
Citation: Moscatelli, S.; Pozza, A.;

Leo, I.; Ielapi, J.; Scatteia, A.; Piana, S.;

Cavaliere, A.; Reffo, E.; Di Salvo, G.

Importance of Cardiovascular

Magnetic Resonance Applied to

Congenital Heart Diseases in Pediatric

Age: A Narrative Review. Children

2024, 11, 878. https://doi.org/

10.3390/children11070878

Academic Editor: Tae Jin Yun

Received: 11 June 2024

Revised: 11 July 2024

Accepted: 18 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

children

Review

Importance of Cardiovascular Magnetic Resonance Applied to
Congenital Heart Diseases in Pediatric Age: A Narrative Review
Sara Moscatelli 1,2, Alice Pozza 3 , Isabella Leo 4 , Jessica Ielapi 4 , Alessandra Scatteia 5,6, Sofia Piana 3,
Annachiara Cavaliere 7, Elena Reffo 3 and Giovanni Di Salvo 3,*

1 Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London WC1N 3JH, UK
2 Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
3 Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of

Padua, 35128 Padua, Italy; sofia.piana@studenti.unipd.it (S.P.); elena.reffo@aopd.veneto.it (E.R.)
4 Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro,

88100 Catanzaro, Italy; i.leo@unicz.it (I.L.); jessica.ielapi@studenti.unicz.it (J.I.)
5 Advanced Cardiovascular Imaging Unit, Clinica Villa dei Fiori, 80011 Acerra, Italy;

alessandra.scatteia@villadeifioriacerra.com
6 Department of Medical, Motor and Wellness Sciences, University of Naples ‘Parthenope’, 80134 Naples, Italy
7 Pediatric Radiology, Neuroradiology Unit, University Hospital of Padua, 35128 Padua, Italy;

annachiara.cavaliere@aopd.veneto.it
* Correspondence: giovanni.disalvo@unipd.it

Abstract: Congenital heart diseases (CHDs) represent a heterogeneous group of congenital defects,
with high prevalence worldwide. Non-invasive imaging is essential to guide medical and surgical
planning, to follow the patient over time in the evolution of the disease, and to reveal potential
complications of the chosen treatment. The application of cardiac magnetic resonance imaging
(CMRI) in this population allows for obtaining detailed information on the defects without the
necessity of ionizing radiations. This review emphasizes the central role of CMR in the overall
assessment of CHDs, considering also the limitations and challenges of this imaging technique.
CMR, with the application of two-dimensional (2D) and tri-dimensional (3D) steady-state free
precession (SSFP), permits the obtaining of very detailed and accurate images about the cardiac
anatomy, global function, and volumes’ chambers, giving essential information in the intervention
planning and optimal awareness of the postoperative anatomy. Nevertheless, CMR supplies tissue
characterization, identifying the presence of fat, fibrosis, or oedema in the myocardial tissue. Using
a contrast agent for angiography sequences or 2D/four-dimensional (4D) flows offers information
about the vascular, valvular blood flow, and, in general, the cardiovascular system hemodynamics.
Furthermore, 3D SSFP CMR acquisitions allow the identification of coronary artery abnormalities as
an alternative to invasive angiography and cardiovascular computed tomography (CCT). However,
CMR requires expertise in CHDs, and it can be contraindicated in patients with non-conditional
devices. Furthermore, its relatively longer acquisition time and the necessity of breath-holding may
limit its use, particularly in children under eight years old, sometimes requiring anesthesia. The
purpose of this review is to elucidate the application of CMR during the pediatric age.

Keywords: congenital heart disease (CHD); magnetic resonance (CMR); cardiac magnetic technique

1. Introduction

Congenital heart diseases (CHDs) represent the most prevalent group of congenital
defects worldwide, exhibiting a prevalence of approximately 0.9% of liveborn children [1,2].
CHDs consist of abnormalities in the development of the heart and great vessels. They
are divided in two main categories: cyanotic CHD (CCHD); and acyanotic CHDs. CCHD
represents a cardiac emergency in the neonatal period because it is characterized by a
right-to-left shunt, which allows deoxygenated blood to mix with the oxygenated blood
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of the vascular circuit. The acyanotic CHDs, on the other hand, can manifest as either
obstruction or shunt lesions. Obstructive lesions may occur in the ventricular inflow tracts,
outflow tracts, and in the great vessels, leading to proximal chamber hypertrophy and
distal dilatation to the obstruction. Shunt lesions create abnormal communications between
the left and right heart chambers, and include conditions such as atrial septal defect (ASD),
ventricular septal defect (VSD), patent ductus arteriosus (PDA), and atrio-ventricular canal
defects [2].

