Table 3.
References | Modality | Data source | No. of subj. | ML model | Input | DSC | Add’l perf. metrics |
---|---|---|---|---|---|---|---|
| |||||||
Dong et al.71 | CCTA | Private | 338 | Di-Vnet | 3D patches | 0.902 | Prec=0.921, Recall=0.97 |
Gao et al.72 | XCA | Private | 130 | GBDT | 2D images | - | F1=0.874, Sen= 0.902, Spec=0.992 |
Wolterink et al.73 | CCTA | Publicly available | 18 | GCN | 2D images | 0.74 | MSD=0.25mm |
Li et al.74 | CCTA | Private | 243 | 2D U-Net with 3DNet | 2D images | 0.771 ± 0.021 | AUC=0.737 |
Song et al.75 | CCTA | Private | 68 | 3D FFR U-Net | 3D patches | 0.816 | Prec=0.77, Recall=0.87 |
Zeng et al.76 | CCTA | Publicly available | 1000 | 3D-UNet | 3D volumes | 0.82 | - |
DSC: Dice similarity coefficient; Prec: Precision; Sen: Sensitivity; Spec: Specificity; GBDT: Gradient boosting decision tree; CCTA:Coronary computed tomographic angiography; XCA: X-ray coronary angiography; GCN: Graph convolutional networks; MSD: Mean surface distance; AUC: Area under the receiver operating characteristic curve; ROI: Region of interest; 3D FFR U-Net: 3D feature fusion and rectification U-Net