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Abstract: This review article offers a comprehensive overview of the current understanding of using
metagenomic tools in food microbiome research. It covers the scientific foundation and practical
application of genetic analysis techniques for microbial material from food, including bioinformatic
analysis and data interpretation. The method discussed in the article for analyzing microorganisms
in food without traditional culture methods is known as food metagenomics. This approach, along
with other omics technologies such as nutrigenomics, proteomics, metabolomics, and transcriptomics,
collectively forms the field of foodomics. Food metagenomics allows swift and thorough examination
of bacteria and potential metabolic pathways by utilizing foodomic databases. Despite its established
scientific basis and available bioinformatics resources, the research approach of food metagenomics
outlined in the article is not yet widely implemented in industry. The authors believe that the
integration of next-generation sequencing (NGS) with rapidly advancing digital technologies such
as artificial intelligence (AI), the Internet of Things (IoT), and big data will facilitate the widespread
adoption of this research strategy in microbial analysis for the food industry. This adoption is
expected to enhance food safety and product quality in the near future.
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1. Introduction

Consumer awareness has been on the rise in recent decades, leading to shifts in
dietary preferences. This has resulted in an increased demand for more precise food
research, as traditional microbiological culturing methods are limited in fully identifying
microorganisms in food. These methods can only provide partial identification based on
morphological and biochemical characteristics of culturable microorganisms, and they fall
short in capturing unculturable microorganisms. Concerns have been raised regarding the
incomplete microbial biodiversity picture presented by these techniques. Nevertheless, they
continue to be the most commonly employed approaches in the food sector for gauging
microbiological safety by identifying and describing the food’s microbiota.

In the 21st century, culture-independent methods have emerged, allowing the by-
passing of microbiological culturing and its constraints [1]. These procedures, which
are centered on nucleic acid assessment, involve PCR-DGGE (polymerase chain reaction–
denaturing gradient gel electrophoresis), T-RFLP (terminal restriction fragment length
polymorphism), and FISH (fluorescence in situ hybridization) [2]. The landscape of food
research has been transformed by “omics” technologies, which produce extensive data
on the collective attributes of a sample regarding microorganism structure, function, and
growth dynamics. High-throughput screening (HTS) is integral to these technologies,
enabling rapid and extensive measurements. Next-generation sequencing (NGS) typifies
HTS technology.

NGS has notably decreased analysis costs, accelerated sequencing speed, and en-
hanced result quality. It is categorized into second- and third-generation sequencing
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methods. Technological advancements have steered a shift towards sequencing bacterial
DNA as a mainstream approach in food microbiology research. NGS allows parallel mass
sequencing of short sequence reads and individual long fragment sequencing. The emer-
gence of HTS technology has spurred notable scientific development, culminating in the
creation of four primary omics disciplines (genomics, transcriptomics, proteomics, and
metabolomics) and their sub-disciplines (epigenomics, lipidomics, metallomics, etc.). By
merging data from diverse omics areas, a new research discipline named “foodomics” has
arisen, harnessing vast repositories of information [3].

“Foodomics” emerged as a distinct field in 2009, with a primary focus on investigating
food and nutrition through omics technologies. The main goal of foodomics is to enhance
food quality, thereby improving consumer health. The omics technologies employed in
foodomics encompass nutrigenomics, proteomics, metabolomics, transcriptomics, and
genomics [4]. Nutrigenomics specifically delves into how nutrients influence gene expres-
sion and aims to elucidate the interactions between bioactive food components and the
genome at a molecular level, ultimately impacting gene expression. Nutrigenomics and
nutrigenetics are often used interchangeably due to their close relationship [5]. Whereas
nutrigenetics examines the correlations between single nucleotide polymorphisms (SNPs)
and an individual’s response to dietary intake, nutrigenomics utilizes nutrigenetics to
present a holistic perspective of an individual’s metabolism, with the intention of tailoring
diets, preventing diseases, and mitigating life-threatening risks. This comprehensive un-
derstanding is facilitated by high-throughput sequencing techniques enabling a thorough
examination of gene variations across the entire genome [6,7].