The development of prenatal screening, pediatric diagnostic techniques, and therapeu-
tical innovations have contributed to increased survival among this heterogeneous group
of patients, most of whom arrive in adulthood [3–5]. Advanced non-invasive imaging,
providing anatomical and functional information, guides medical and surgical planning,
and permits following the evolution of the disease over time, also revealing potential
issues related to the chosen treatment [6,7]. Echocardiography is the most commonly used
diagnostic technique for evaluating patients with CHD, with both pediatric and adult
populations. However, it has significant limitations, particularly in patients with poor
acoustic windows, and its imaging quality and interpretation are highly dependent on
the skill and experience of the operator. Nowadays, cardiac magnetic resonance (CMR)
is largely used, and overcomes echocardiographic limitation (Table 1), offering detailed
information about the cardiac anatomy, function, flow, and tissue properties characteristics,
as well as the evaluation of myocardial viability and perfusion without ionizing radiations.
Nonetheless, CMR is currently widely available, although it requires high expertise in the
CHD context, necessitating that the examination of these patients be performed in highly
specialized and dedicated centers [8–13].

Table 1. Advantages and disadvantages of echocardiography and cardiovascular magnetic resonance
(CMR). * Unless performed in expert centers where non-MRI conditional devices are performed
in adults.

Echocardiography Cardiovascular Magnetic Resonance

Advantages Advantages

• Low cost
• Widely available
• Radiation free

• Radiation free
• Gold standard for volumetric assessment
• Provides complimentary tissue characterization

Disadvantages Disadvantages

• Specialized training/specialized center in CHD
echocardiography

• Limited image quality in poor acoustic windows
• High operator dependence

• Limited availability: specialized/research center for CHD CMR
• Contraindicated in patients with non-conditional devices *
• Longer acquisition time and cooperation (breath-holding) required
• Potential reaction to contrast agents

A general standard CMR protocol for evaluating CHDs in pediatric patients includes:
real-time localization imaging in three planes without ECG gating, useful for anatomy
and extracardiac structures; two-dimensional (2D) balanced steady-state free precession
(bSSFP) cine sequence, to report the anatomy, size and function of the ventricles; the 2D
phase contrast (PC) flow sequences, to permit the evaluation of vascular and valvular
flow, although recently the four-dimensional flow CMR resonance (4DFlow CMR) imaging
technique has allowed a comprehensive and detailed analysis of cardiovascular flow in
a single free-breathing acquisition, providing both quantitative and qualitative data on
flow patterns in the heart and great vessels; whole heart isotropic three-dimensional
(3D) SSFP imaging, for vascular evaluation without contrast material administration and
visualization of proximal and mid-coronary arteries; and MR angiography (MRA), for
vascular evaluation [11–19]. Moreover, CMR permits tissue characterization by acquiring
T1 and T2 mapping sequences, which uses the proton density of the tissue to identify areas
of fibrosis, oedema, and fat [6,20,21]. In addition, late gadolinium enhancement (LGE)
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sequences identify myocardial inflammation and fibrosis, due to the accumulation and
slower wash-out of gadolinium in the myocardial areas affected by these conditions. Early
gadolinium enhancements (EGE) can also be acquired and provide information about
thromboembolic formations [22,23].

The application of CMR in CHDs demands a high level of expertise, given the intrica-
cies of CHDs’ anatomy and treatment. Moreover, CMR’s relatively longer acquisition time
and requirement for breath-holding during scanning may pose challenges, particularly in
pediatric patients under eight years old, sometimes necessitating general anesthesia to en-
sure successful imaging acquisition. Finally, this imaging technique can be contraindicated
in patients with non-CMR conditional devices, even if in some centers these patients have
been started to be scanned regardless [11,21].

The aim of this review is to clarify the role of CMR in the assessment of CHDs, high-
lighting its current practice and future perspective and revealing the possible challenges
and limitations of this imaging technique.

2. Cardiovascular Magnetic Resonance Applications in the Congenital Heart Diseases
Affecting the Pediatric Population
2.1. Cardiovascular Magnetic Resonance in Assessing Atrial Septal Defects, Ventricular Septal
Defects, Patent Ductus Arteriosus, and Atrioventricular Septal Defects

Atrial septal defects (ASDs), ventricular septal defects (VSDs), and patent ductus
arteriosus (PDA) are among the most common CHDs in adults. These anomalies can
vary widely in presentation and impact cardiac function, making accurate and detailed
imaging crucial for diagnosis and management. CMR offers distinct advantages over other
imaging modalities, clarifying the diagnosis, establishing the defect’s location and size,
demonstrating the need and the timing for intervention, and monitoring post-surgical
corrections [24].

