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Abstract: In this paper, we present a cascaded deep convolution neural network (CNN) for assessing
enlarged perivascular space (ePVS) within the basal ganglia region using T2-weighted MRI. Enlarged
perivascular spaces (ePVSs) are potential biomarkers for various neurodegenerative disorders, includ-
ing dementia and Parkinson’s disease. Accurate assessment of ePVS is crucial for early diagnosis and
monitoring disease progression. Our approach first utilizes an ePVS enhancement CNN to improve
ePVS visibility and then employs a quantification CNN to predict the number of ePVSs. The ePVS
enhancement CNN selectively enhances the ePVS areas without the need for additional heuristic
parameters, achieving a higher contrast-to-noise ratio (CNR) of 113.77 compared to Tophat, Clahe,
and Laplacian-based enhancement algorithms. The subsequent ePVS quantification CNN was trained
and validated using fourfold cross-validation on a dataset of 76 participants. The quantification
CNN attained 88% accuracy at the image level and 94% accuracy at the subject level. These results
demonstrate significant improvements over traditional algorithm-based methods, highlighting the
robustness and reliability of our deep learning approach. The proposed cascaded deep CNN model
not only enhances the visibility of ePVS but also provides accurate quantification, making it a promis-
ing tool for evaluating neurodegenerative disorders. This method offers a novel and significant
advancement in the non-invasive assessment of ePVS, potentially aiding in early diagnosis and
targeted treatment strategies.

Keywords: enlarged perivascular spaces; deep learning; image enhancement; quantification

1. Introduction

Perivascular spaces (PVSs), also known as Virchow–Robin spaces, are fluid-filled
spaces surrounding penetrating blood vessels in the brain [1], essential for transporting
cerebrospinal fluid (CSF) and clearing waste products [2,3]. While normally microscopic
and invisible, PVS can expand and become visible in MRI due to aging or neurological
disorders, indicating obstruction of fluid flow or disruption in the blood–brain barrier.
Current understanding is that PVS enlargement refers to the obstruction of fluid flow due
to protein and cellular debris, causing fluid to accumulate [2]. This phenomenon can be
understood as trapping unremoved cerebrospinal fluid in the subpial or interpial space [4].
The expansion of PVS associated with fluid accumulation signifies more than just structural
changes but also substantial functional disruption in the fluid transport mechanisms within
the brain [5], which leads to various neurological disorders [6].
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Several studies have identified ePVS as a potential biomarker for small vessel pathol-
ogy and glymphatic dysfunction in brain disorders such as dementia [7], stroke [8], multiple
sclerosis [9], Parkinson’s disease [10], and insomnia [11]. The frequency of ePVS is used as
an imaging indicator for cerebral small vessel disease (CSVD) and is associated with cogni-
tive impairment and dementia. Enlarged PVS in the basal ganglia is related to decreased
information processing speed [12], highlighting the link between CSVD and cognitive
decline. Additionally, the number of ePVSs in the basal ganglia correlates with subcortical
vascular cognitive impairment and vascular dementia [13,14]. Studies suggest that ePVS is
considered a biomarker for small vessel disease (SVD), and given the progression of SVD to
vascular dementia, the association between ePVS and vascular dementia is reasonable [6].
Moreover, the ePVS burden in Alzheimer’s disease patients is correlated with glymphatic
dysfunction indicators [15]. Therefore, the need for ePVS markers is emphasized for the
clinical diagnosis of dementia.

MRI is essential for the visual assessment of ePVS due to its ability to provide high-
resolution images and contrast with surrounding tissue [16]. ePVS appears as low-intensity
on T1-weighted MRI and fluid-attenuated inversion recovery (FLAIR), but shows bright
signal intensity on T2-weighted MRI, where it shows clearly defined boundaries. Despite
this, manual annotation of ePVS is challenging due to its variable size and shape, as well as
the limitations of 1.5 T and 3 T MRI scanners. Additionally, the presence of numerous ePVS
in a single scan complicates accurate visual assessment. Raters often need to zoom in/out
or scroll through slices to distinguish ePVSs from similar-appearing brain lesions, such as
lacunar infarcts or small white matter lesions [17,18]. Current clinical studies rely on visual
scoring systems, where expert raters count the number of ePVSs within a region of interest
(ROI) [19] or use grading systems like Potter’s five-point scale [20]. These manual methods
are time-consuming and subject to variability, highlighting the need for automated ePVS
quantification to improve accuracy and efficiency in clinical settings.

