1 h 6 min 13 sec) 
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