Different CMR techniques are useful for the characterization of patients with suspected
cardiac shunts. First, thanks to the 2D bSFPP images, CMR can quantify left (L) and right
ventricular (RV) volumes and functions, which can be challenging with 2D transthoracic
echocardiography, especially for the RV, due to its complex anatomy [25]. In addition, CMR
via 2D PC flow or 4D Flow images can assess forward stroke volume measurements at the
main pulmonary artery (MPA) and proximal ascending aorta (Ao), estimating respectively
the pulmonary flow (Qp) and the systemic flow (Qs) with the correspondent pulmonary-to-
systemic circulation flow ratio (Qp/Qs). Information on cardiac volumes and functions and
Qp/Qs ratio are fundamental for understating the hemodynamic significance of shunts
guiding subsequent interventions [26].

2.1.1. Atrial Septal Defects

ASDs represent communication between the atria. Transthoracic (TTE) and trans-
esophageal echocardiography (TEE) remain the initial choice for evaluating ASDs to under-
stand defect anatomy and guide percutaneous closure. However, it may not be sufficient in
cases with complex anatomical abnormalities, especially for sinus venosus ASDs with an
associated anomalous pulmonary venous return that needs an anatomical description of
the pulmonary veins for repair procedure planning. CMR plays a vital role in defining the
size, location, and hemodynamic impact of ASDs. Indeed, it can accurately measure the
dimensions of the defects and assess the degree of right-sided volume overload, thanks to
2D SSFP sequences, and derive the Qp/Qs from the flow sequences as well as evaluating
the presence and extent of associated complications, such as pulmonary hypertension.
CMR should be strongly considered when: (1) the calculation of intracardiac shunting has
been equivocal by echocardiography or interventional; (2) when RV dilation has been sus-
pected on TTE without obvious detection of the anatomic defect; and (3) when associated
anomalous pulmonary venous return is suspected [27,28]. In conclusion, CMR helps in
setting an indication for ASDs closure when RV dilatation is detected or confirmed together
with consensual increase in the Qp/Qs and the absence of pulmonary hypertension [6].
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2.1.2. Ventricular Septal Defects

VSDs are the most common CHDs at birth; they can be localized wherever in the
septum (membranous, muscular, and outlet defects), but the most common are in the per-
imembranous area [29] (Figure 1C,D). VSDs tend to close spontaneously during childhood
in 40% of the cases. They are defined as restrictive when they are small enough to create a
pressure gradient between the ventricles, so that the pulmonary ventricle and pulmonary
vasculature are protected from the systemic pressure. As for ASDs, echocardiography
is the first-line imaging technique; however, while multiple 2D views of the septum can
help evaluate the position of a defect, it can be challenging to visualize the real entirety of
the VSD and accurately measure its dimensions [30]. CMR can overcome this limitation,
providing precise measurements of defect size and location, thanks to 2D bSSFP and 3D re-
constructions sequences, and it can give information about the hemodynamic consequences
(LV dilatation, increased Qp/Qs with LV stroke volume greater than the RV stroke volume).
Thanks to this information, CMR may be useful for determining the need for interventional
closure or surgical repair, indicated by LV dilatation and increased Qp/Qs in the absence
of pulmonary hypertension [24,26]. CMR can also visualize healed VSDs, which tend to
be associated with the aneurysmal formation of the basal septum and sometimes involve
adjacent septal leaflets of the tricuspid valve (Figure 1E) [6,20].
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Figure 1. (A) 4-chamber cine SSFP image showing sinus venosus ASD (red arrow); (B) Angio-
graphic reconstruction showing the right upper pulmonary artery draining into the superior vena
cava (blue and yellow cross); (C) Basal short axis cine SSFP image; (D) sagittal RV three-chamber
view showing perimembranous VSD (yellow arrow); (E) 4-chamber cine SSFP image showing
aneurysmal formation of the basal septum involving adjacent septal leaflet of the tricuspid valve
(white circle); (F) Sagittal cine SSFP image; and (G) MRA showing PDA: (arrow-heads). SSFP:
steady-state free precession, ASD: atrial septal defect, RV: right ventricle, VSD: ventricular septal
defect, PDA: patent ductus arteriosus.