Recent studies have focused on automated methods to address the limitations of
manual ePVS assessment. Rashid et al. used a fully convolutional neural network with
7 T T2-weighted MRI for efficient ePVS segmentation [21], but 7 T MRI is not commonly
used in clinical settings where 1.5 T or 3 T MRI is standard. Therefore, researchers have
explored automated quantification methods using image enhancement technology on
lower-resolution MRIs. For example, Uchiyama et al. used white top-hat filtering on 1.5 T
MRI for lesion enhancement [22], Yang et al. applied Haar transformation on 3 T MRI [23],
Park et al. proposed an automated ePVS segmentation method based on randomized Haar
features [24], and Ballerini et al. used the Frangi filter for individual ePVS segmentation [25].
However, these methods involve complex heuristic parameter tuning. To overcome these
issues, Jung et al. introduced a deep learning-based approach that eliminates the need for
additional processing, using densely connected deep CNNs to generate enhanced images
accurately [26]. Their study was still limited to 7 T MRI and focused on enhancement rather
than quantification.

This study aims to improve the accuracy and efficiency of ePVS assessment by propos-
ing a cascaded deep convolutional neural network (CNN) framework to enhance and
quantify ePVS in T2-weighted MRI, specifically using the clinically prevalent 3 T MRI.

Research Question:

1. Can deep learning-based enhancement improve ePVS visibility on T2-weighted MRI?
2. How effective are deep learning-based enhancement approaches in quantifying ePVSs

compared to traditional methods?

This study intends to answer these questions through comparative experiments,
demonstrating superior quantification performance compared to algorithm-based
enhancement techniques.
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2. Materials and Methods
2.1. Dataset

The dataset used in this study consists of brain MRI scans of a total of 76 patients from
a prospective BIG-VARISTA cohort (KCT0003181) provided by Konkuk University Medical
Center (FEB 2018.02 to May 2020). Participants provided written informed consent. This
study was approved by the institutional review board (IRB-21-06-036). It was carried out
in accordance with the principles of the Declaration of Helsinki. Table 1 summarized the
demographic information of the patients.

Table 1. The demographic information of patients with neuropsychiatric examination scores (age,
gender, education, MMSE, CDR, and CDRSB).

AD
(N = 8)

MCI
(N = 50)

CN
(N = 18)

Total
(N = 76)

Age 76.2 ± 2 70.3 ± 6.5 67.6 ± 8.9 70.3 ± 7.1

Gender
(male/female) 2:6 17:33 6:12 25:51

Education
(years) 5.7 ± 3.9 9.8 ± 4.9 12.8 ± 4.8 10.1 ± 5.1

MMSE 22 ± 4.2 26.1 ± 2.7 28.6 ± 1.6 26.3 ± 3.2

CDR 0.6 ± 0.4 0.5 ± 0.1 0.3 ± 0.3 0.4 ± 0.2

CDRSB 3.5 ± 2 1.3 ± 0.9 0.4 ± 0.3 1.3 ± 1.3

All the images were acquired using a 3.0 T Siemens Skyra scanner with a 20-channel
coil. The protocol includes 2D T2WI, 3D T1-weighted MRI, 3D FLAIR MRI, and 3D SWI.
The T2-weighted scan was acquired using an axial turbo spin-echo sequence with a TR/TE
of 4450 ms/81 ms, matrix size of 384 × 384, in-plane resolution of 0.573 × 0.573 mm, slice
thickness of 5 mm, and 28 slices. The T1-weighted scan was obtained using a magnetization-
prepared rapid gradient echo (MPRAGE) sequence with a repetition time (TR)/echo time
(TE) of 2300 ms/2.98 ms, inversion time of 900, matrix size of 256 × 256, in-plane resolution
of 1 × 1 mm, slice thickness of 1 mm, and 192 slices. The FLAIR 3D sequence used a TR/TE
of 5000 ms/393 ms, inversion time of 1800 ms, matrix size of 256 × 256, in-plane resolution
of 1 × 1 mm, slice thickness of 1 mm, and 196 slices.