Proteomics delves into the study of proteins and their interactions within the cellular
environment, which mirrors the constantly changing state of cells, tissues, and organisms.
This field plays a crucial role in the identification of disease markers, as well as in the
detection and accurate quantification of proteins, thereby enhancing our comprehension
of disease causation. In contrast, metabolomics systematically identifies and measures all
metabolites present in an organism.

Transcriptomics and genomics concentrate on the examination of nucleic acids found
in biological specimens [8]. Transcriptomics specifically investigates gene expression at
the RNA level, furnishing insights into the genetic makeup and functionality of genes
across the entire genome to elucidate the molecular processes involved in specific biological
functions. Genomics, on the other hand, is employed to conduct a thorough examination
of an organism’s genetic material, aiding in the identification of species present in food, the
determination of the abundance of such microorganisms, and the detection of contaminants
such as foodborne pathogens [9]. The amalgamation of these omics technologies in the
field of foodomics facilitates a comprehensive understanding of the composition, safety,
and nutritional characteristics of food, thereby contributing to advancements in both food
science and consumer health.

An analysis was conducted on publications related to food metagenomics from
2018–2023, using VosViewer (Figure 1) [10]. The bibliographic data of articles were re-
trieved from the Web of Science database. The analysis involved filtering results based
on the keywords “food”, “metagenomics”, and “quality”. A co-occurrence network was
established using 357 records from the past 5 years. The frequency of occurrences served
as samples, resulting in 28 terms after excluding closely related ones. The input data for
the network included full records and references cited. The size of each occurrence in
the diagram corresponds to its frequency in publications. The color spectrum reflects the
average normalized number of citations received by documents containing a specific term.
Notably, articles featuring “shotgun metagenomics” and “database” garnered the high-
est number of citations, indicating researchers’ interest in research methodologies within
the realm of “food quality”. Similarly, articles discussing untargeted sequencing details
such as “amplicon sequencing”, “whole genome sequencing”, and “alignment” received
significant attention, contrasting with the lower citation rate for articles mentioning “16S
ribosomal RNA”, a targeted sequencing method. The limited occurrences and citations for



Foods 2024, 13, 2216 3 of 23

terms such as “machine learning” and “extraction” suggest a research gap in the field of
food metagenomics.

Foods 2024, 13, x FOR PEER REVIEW 3 of 22 
 

 

significant attention, contrasting with the lower citation rate for articles mentioning “16S 

ribosomal RNA”, a targeted sequencing method. The limited occurrences and citations for 

terms such as “machine learning” and “extraction” suggest a research gap in the field of 

food metagenomics. 

 

Figure 1. Co-occurrence of selected keywords in articles (2018–2023) using VOSviewer [10]. 

The objective of this review is to outline the individual processes involved in the 

analysis of food metagenomics, emphasizing its key aspects and presenting modern bio-

informatic solutions. 

2. Metagenomics 

Metagenomics, a particular discipline within genomics frequently utilized in the field 

of food research, integrates genomic techniques with the principle of meta-analysis, which 

involves amalgamating and extrapolating findings from diverse studies through statisti-

cal approaches. The central emphasis of metagenomics lies in the sequencing and exami-

nation of the complete microbiota DNA, accompanied by metatranscriptomics that relies 

on cDNA (complementary DNA) sequencing [11]. Metagenomics obviates the need for 

the isolation and cultivation of microorganisms in vitro prior to DNA extraction. The focal 

point lies in the examination of the comprehensive genetic makeup of microorganisms 

existing in various natural specimens, such as food or the surrounding environment. Met-

agenomics encompasses scrutiny of the combined genome of microorganisms inhabiting 

a specified milieu, thus facilitating a comparative assessment of the microbiome through 

the utilization of NGS. The sequencing process can be directed towards a specific gene of 

interest, such as the 16S rRNA in bacteria, 18S in eukaryotes, or intergenic regions/internal 

transcribed spacers in fungi, or it can entail an untargeted approach known as “shotgun” 

sequencing, encompassing the sequencing of all genomes found within the sample, re-

ferred to as whole-metagenome sequencing (WMS) [12–14]. 

Sequencing can be executed through either of two methodologies: shotgun sequenc-

ing or targeted sequencing. Within the framework of shotgun sequencing, the DNA mol-

ecules undergo a random fragmentation process, resulting in small DNA pieces that are 

subsequently sequenced comprehensively. This particular approach is frequently applied 

in research endeavors pertaining to the characterization of microbial populations within 

Figure 1. Co-occurrence of selected keywords in articles (2018–2023) using VOSviewer [10].