2.1.3. Patent Ductus Arteriosus

Patent ductus arteriosus (PDA) is a fetal vascular structure connecting the proximal
descending aorta to the roof of the main pulmonary artery [31]. Although essential in fetal
life for the right ventricular ejection into the aorta, PDA typically closes spontaneously after
birth. It is frequently observed in pre-term newborns and, depending on its persistence,
size, and degree of left-to-right shunting, can cause significant pulmonary overload, leading
to increased pulmonary vascular resistance and pulmonary hypertension. Indications for
closure include symptomatic left-chamber dilation or dysfunction, with Eisenmenger’s
syndrome posing a risk of increased morbidity and mortality.
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Transcatheter closure is the established treatment of choice. Cardiac magnetic reso-
nance imaging (CMR) provides a detailed visualization of PDA using techniques such as
2D balanced steady-state free precession (bSSFP) cine imaging, 3D SSFP reconstruction, or
angiography sequences (Figure 1F,G). CMR also allows assessment of its hemodynamic
consequences, including indirect methods for quantifying the shunt caused by PDA. These
methods include calculating the difference between the left ventricular stroke volume and
total systemic flow (superior vena cava + descending aorta), which should equal the ductal
shunt volume, and using the Qp/Qs ratio, which typically shows less than 1 due to the
left-to-right shunting effect [26,32].

2.1.4. Atrio-Ventricular Septal Defects (AVSDs)

AVSDs are characterized by the absence of the muscular atrio-ventricular septum,
inlet/outlet disproportion, abnormal lateral rotation of the postero-medial papillary muscle,
and abnormal configuration of the atrioventricular valves. These defects can be complete
or partial, often accompanied by varying degrees of atrio-ventricular valve abnormalities.
Clinical presentation ranges from mild to severe depending on the size of the defect and
associated cardiac anomalies.

Diagnosis typically relies on echocardiography, which assesses the anatomy and
hemodynamics of the defect. Cardiac magnetic resonance imaging (CMR) complements
echocardiography by providing detailed anatomical and functional information in diag-
nosing and characterizing atrioventricular septal defects (AVSDs). CMR enables precise
assessment of the size, location, and extent of AVSDs, as well as the morphology and
function of the atrioventricular valves [6,33]. It is also valuable in evaluating associated
cardiac abnormalities such as anomalous pulmonary venous drainage and other complex
structural anomalies commonly associated with AVSDs.

Furthermore, CMR facilitates accurate measurements of ventricular volumes and
function, critical for surgical planning and assessing postoperative outcomes. Its most
crucial role lies in post-surgical follow-up, as it is less commonly used before surgery.
CMR plays a vital role in monitoring for complications such as residual shunts, atrio-
ventricular valve dysfunction, and enlargement and dysfunction of the left and right
ventricles, including left ventricular outflow tract obstruction [6,34].

2.2. Cardiovascular Magnetic Resonance in Assessing Conotruncal Congenital Heart Diseases

Conotruncal anomalies (CtA) are a group of CHDs that result from an altered pathway
during embryogenesis, with abnormal formation and septation of the outflow tracts of the
heart and the great vessels [35]. CtAs account for up to 25–30% of all non-syndromic CHDs
and include tetralogy of Fallot (TOF), transposition of the great arteries (TGA), truncus
arteriosus (TA), and double outlet right ventricle (DORV) [36]. When not appropriately
diagnosed and managed, CtA might lead to significant morbidity and mortality [37].
Therefore, the need to find a proper diagnostic tool to adequately assess cardiac morphology,
and at the same time to provide insight into ventricular performance [38].

2.2.1. Dextro-Transposition of the Great Arteries (D-TGA)

Complete transposition of the great arteries (TGA), also referred to as dextro-transposition
of the great arteries (D-TGA), is a developmental cardiac defect [39,40] characterized by
atrio-ventricular concordance and ventriculo-arterial discordance [41,42]. D-TGA is defined
“simple” in the case of no associated congenital anomalies, whereas it is categorized as
“complex” in their presence [6]. CMR imaging is rarely performed in the preoperative
setting [12,40,43]. Over the years, the surgical treatment for D-TGA has evolved from the
atrial switch procedure (AtSO) to the arterial switch operation (ASO). Complex D-TGA is
often repaired using the Rastelli procedure or its variants [6]. In post-surgical management,
CMR is addressed to depict the most common complications and potential residual findings
after these procedures and it is usually repeated every 2–4 years [12,38].
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Atrial Switch Operation and the Role of CMR Imaging