2.2. Labeling for ePVS

The images in our dataset were visually graded by a single expert rater with 22 years
of neuroimaging experience (MWJ). The neuroradiologist rater, blinded to clinical infor-
mation, visually assessed ePVSs in T1-weighted, T2-weighted, and FLAIR MR images.
The neuroradiologist analyzed three consecutive slices covering basal ganglia regions,
separately assessing the left and right sides. Ratings were based on Potter’s grading system:
0 for no ePVSs, 1 for 1–10 (mild), 2 for 11–20 (moderate), 3 for 21–40 (frequent), and 4
for over 40 (severe) ePVSs. The final rating of ePVS for the subject was determined as
the highest score among the six scores from three contiguous slices and each hemisphere.
Interobserver agreement of PVS was reported in our previous study. In that study, two
neuroradiologists (with 22 years and 8 years of experience) studied 20 healthy controls’ T2
images from a separate dataset, and the inter-agreement using the intraclass correlation
coefficient (ICC) was 90.1% (95% confidence interval: 0.8–0.952) [19].

2.3. Deep Cascade of Convolutional Neural Networks

Figure 1 shows the overall flowchart for a deep cascade of CNNs for the assessment of
ePVSs at image level and subject level.
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Figure 1. The flowchart for a deep cascade of CNNs for the assessment of ePVS at image level and 
subject level. (a) Preprocessing. Six 2D images were extracted from T2-weighted MRI in the left and 
the right basal ganglia regions across three slices. Each 2D image was resized and normalized. (b) 
ePVS enhancement CNN. The 2D image was enhanced to have a clear visibility of ePVS using CNN. 
(c) ePVS quantification CNN. The number of ePVSs from the enhanced image was predicted using 
a CNN (image-level prediction). (d) Subject-level prediction. The maximum operation is applied to 
the 6 predicted values for each subject. 
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The 2D images were created from the T2-weighted MRI in the left and right basal 

ganglia regions across three slices, resulting in six 2D images per subject. Each 2D image 
was resized to 80 × 96 using bilinear interpolation, which produces smoother images by 
reducing artifacts. The resizing to 80 × 96 pixels was determined to balance computational 
efficiency with the preservation of critical anatomical details. This size is small enough to 
reduce computational load and training time, yet large enough to retain essential struc-
tural details of the ePVS. This balance ensures that downsampling by the neural network 
does not degrade image quality, allowing for the accurate detection and quantification of 
ePVSs. We used 16-bit medical images. To improve the convergence rate of the optimiza-
tion algorithm, these values were normalized to the [0, 1] range. The ground truth for the 
ePVS enhancement network was generated by element-wise adding of the normalized T2-
weighted MRI and binary ePVS mask, enhancing the ePVS contrast, and then normalizing 
the enhanced image to [0, 1] (Figure 2). The ground truth (the number of ePVSs) for the 
quantification of ePVS network was also normalized to [0, 1] by dividing the maximum 
number of ePVSs (in our case: 48).  

 
Figure 2. Preprocessing for making a ground truth for the deep learning-based enhancement net-
work. 

Figure 1. The flowchart for a deep cascade of CNNs for the assessment of ePVS at image level and
subject level. (a) Preprocessing. Six 2D images were extracted from T2-weighted MRI in the left
and the right basal ganglia regions across three slices. Each 2D image was resized and normalized.
(b) ePVS enhancement CNN. The 2D image was enhanced to have a clear visibility of ePVS using
CNN. (c) ePVS quantification CNN. The number of ePVSs from the enhanced image was predicted
using a CNN (image-level prediction). (d) Subject-level prediction. The maximum operation is
applied to the 6 predicted values for each subject.

2.3.1. Preprocessing

The 2D images were created from the T2-weighted MRI in the left and right basal
ganglia regions across three slices, resulting in six 2D images per subject. Each 2D image
was resized to 80 × 96 using bilinear interpolation, which produces smoother images by
reducing artifacts. The resizing to 80 × 96 pixels was determined to balance computational
efficiency with the preservation of critical anatomical details. This size is small enough to
reduce computational load and training time, yet large enough to retain essential structural
details of the ePVS. This balance ensures that downsampling by the neural network does
not degrade image quality, allowing for the accurate detection and quantification of ePVSs.
We used 16-bit medical images. To improve the convergence rate of the optimization
algorithm, these values were normalized to the [0, 1] range. The ground truth for the
ePVS enhancement network was generated by element-wise adding of the normalized T2-
weighted MRI and binary ePVS mask, enhancing the ePVS contrast, and then normalizing
the enhanced image to [0, 1] (Figure 2). The ground truth (the number of ePVSs) for the
quantification of ePVS network was also normalized to [0, 1] by dividing the maximum
number of ePVSs (in our case: 48).
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2.3.2. Deep Convolutional Neural Network for ePVS Enhancement