The objective of this review is to outline the individual processes involved in the
analysis of food metagenomics, emphasizing its key aspects and presenting modern bioin-
formatic solutions.

2. Metagenomics

Metagenomics, a particular discipline within genomics frequently utilized in the field
of food research, integrates genomic techniques with the principle of meta-analysis, which
involves amalgamating and extrapolating findings from diverse studies through statistical
approaches. The central emphasis of metagenomics lies in the sequencing and examination
of the complete microbiota DNA, accompanied by metatranscriptomics that relies on cDNA
(complementary DNA) sequencing [11]. Metagenomics obviates the need for the isolation
and cultivation of microorganisms in vitro prior to DNA extraction. The focal point lies
in the examination of the comprehensive genetic makeup of microorganisms existing in
various natural specimens, such as food or the surrounding environment. Metagenomics
encompasses scrutiny of the combined genome of microorganisms inhabiting a specified
milieu, thus facilitating a comparative assessment of the microbiome through the utilization
of NGS. The sequencing process can be directed towards a specific gene of interest, such
as the 16S rRNA in bacteria, 18S in eukaryotes, or intergenic regions/internal transcribed
spacers in fungi, or it can entail an untargeted approach known as “shotgun” sequencing,
encompassing the sequencing of all genomes found within the sample, referred to as
whole-metagenome sequencing (WMS) [12–14].

Sequencing can be executed through either of two methodologies: shotgun sequencing
or targeted sequencing. Within the framework of shotgun sequencing, the DNA molecules
undergo a random fragmentation process, resulting in small DNA pieces that are sub-
sequently sequenced comprehensively. This particular approach is frequently applied
in research endeavors pertaining to the characterization of microbial populations within
metagenomic undertakings, aiming to discern microorganisms at a granular strain level.
Conversely, targeted sequencing is exclusively concerned with the sequencing of a prede-
termined genomic region.

Shotgun sequencing, in comparison to targeted sequencing, provides additional in-
sights into the functionality of the microbiome, its plasticity, and ongoing biological pro-
cesses, as well as sequence variations and evolutionary variability. It also enables the
identification of organisms at a higher taxonomic resolution [15], meaning at the lowest



Foods 2024, 13, 2216 4 of 23

possible difference between organisms (taxonomic level). Access to complete genomes,
rather than being confined to a solitary 16S/18S gene, is the reason for this phenomenon.
The efficacy of sequencing the 16S gene persists in investigations of microbiota abundant
in uncharacterized microorganisms. Research that focuses on sequencing for a specific
microorganism or marker gene does not fall under the category of metagenomics, as it does
not encompass the entirety of the genetic material in the specimen. Apart from the con-
sistent reduction in sequencing expenses over time, one challenge of whole-metagenome
sequencing (WMS) relates to the hardware prerequisites and intricate data interpretation.
A strategy to address the high costs associated with WMS involves a two-stage approach.
Initially, cost-effective targeted sequencing (16S rRNA) is carried out as a preliminary
assessment, followed by untargeted sequencing on a chosen subset of specimens [13].

Metagenomic shotgun sequencing comprises both wet and dry phases. The wet phase
denotes a laboratory procedure encompassing two steps: (i) acquiring and preserving
samples and (ii) conducting sequencing. Conversely, the dry phase pertains to the com-
putational handling of data derived from sequencing. Optimization of each phase in the
analytical process is imperative, tailored to the specific material under investigation and
the research goals.