Complications after AtSO include baffle stenosis or leaks, systemic tricuspid valve (TV)
regurgitation, and systemic right ventricle (sRV) dysfunction, with potential pulmonary
hypertension often identified during routine imaging [44–46]. CMR is the gold standard for
assessing sRV issues, offering detailed insights into heart morphology, function, and ejection
fraction [12,40,47–51] thanks to the cine sequences, and it is especially recommended for
evaluating systemic TV and baffles (Figures 2 and 3) that are well studied from the 2D
bSSFP, 3D whole heart, and angiographies [12,40]. Tricuspid regurgitation (TR) often
stems from annulus dilatation, valve prolapse, or medial cuspid tethering, with occasional
surgical damage to the valve leaflets [52–54]. CMR is also essential for detecting and
assessing the severity of leaks and stenosis in the interatrial baffle [12,40,45] obtained
through flow sequences. Myocardial performance, particularly fibrosis detection, is crucial,
as it correlates with adverse outcomes—up to 60% of sRV patients exhibit LGE [45,55,56].
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Arterial Switch Operation and the Role of CMR Imaging

Patients diagnosed with D-TGA post-1980s typically undergo the ASO, with late com-
plications involving the great vessels, coronary arteries, and potential ventricular dilatation
and dysfunction [40]. CMR imaging is crucial during long-term follow-up, particularly
for assessing biventricular volumes, function, and morphology, as well as coronary artery
and pulmonary artery stenosis (Figure 4) [6,12,57]. Despite normal ventricular volumes,
decreased global longitudinal strain and LV torsion are noted [43,58]. CMR also evaluates
myocardial perfusion, particularly in symptomatic patients, using vasodilator stress per-
fusion as a non-invasive test for ischemia and coronary obstruction [12]. It is essential for
detecting myocardial scarring with LGE and should be repeated based on initial findings
and symptoms [11,12,38,40,59,60].
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Rastelli Procedure and the Role of CMR Imaging

The Rastelli procedure and its variants are favored for D-TGA cases with VSD, pul-
monary stenosis/atresia [61]. Common complications include RV-PA conduit deterioration
(Figure 5), necessitating revisions or replacements, coronary artery and pulmonary branch
stenosis, and deteriorating subpulmonary RV function due to prolonged pressure. Risks
also involve subaortic obstruction and aortic valve dysfunction post-procedure [40,45].
CMR scans are essential for evaluating ventricular function, conduit and aortic baffle con-
ditions, and coronary artery patency, using 2d bSSFP, angiography, and PC flow MRI to
detect and quantify stenosis and regurgitation [40].

2.2.2. Congenitally Corrected Transposition of Great Arteries (cc-TGA)

cc-TGA is a rare congenital cardiac malformation known as “double discordance”,
characterized by atrio-ventricular and ventriculo-arterial discordance, representing less
than 1% of all CHDs [62–67]. CMR is the preferred method for assessing the sRV [12,66]
and TR for planning valve interventions, as well as for identifying myocardial fibrosis,
which impacts sRV function over time [12,45,55]. The role of CMR extends to presurgical
planning and monitoring post-surgical outcomes, helping to visualize ventricular function,
anatomical repairs, and potential complications [40]. In 2019, Kawakubo et al. introduced



Children 2024, 11, 878 8 of 20

the use of fractal analysis with CMR feature tracking to assess RV remodeling and myocar-
dial strain, which could serve as indicators of systemic afterload response in adults with
cc-TGA [66].
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2.2.3. Tetralogy of Fallot

TOF is a key type of CHDs, comprising 5 to 7% of all CHDs and it requires ongoing
comprehensive management across a patient’s life [67]. CMR is essential for the longi-
tudinal monitoring of TOF, offering detailed insights into cardiac morphology, function,
and hemodynamics, and is less invasive compared to catheterization [68]. It effectively
identifies post-surgical complications like pulmonary stenosis and regurgitation, right
ventricular dilatation, and residual ventricular septal defects (Figure 6) [65]. CMR is par-
ticularly crucial for accurately measuring pulmonary regurgitation, helping to decide the
timing for pulmonary valve replacement and evaluating myocardial viability for surgical
planning [69,70]. Recent advancements, like 4D flow imaging, enhance CMR’s utility by
enabling dynamic blood flow visualization and quantification, which is vital in assessing
repaired TOF patients, as shown in systematic reviews and studies focusing on valve
function and myocardial fibrosis [71–73].
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2.2.4. Double Outlet Right Ventricle