The goal of this stage is to obtain images with clear visibility of ePVS using deep
learning, which can provide more useful input data for the second stage of the framework,
the quantification of ePVSs. We used the U-Net architecture [27], designed to transform
the input image into an enhanced output image (Figure 3b). The U-Net consists of a
downsampling pathway and an upsampling pathway, connected by skip connections to
preserve spatial information.
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Model Architecture:

• Downsampling Pathway: This pathway captures coarse features. It consists of two
2D convolutional layers at each level, followed by batch normalization and ReLU
activation functions, and a max-pooling layer to reduce spatial dimensions. We
retain the output of each downsampling level before max-pooling for use in the
upsampling pathway.

• Upsampling Pathway: This pathway reconstructs the image with enhanced features.
It uses transpose convolution (deconvolution) layers to upsample the image. Each
upsampled image tensor is concatenated with the corresponding output from the
downsampling pathway via skip connections. These connections help capture both
fine-grained details and coarse features effectively.

Modification for Enhancement:
We used the U-Net architecture without any structural changes. However, to transform

the task from segmentation to image regression, we changed the loss function to mean
squared error (MSE). This modification allows for the model to focus on enhancing the
visibility of ePVSs within the entire image rather than segmenting it.

Overall, this U-Net model regresses input images to output images with improved
clarity of ePVSs. The resulting images with enhanced ePVSs serve as valuable input data
for the subsequent stage of our framework: the ePVS quantification network.

2.3.3. Deep Convolutional Neural Network for ePVS Quantification

The CNN architecture for the quantification of ePVSs is shown in Figure 3c. The
purpose of this stage is to count the number of ePVSs from the enhanced images obtained
in the previous stage.

Model Architecture:

• Convolutional Layers: The model consists of 5 convolutional layers. The first two
layers use 64 filters, the next two use 128 filters, and the final layer uses 256 filters.
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Each convolutional layer is followed by batch normalization and ReLU activation
functions to stabilize and improve learning.

• Global Average Pooling Layer: This layer reduces each feature map to a single value,
preserving the most important information while reducing dimensionality.

• Fully Connected Layer: The features extracted by the convolutional layers are fed
into a fully connected layer, which outputs a scalar value representing the predicted
number of ePVSs.

This CNN model is designed to extract essential features related to the number of
ePVSs from the input image and predict the number of ePVSs accurately.

Workflow and Clarifications:
To clarify the overall workflow of our methodology, we provide the following summary:
MRI images are preprocessed and then fed into a U-Net model for ePVS enhancement.

The U-Net model uses mean squared error (MSE) as the loss function to focus on improving
the visibility of ePVSs in the images. The enhanced images from the U-Net model are then
input into a CNN designed for ePVS quantification. This network, consisting of multiple
convolutional layers, a global average pooling layer, and a fully connected layer, accurately
predicts the number of ePVSs.

2.4. Implementation

The models were implemented using TensorFlow 2.6 on three 1080Ti GPUs with an
Intel(R) Core(TM) i7-6850K CPU*12 @ 128 GB(16 GB*8) RAM and a 64-bit operating system.
All networks were trained using the adaptive moment estimation (Adam) optimizer with
a learning rate of 1 × 10−4. The mean squared error (MSE) was used as the loss function
for the ePVS enhancement network, and the mean absolute error (MAE) for the ePVS
quantification network. The following augmentation techniques were used during training:
x- and y-axis flips, scaling (0.9 to 1.1), and rotation (−15 degrees to 15 degrees). The batch
size was set to 45. The ePVS enhancement network was trained for 500 epochs, and the
ePVS quantification network was trained for 300 epochs.

2.5. Evaluation

To evaluate the proposed methods, a 4-fold cross-validation approach was applied to
a collection of 76 data samples (Figure 3a). During each ‘fold’ of the validation process, a
single part (representing 25% of the data) was set aside for testing the model’s performance,
while the remaining three parts (cumulatively representing 75% of the data) were used
to train the model. This process was repeated four times, with each of the four parts
being used as the testing set once, as shown in Figure 3a. For evaluation of the ePVS
enhancement network, the CNR was determined. CNR measures the clarity of the ePVS
regions compared to their surrounding areas. It is calculated using the following formula:

CNR =

∣∣∣µsignal1 − µsignal2

∣∣∣
σnoise

where:

• µsignal1 is the mean signal intensity in the ePVS region.
• µsignal2 is the mean signal intensity in the surrounding area.
• σnoise is the standard deviation of the noise, measured in the background of the slice.