3. Sampling and Storage

The most favorable approach for collecting samples entails striking a balance and the
volume of samples needed, the frequency of repetitions, and the practical and financial
viability of performing analyses [16]. The quantity of samples and repetitions significantly
influences the precision, defined as the level of concordance between outcomes; accuracy,
representing the level of adherence to the true condition; and the reproducibility of findings.
The strategy for determining sampling sites with respect to the number of repetitions
differs depending on the origin of the samples. Within the food sector, difficulties emerge
concerning the optimal sample selection and the determination of repetition quantities.
The microbiota of raw materials experiences rapid modifications throughout processing,
even within brief time frames. Variations in the microbiota’s composition may be either
straightforward to anticipate (e.g., milk after pasteurization) or unforeseeable, linked to
other technological elements (e.g., frequency of equipment sanitation) [17]. The detailed
procedure for sampling and DNA isolation from raw milk and cheese was developed by
C. Barcenilla [18]. The uncertainty of temporal changes adds complexity to determining
the optimal number of repetitions. Furthermore, the intricacy of the food production
process presents additional hurdles. For instance, the production of cheese entails multiple
phases carried out using distinct apparatus. Comprehending the production procedure
is crucial for establishing the necessary quantity of sample collection points. Acquiring
control samples in an environment with a variable microbiota composition, influenced
by various external factors, can prove challenging. In such instances, it is advisable to
substitute cross-sectional research, which compares the microbiota at a single time point,
with prolonged investigations involving the analysis of samples from the same setting
over an extensive duration. Prolonged studies do not depend on individual outcomes,
which might deviate from the standard, and enable the removal of samples impacted
by unfavorable alterations. If potential confounding variables cannot be ruled out, they
should be factored into the comparative assessment [19]. A crucial aspect of collecting
metagenomic samples is the preparation of detailed and standardized metadata. These are
essential for comparative studies and result generation. Adopting a reporting standard
enhances the quality, accessibility, and usefulness of information that can be stored in
data repositories. The Genomic Standards Consortium (GSC) has proposed standards for
the minimal information about genomic sequences (MIGS) and metagenomic sequences
(MIMS). Additionally, these standards have been further detailed to include an environ-
mental package comprising a set of measurements and observations describing the habitats
from which the samples were collected. The environmental package includes sampling
information such as geographical data on the location (country, region, latitude, and lon-
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gitude), date of collection, environment, and material type [20]. It is advisable to gather
a wide array of parameters, particularly the attributes specific to a given environment,
in order to enhance the probability of establishing correlations between outcomes and a
particular environmental factor [19]. A summary of sample fermented products along with
the most commonly used DNA isolation kits and the required sample quantity is presented
in Table 1.

Table 1. Fermented products and methods of DNA isolation.

Product Sampling Detail DNA Isolation References

Cheese 1 g sample PowerFood
Microbial DNA Isolation Kit [21–23]

Kombucha 50 mL sample PureLink
Microbiome DNA Purification Kit [24–26]

Kefir 3–5 g sample DNeasy
PowerSoil Kit [27,28]

Yogurt 10–20 mL sample QIAamp Fast DNA Stool Mini Kit [29,30]

Kimchi 3 mL sample QIAamp Fast DNA Stool Mini Kit [31–33]

Sauerkraut 1.2 mL sample FastDNA™ S
PIN kit for Soil [34,35]

4. Sequencing

Among the second-generation NGS technologies, the 454/Roche and Illumina/Solexa
platforms are commonly utilized in metagenomic research. Key features of these technolo-
gies include the simultaneous production of millions of brief reads, decreased sequencing
duration, reduced expenses in contrast to first-generation sequencing, and the capacity
to acquire immediate outcomes. The advent of the third generation of NGS technologies,
specifically long-read technologies such as PacBio and Oxford Nanopore, carries substantial
implications for metagenomic investigations, especially in the process of genome assem-
bly [36]. Long reads, abundant in valuable data, aid in de novo assembly and alignment
with a reference genome (associating the sequenced genetic material with a recognized
reference genome) [37]. These technologies facilitate the production of sequences measur-
ing 10 kbp in length, achieving an accuracy rate of 85–87% for PacBio [38] and 88–94%
for Nanopore [39]. This approach proves to be cost-efficient as it eliminates the need for
extensive sample preparation procedures, thereby expediting the generation of outcomes in
non-specialized laboratory settings. Nevertheless, a notable drawback of third-generation
NGS lies in the inadequacy of bioinformatics resources tailored for the interpretation of
lengthy sequences. Existing tools are predominantly optimized for the comparative assess-
ment of precise data derived from short genetic sequences. Table 2 presents a summary
of sample fermented products, target sequences, and the most commonly used sequenc-
ing technologies.

Table 2. Fermented products and methods of sequencing.