Double outlet right ventricle (DORV) is characterized by both great arteries primarily
arising from the right ventricle, representing 1–3% of all CHDs with an incidence of 3–9 per
100,000 live births [74–76]. Its classification hinges on the VSD location, arterial positioning,
and potential outflow tract obstructions [77–79]. Transthoracic echocardiography initially
assesses these anatomies, while preoperative CMR is invaluable for detailed visualizations
of VSD and the spatial relationships necessary for surgical planning [77,79,80]. Post-surgery,
CMR is critical for evaluating late-stage complications in older children and adults, helping
assess structural and functional integrity across multiple cardiac components [80,81]. 4D
flow imaging has proven effective in estimating right ventricular outflow tract (RVOT)
diameters and characterizing cardiac flow dynamics, while computational fluid dynamics
provides a deep analysis of cardiovascular dynamics, crucial for optimizing treatment and
predicting patient outcomes [79,82,83].

2.3. Coarctation of the Aorta

Coarctation of the aorta (CoA) can be difficult to diagnose in utero, even with the
advancements in fetal echocardiography, which can sometimes result in excessive false
positives. Fetal CMR is emerging as a potent tool to accurately predict severe neonatal CoA
issues before birth [84–86].

CMR is highly recommended for comprehensive aortic assessment in adolescents and
adults, especially for evaluating the extent and severity of aortic narrowing, post-repair
complications, and other critical aortic features. Current guidelines suggest regular CMR
examinations post-intervention, with intervals of three to five years depending on the
underlying condition. For structural and functional analysis, CMR uses 2D bSSFP cine
sequences to assess cardiac volumes, mass, and the hypertrophic effects of long-standing
hypertension in coarctation cases [87]. CMR angiography helps delineate the cardiovascular
anatomy and identify any abnormalities such as constrictions or collateral circulation [88].
The 3D whole heart sequence, which does not require contrast, also contributes to this, and
flow analysis can quantify the collaterals [89,90].

Predictive models based on CMR findings suggest that the minimum aortic cross-
sectional area, heart rate-corrected deceleration time, and percentage of flow increase are
critical predictors of outcomes in CoA patients [91,92].

2.4. Cardiovascular Magnetic Resonance Application in the “Univentricular Heart”

The term “univentricular heart” refers to hearts unable to undergo biventricular repair,
typically due to having one functional ventricle or two ventricles unable to support separate
pulmonary and systemic circulations consecutively. Examples include conditions such as
pulmonary or aortic atresia, severe stenosis with a hypoplastic ventricle, hypoplastic left
heart syndrome (HLHS), as well as rare conditions like large intramural cardiac tumors
and Ebstein anomaly with extensive atrialization of the right ventricular cavity [93].

Surgical intervention for these cases involves univentricular repair through a Total
Cavopulmonary Connection (TCPC) operation, which bypasses the ventricular mass in
three stages [93,94]. Cardiac magnetic resonance imaging (CMR) plays a crucial role
throughout these stages. Following the Norwood procedure, the decision to proceed to a
bidirectional Glenn operation has traditionally relied on echocardiography and diagnostic
cardiac catheterization. However, a retrospective study by Muthurangu et al. involving
37 HLHS patients demonstrated that CMR can effectively define ventricular and valvular
function, as well as vascular anatomy, aiding in the planning of subsequent surgical
interventions [95,96].

Furthermore, Brown et al. conducted a prospective, randomized, single-center trial
comparing CMR to catheterization in infants’ post-Norwood procedure, showing CMR
to be a safe and cost-effective alternative in appropriately selected patients. However,
further research is necessary to determine the generalizability of these findings to other
centers [97].
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Further on, in the lead-up to TCPC completion, CMR aids in patient selection and
preoperative assessment of critical information before the final surgery. Currently, there is
no consensus on a standardized diagnostic protocol pre-TCPC—some centers rely on car-
diac catheterization, despite the associated risks, while others favor CMR or a combination
of both. Pujia Banka et al. in their cohort found that catheterization added little clinical
value for about half of the patients, with echocardiography often providing incomplete
information, suggesting a need for complementary imaging modalities like CMR [98].
Harris’s group highlighted CMR’s non-invasive assessment capabilities, particularly in
predicting outcomes based on branch pulmonary area size and flow before the TCPC oper-
ation, potentially indicating patients at risk of prolonged hospitalization [99]. In summary,
existing literature suggests that cardiac catheterization may be avoidable in select patients
with single ventricle physiology before TCPC [100,101].