To evaluate the ePVS quantification network, we first converted the normalized out-
put from the network quantification into the number of ePVSs by multiplying it by the
maximum number of ePVSs. To compare the estimated ePVS count from the deep learning
model with the actual observed counts, the MAE was calculated between ground truth
and model outputs. MAE was specifically selected for its direct, clinically interpretable
assessment of prediction errors, measured in the same units as ePVSs, and for its resilience
to the effects of outliers, which can skew MSE results. Moreover, to determine model
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accuracy, ePVS ratings were assigned using Potter’s grading system, with categories rang-
ing from 0 to 4. We trained the deep learning model on a per-slice basis, which led us to
report the model’s accuracy at the image level. However, given that in clinical settings an
individual subject was evaluated using multiple MRI slices, we adopted the highest rating
score among six parts corresponding to each subject to report the accuracy of subject level.
Additionally, we measured the intraclass correlation coefficient (ICC) among entire subjects
to evaluate the reliability of our method.

MSE =
1
n ∑n

i=1 = (yi − ŷi)
2

MAE =
1
n ∑n

i=1 =

∣∣∣∣yi − ŷi

∣∣∣∣
where

• yi is the actual observed count of ePVS.
• ŷi is the predicted count of ePVS from the model.
• n is the number of samples.

3. Results
3.1. Data (MRI, Basal Ganglia ROI, and ePVS ROI)

In this study, we conducted experiments using a dataset of 456 images from 76 partici-
pants. The basal ganglia ROI mask is used to acquire six 2D images from T2-weighted MRI
and ePVS segmentation masks corresponding to the basal ganglia regions. These images
were then employed in a deep learning model for the enhancement of ePVSs. Table 2
shows the characteristics of the ePVS rating score distribution for a total of 456 images
extracted from the basal ganglia area. In addition, the images obtained by adding the ePVS
segmentation mask (0, 1) to each 2D image (0–1 range) are used as the output for the deep
learning model for enhancement of ePVS. Figure 4 provides examples of T2-weighted MRI,
basal ganglia ROI, and ePVS ROI images that we used in our study.

Table 2. ePVS rating score for a total 456 images (76 subjects × 6 parts) in basal ganglia region.

ePVS Rating
(Number of ePVSs)

0
(0)

1
(1–10)

2
(11–20)

3
(21–40)

4
(>40)

Number of images 4 244 138 55 15
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3.2. Results for Enhancement of ePVS

For the evaluation of the deep learning-based enhancement of ePVS, the outputs were
qualitatively and quantitatively compared with algorithm-based enhancement methods.
Figure 5 shows examples of non-enhanced images, images with algorithm-based image
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enhancement techniques applied (Tophat [28], Clahe [29], Laplacian [30]), and images
with deep learning-based enhancement methods. When using algorithm-based image
enhancement techniques, we observed that the signal increased not only for ePVS but also
for the other organs. On the other hand, the enhanced images using the deep learning
method exhibited an increased signal for ePVS, not for the other organs. This indicates
that the deep learning method selectively enhances the ePVS signal, improving visibility
without introducing noise from other structures.
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based enhancement of ePVS (red box).

From the quantitative analysis, we found that the deep learning-based enhancement
method showed the highest contrast-to-noise ratio (CNR) of 113.77 ± 15.14 compared with
the algorithm-based enhancement methods, which showed CNRs of less than 50 (Table 3).
This significant improvement in CNR suggests that the deep learning-based method is
highly effective in enhancing ePVS, providing clearer and more distinguishable images.

Table 3. Mean and standard deviation of CNR scores among compared methods and our deep
learning-based enhancement method. Scores were measured near the PVS.

