Skip to main content
[Preprint]. 2024 Jul 16:rs.3.rs-4613439. [Version 1] doi: 10.21203/rs.3.rs-4613439/v1

Table 3.

Review of the papers applying deep learning for coronary vessel segmentation.

References Modality Data source No. of subj. ML model Input DSC Add’l perf. metrics

Dong et al.71 CCTA Private 338 Di-Vnet 3D patches 0.902 Prec=0.921, Recall=0.97
Gao et al.72 XCA Private 130 GBDT 2D images - F1=0.874, Sen= 0.902, Spec=0.992
Wolterink et al.73 CCTA Publicly available 18 GCN 2D images 0.74 MSD=0.25mm
Li et al.74 CCTA Private 243 2D U-Net with 3DNet 2D images 0.771 ± 0.021 AUC=0.737
Song et al.75 CCTA Private 68 3D FFR U-Net 3D patches 0.816 Prec=0.77, Recall=0.87
Zeng et al.76 CCTA Publicly available 1000 3D-UNet 3D volumes 0.82 -

DSC: Dice similarity coefficient; Prec: Precision; Sen: Sensitivity; Spec: Specificity; GBDT: Gradient boosting decision tree; CCTA:Coronary computed tomographic angiography; XCA: X-ray coronary angiography; GCN: Graph convolutional networks; MSD: Mean surface distance; AUC: Area under the receiver operating characteristic curve; ROI: Region of interest; 3D FFR U-Net: 3D feature fusion and rectification U-Net