Lastly, CMR plays a crucial role in post-TCPC completion (Figure 7) by providing com-
prehensive information on anatomy, function, and hemodynamics, essential for identifying
and understanding various complications. Routinely used in follow-up, CMR is performed
every three to five years, with additional scans conducted when clinically indicated or
during emergencies [102,103]. 2D bSSFP cine images facilitate the assessment of wall
motion abnormalities, systolic impairment, and volume calculations [104]. Atrioventricular
valve regurgitation, a common TCPC complication, is detectable and quantifiable through
flow sequences. Moreover, CMR aids in identifying ventricular obstructions and stenosis
in pulmonary arteries, systemic veins, and pulmonary veins. Flow sequences present flow
distribution patterns of caval flows and pulmonary arteries, providing valuable information
supporting potential transcatheter or surgical reinterventions [104–106]. Thromboembolic
complications are assessed using EGE sequences, particularly important in TCPC patients
with atrial arrhythmias. Desaturation can stem from conduit fenestration, pulmonary-
to-systemic venous collaterals, or arterial venous malformations (Figure 8). CMR allows
the precise calculation of collateral flow contribution to systemic cardiac output, guiding
interventions if necessary. Additionally, CMR can investigate TCPC-associated liver disease
and lymphatic dysfunction, though specialized protocols may be required. As awareness of
the long-term effects grows, further studies will be needed to comprehensively understand
TCPC’s impact on other systems [104–106].
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2.5. Evaluation of Coronary Anatomy and Stress Perfusion Imaging

Coronary artery abnormalities (CAA) are uncommon congenital defects, with an esti-
mated prevalence of 1%, involving either anomalous locations of the coronary ostium or
abnormalities in the coronary course [107]. These can occur alone or alongside complex
CHDs [108,109]. Clinical presentations in children vary significantly, ranging from no
symptoms to severe complications like chest pain, ventricular dysfunction, and sudden
cardiac death. Post-surgical scenarios, such as after ASO operations for TGA, may ne-
cessitate CA evaluations due to complications, likewise coronary allograft vasculopathy
(CAV), a notable risk following heart transplantation that negatively impacts long-term
outcomes. While invasive coronary angiography remains the gold standard, CMR with
vasodilator-infused perfusion has proven effective for detecting anomalies and inducible
myocardial ischemia [110,111].

CA aneurysms (CAA), a complication in 15–25% of untreated Kawasaki Disease
cases, can progress to rupture, thrombosis, or stenosis, potentially leading to myocardial
infarction [112,113]. CT scans provide detailed visualization of CA’s origin and course
with excellent spatial resolution, although radiation concerns persist, especially in chil-
dren [114]. CMR offers a valuable alternative, enabling comprehensive assessments of
cardiac structures and functions without radiation. It can identify myocardial edema with
T2-weighted images (STIR and T2 mapping) and detect fibrosis with T1-weighted images
(LGE), differentiating between ischemic and non-ischemic damage [115].

Despite its advantages, CMR’s longer acquisition times and difficulty distinguishing
artifacts from true pathological changes limit its clinical use [116,117]. However, accord-
ing to European guidelines (Class I, Level C), and a recent American Heart Association
statement, CMR is recommended over CT for non-invasive assessment of CAA in young
patients, avoiding ionizing radiation [118,119]. Stress sequences using physical or pharma-
cological agents enhance CMR’s diagnostic capabilities, enabling detailed visualization of
myocardial perfusion and ischemia under stress conditions [14,120–122]. Although chal-
lenges remain in visualizing distal coronary segments and acquiring cooperative patient
behavior without sedation, CMR’s comprehensive capabilities make it a preferred modality
in pediatric cardiology.
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3. Challenges and Limitations

There are some considerations that need to be done regarding CMR imaging in the
pediatric population. The smaller body size of these patients may require voxel size
optimization to maintain an adequate spatial resolution. Technical adjustments to increase
signal-to-noise ratio may require longer acquisition time, often not tolerated in pediatric
population, particularly under anesthesia. Similarly, the higher heart rates may hamper
temporal resolution and require specific adjustments in several sequences at a cost of an
increase in scan time. Young children may also require anesthesia or sedation; this is
generally safe when performed by experienced staff, but nevertheless it requires additional
coordination between different departments and may be unavailable in smaller centers. In
addition, risks of adverse events still exist, particularly in patients with cardiomyopathies,
severe CHDs, and pulmonary hypertension. Acquiring CMR cine images usually requires
appropriate breath hold, which can be addressed by using free-breathing techniques [123].
Concern arises about repeated use of GBCA, often required in follow-up scanning, due to
the evidence of gadolinium deposition within the brain [124]. More recently, ferumoxytol,
a superparamahnetic iron oxide particle, has emerged as an alternative to GBCA with
encouraging safety data also in the pediatric population [125]. Finally, limitations to the
use of CMR may stem from its relatively high cost compared to other cardiac imaging
techniques, as well as from the limited availability of the technology and of the specialized
training required for its application in CHD and in the prenatal diagnosis [126].