Non-Enhanced Tophat Clahe Laplacian Deep Learning

CNR 37.8 ± 7.4 42.5 ± 6.0 38.9 ± 7.2 45.9 ± 3.9 113.7 ± 15.1

3.3. Results for Quantification of ePVS

To examine how the various enhancement methods influence the quantification of
ePVS, we trained the five deep learning models for the quantification of ePVSs according to
the various enhanced images (Figure 6). When quantifying ePVSs using the deep learning-
based enhanced images, we achieved the highest performance, with 88% accuracy at the
image level and 94% accuracy at the subject level, outperforming all other methods (Table 4).
As a baseline, quantifying ePVSs using non-enhanced images resulted in 74% accuracy
at the image level and 72% accuracy at the subject level. Comparatively, using the Clahe
method for deep learning-based quantification resulted in similar accuracy to the baseline,
with a 1% lower accuracy for the Laplacian method and a 1% higher accuracy for the
Tophat method at the image level. At the subject level, the Tophat method showed similar
accuracy, the Clahe method exhibited a 3% higher accuracy, and the Laplacian method had



Diagnostics 2024, 14, 1504 9 of 13

a 9% lower accuracy compared to the baseline model. Interestingly, despite the Laplacian
method having the second-highest performance in enhancing ePVS, it showed the worst
performance in quantifying ePVSs at both image and subject levels. Conversely, the Clahe
method demonstrated the second highest performance in quantifying ePVSs at the subject
level, even though it had the worst performance in enhancing ePVS. This discrepancy
highlights the importance of using a robust enhancement method tailored for accurate
quantification. Additionally, the intraclass correlation coefficient (ICC) using the deep
learning-based enhanced images shows high reliability of 90.6% (95% confidence interval:
0.89–0.92) at the image level and 95.2% (95% confidence interval: 0.92–0.97) at the subject
level. These high ICC values indicate that the deep learning-based enhancement method
not only improves the visibility of ePVSs but also enhances the reliability and consistency
of ePVS quantification. These results suggest that deep learning-based enhancement
significantly improves both the visual and quantitative assessment of ePVSs compared
to traditional algorithm-based methods. To further illustrate the training process and
convergence of both algorithm-based and deep learning-based enhancement methods, we
have included the training curves in Figure 7. These curves highlight the efficiency and
robustness of the deep learning approach compared to traditional methods. These results
suggest that deep learning-based enhancement significantly improves both the visual and
quantitative assessment of ePVS compared to traditional algorithm-based methods.
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Figure 6. Comparative analysis of ePVS quantification using different image enhancement techniques:
(a) represents the ePVS segmentation mask, (b) is the non-enhanced image, and images (c–f) are
enhanced using Tophat, Clahe, Laplacian, and deep learning techniques, respectively. For each grade
from 0 to 4, the predicted grades by each technique are as follows: For grade 0, a predicted grade of
‘1’ is obtained from non-enhanced image (b) and images enhanced by techniques in Tophat (c), Clahe
(d), and deep learning (f), whereas a predicted grade of ‘2’ comes from Laplacian (e). For grade 1, a
predicted grade of ‘1’ comes from (c,f), while a predicted grade of ‘2’ is given by (b,d,e). For grade
2, a predicted grade of ‘2’ is common among (b,d–f) with an exception for (c) predicting a lower
grade of ‘1’. For grade 3, (b,e,f) predict an accurate grade of ‘3’, while others predict it as lower at ‘2’.
For grade 4, only the enhanced image using deep learning (f) predicts this highest level accurately
with ‘4’.
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Table 4. Comparison for ePVS quantification results of the non-enhanced, algorithm-based enhanced,
and deep learning-based enhanced image.

MAE Image-Level Accuracy (%) Subject-Level Accuracy (%)

Non-enhanced 3.3 74 72
Tophat 3.3 76 72
Clahe 3.1 74 75

Laplacian 3.8 73 63
Deep learning 1.7 88 94
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4. Discussion

In the present study, we proposed a cascaded deep CNN for the assessment of ePVS
in the basal ganglia region in T2-weighted MRI comprising deep CNN-based enhancement
and quantification stages. To evaluate the enhancement of ePVS, we compared the CNR
with various algorithm-based enhancement methods. The deep CNN-based quantification
network was evaluated using mean absolute error (MAE). Our deep learning models were
evaluated using a fourfold cross-validation approach.

Our deep CNN-based ePVS enhancement network presents two advantages over
conventional algorithm-based enhancement methods. First, our method allows for us
to generate enhanced ePVS images without the need for additional heuristic parameters,
streamlining the process by eliminating manual fine-tuning. Secondly, our method se-
lectively enhances only ePVS regions, avoiding the global enhancement of entire images
seen with traditional methods. This selective enhancement ensures accuracy and clarity in
visualizing ePVSs without unnecessary alterations to other image components.

To assess the impact of our image enhancement method based on deep learning, we
applied the quantification network to non-enhanced images, algorithmically enhanced
images, as well as deep learning-based enhanced images. Interestingly, despite an increase
in CNR scores when using images enhanced by algorithm-based techniques compared to
non-enhanced images, the quantification results were similar or even worse. One possible
explanation for this could be that the enhancement of not only ePVS but also unnecessary
areas during image enhancement may have impacted the quantification. In contrast, our
deep learning-based enhancement method led to higher accuracies: reaching up to 88%
at the image level and an impressive 94% at the subject level. This means that our deep
learning-based approach improved accuracy by a margin of 14% for images and by a
margin of 22% for subjects. These outcomes demonstrate that our deep learning-based
approach for the enhancement of ePVSs significantly aids in the quantification of ePVSs.
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These results are consistent with previous research that highlights the challenges of
using algorithm-based methods for image enhancement in medical imaging. However, our
study extends this research by demonstrating how deep learning-based image enhancement
techniques can significantly aid in quantification. Specifically, our focus on ePVSs in
the basal ganglia, a region closely associated with vascular dementia, aims to improve
both image clarity and quantification accuracy. Improved ePVS assessment can aid in
diagnosing and monitoring neurological disorders where ePVS is a relevant biomarker,
such as dementia, stroke, and Parkinson’s disease. This enhanced diagnostic capability
could lead to earlier detection and more targeted treatment strategies.

Several limitations should be acknowledged in our study. Firstly, our deep learning
models were trained and tested on a relatively small dataset from a single institution,
consisting of data from only 76 participants. This small sample size may limit the statistical
power and the robustness of the model, potentially leading to overfitting and reduced
generalizability. Validation across diverse acquisition parameters from different institutions
is required to ensure the robustness and applicability of our findings in broader clinical
settings. This limitation highlights the need for multi-center studies to ensure the general-
izability of our findings. Secondly, our models were developed solely using T2-weighted
MRI, and future research could explore the inclusion of various MRI modalities such as
T1-weighted MRI and FLAIR to potentially enhance the accuracy of ePVS quantification.
Lastly, our ePVS quantification model was focused on the basal ganglia region, and further
investigations could expand our methodology to cover the entire brain. Future research
should address the limitations and explore the broader applicability of this methodology
to different MRI modalities and brain regions. Additionally, incorporating advanced tech-
niques such as attention mechanisms into the U-Net architecture could further improve
the model’s performance. Attention mechanisms have been shown to enhance the abil-
ity of neural networks to focus on relevant features, which could lead to more accurate
and efficient enhancement and quantification of ePVSs. Evaluating the impact of these
mechanisms on our model would be a valuable extension of this study.

5. Conclusions

Our cascaded deep CNN model demonstrated superior performance, achieving 88%
accuracy at the image level and an impressive 94% accuracy at the subject level com-
pared to CNN models using Tophat-, Clahe-, and Laplacian-based enhanced algorithms.
These results highlight the effectiveness of our deep learning-based approach for ePVS
enhancement and quantification in the basal ganglia region on T2-weighted MRI.

Our key findings and their significance include enhanced image quality, where the
deep CNN-based enhancement method significantly improved the contrast-to-noise ratio
(CNR) of ePVS images, surpassing traditional algorithm-based methods. This selective
enhancement leads to clearer and more accurate visualization of ePVSs. Additionally,
our quantification network achieved higher accuracy levels, demonstrating that enhanced
images from the deep learning model can be effectively used for reliable ePVS quantification.
The use of a fourfold cross-validation approach in our study indicates the robustness and
consistency of our model’s performance.

The potential clinical impact of our cascaded deep CNN model is significant for
diagnosing neurodegenerative disorders related to the basal ganglia, including small
vessel pathology, glymphatic dysfunction, and Alzheimer’s disease. Improved ePVS
assessment can aid in early diagnosis, monitoring disease progression, and developing
targeted treatment strategies, ultimately enhancing patient outcomes.

In conclusion, our study demonstrates that the proposed deep CNN-based approach
significantly advances the field of ePVS assessment and holds promise for impactful clinical
applications. Immediate next steps include multi-center validation and incorporating
additional MRI modalities to further enhance the model’s performance and reliability.
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