4. Conclusions and Future Directions

CMR is an advanced cardiovascular imaging tool crucial for diagnosing and managing
CHDs. It enables precise assessments of cardiac anatomy, function, hemodynamics, and
tissue characteristics, and is particularly effective for complex cases due to its 3D capabil-
ities [11,13,18,19,110]. The leading role of CMR in the challenging management of CHD
is confirmed by both the American College of Cardiology/American Heart Association
(ACC/AHA) and the European Society of Cardiology (ESC), which emphasize the use of
CMR in the initial evaluation of patients with particularly complex anatomical structures
and for the serial evaluation of patients at risk of RV enlargement and dysfunction [127,128]

These statements are also supported by two expert consensus documents from radiol-
ogists and cardiologists that outline the appropriateness criteria for the use of CMR use in
various clinical contexts, including CHD [129,130].

Looking ahead, CMR is poised to integrate further with technologies like artificial
intelligence (AI), which enhances the automation of image analysis and the development
of predictive models to optimize personalized treatments and outcomes, despite some
existing limitations. The application of deep-learning in CMR imaging acquisition appears
very promising, as it enables automated localization and detection of the heart, thereby
reducing the long acquisition times. Furthermore, AI helps in shortening the time needed
for exam evaluation by facilitating image reconstruction with advanced reconstruction
function, and improving the post-processing phase, particularly in the CMR segmentation
and the automatic characterization of myocardial tissue [131–142].

Additionally, the growing application of CMR in prenatal cardiology suggests its
future integration into routine prenatal screening for high-risk pregnancies, potentially
revolutionizing early CHDs detection and management [117–119]. With advancements
in 3D modeling and virtual reality, CMR will continue to enhance presurgical planning
and educational tools in cardiology, making it an indispensable resource in the evolving
landscape of congenital cardiac care [81,82,138–142].
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Abbreviations

2D Two-Dimensional
3D Tri-Dimensional
4DFlow CMR Four-Dimensional Flow CMR Resonance
AI Artificial Intelligence
ASDs Atrial Septal Defects
ASO Arterial Switch Operation
AtSO Atrial Switch Operation
AVSDs Atrioventricular Septal Defects
BSA Body Surface Area
bSSFP balances Steady-State Free Precession
BT Blalock-Taussig
CA Coronary Arteries
CAA Coronary Artery Abnormalities
CAV Coronary Allograft Vasculopathy
cc-TGA Congenitally Corrected Transposition of Great Arteries
CoA Coarctation of the aorta
CtA Conotruncal Anomalies
CFD Computational Fluid Dynamics
CCHD cyanotic CHD
CHD Congenital Heart Diseases
CS Circumferential Strain
CMR Cardiovascular Magnetic Resonance
CCT Cardiovascular Computed Tomography
D-TGA Dextro-Transposition of Great Arteries
DORV Double outlet right ventricle
ECG Electrocardiogram
EF Ejection Fraction
EGE Early Gadolinium Enhancement
FT-GLS Feature Tracking-Global Longitudinal Strain
GBCA Gadolinium-Based Contrast Agents
HLHS Hypoplastic Left Heart Syndrome
HFpEF Heart Failure with preserved Ejection Fraction
IAA Interrupted Aortic Arch
IVC Inferior Vena Cava
KD Kawasaki Disease
LGE Late Gadolinium Enhancement
LV Left Ventricle
LV-EDV left ventricular end diastolic volume
NYHA New York Heart Association
MRA Magnetic Resonance Angiogram
MRI Magnetic Resonance Imaging
PA Pulmonary Artery
PDA Patent Ductus Arteriosus
PC Phase Contrast
Qp/Qs pulmonary-to-systemic circulation flow ratio
r-TOF repaired Tetralogy of Fallot
RV Right Ventricle
RVOT Right Ventricle Outflow Tract
sRV Systemic Right Ventricle
SVASD Sinus Venosus Atrial Septal Defect
SVC Superior Vena Cava
SV Stroke Volume
TA Truncus Arteriosus
TCPC Total Cavopulmonary Connection
TEE Transesophageal Echocardiography
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TGA Transposition of Great Arteries
TOF Tetralogy of Fallot
TTE Transthoracic Echocardiography
VSDs Ventricular Septal Defects
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