Product Target Sequencing
Platform References

Cheese
16S rRNA V3-V4

16S rRNAV4
MGS

Illumina MiSeq
Illumina MiSeq
Illumina HiSeq

[40–43]

Kombucha

16S rRNA V1-V9
MGS
MGS

16S rRNA V1-V9

Oxford Nanopore
Technologies MinION

Illumina HiSeq
Illumina Novaseq 6000
Illumina NextSeq 500

[44–47]
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Table 2. Cont.

Product Target Sequencing
Platform References

Kefir MGS
16S rRNA V3-V4

Illumina HiSeq
Illumina MiSeq [48–51]

Yogurt
MGS

16S rRNA V2, V4, V6, V7, V8, V9
16S rRNA V2-4-8, V3-7-9

Illumina HiSeq
Ion GeneStudio S5
Ion Torrent PGM

[52–55]

Kimchi 16S rRNA V3-V4
16S rRNA V1-V3

Illumina MiSeq
Roche 454 GS-FLX Plus [56,57]

Sauerkraut 16S rRNA V3-V4 Illumina MiSeq
Illumina NovaSeq [58–61]

5. Bioinformatic Processing

Working with sequences obtained using HTS involves a few manipulations of raw
data performed by various programs in order to generate the desired final results. These
procedures can be divided into 3 parts: (i) first-level analysis; (ii) second-level analysis, and
(iii) integrating results with metadata. Figures 2 and 3 present the subsequent stages of
first- and second-level analyses.
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5.1. Quality Assessment and Filtration of Readings

The objective of the initial processing stage is to enhance the overall quality of se-
quence files prior to their utilization in analytical procedures. Enhancing quality entails
the filtration and elimination of low-quality sequences, along with the exclusion of any
adapters that may be present. Quality evaluation is conducted at the individual base level
utilizing the PHRED scale score, which indicates the likelihood of incorrect base assign-
ment. Illumina-generated data typically exhibit high quality (Q30–40) at the onset of the
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read, gradually declining towards the read’s conclusion. Bases with a quality score below
Q15–Q20 towards the end of the read are deemed insufficiently accurate for interpretation.

Depending on the employed sequencing methodologies, data are presented in various
file formats. Assessment of the quality of reads can be conducted utilizing files in the FastQ
formatting. Within the FastQ configuration, sequences and quality outcomes are delineated
through individual ASCII characters. Each sequence comprises of four lines arranged one
above the other. The initial line commences with the “@” symbol, followed by the sequence
identifier (e.g., information on flow cell ID, read pairing). The succeeding line depicts the
nucleotide sequence. The subsequent line initiates with the “+” symbol, succeeded by the
identical sequence identifier as in the first line, denoting the conclusion of the sequence.
The final line illustrates the quality of the sequence, with a solitary character encoding the
quality (PHRED score) of a specific base within the sequence.

Files in the FASTQ format (Illumina, 454/Roche) can undergo qualitative evalua-
tion through the utilization of the FASTQC software from https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 13 July 2024). FASTQC is responsible for
generating a total of ten visual representations aimed at assessing the quality of the file.
The outcomes are stored in HTML format and are amenable to visualization through a web
browser. Subsequent to this, the process of filtering results based on suitable quality param-
eters can be executed by employing trimming software such as SeqTrim [62], EA-Tools [63],
and Trimmomatic [64].

Data acquired through the utilization of Nanopore technology are documented in
the FAST5 file configuration, which encompasses raw signal information. The aforemen-
tioned data have the potential to be transformed into the FASTQ format by employing
suitable software applications such as Guppy [39], Fast-Bonito [65], Causalcall [66], and
NanoOK [67]. Guppy provides two distinct analysis models: rapid and high-precision. The
mean quality of sequences produced by Nanopore falls within the range of Q7 to Q14, with
the quality exhibiting fluctuations throughout the reading process. All numerical values in
this context are highly significant.

PacBio sequences are archived in the Binary Alignment Map (BAM) format, a format
that does not include annotations on sequence quality. The transformation to FASTQ format
can be executed through software tools such as SAMTOOLS [68] or the SMRT portal [69].
Furthermore, the SMRT portal not only conducts demultiplexing (the inverse operation of
multiplexing, which involves segregating signal components) but also eliminates hairpin
adapter sequences from the reads and sieves out reads characterized by superior quality.

5.2. Contig Assembly De Novo

The process of de novo assembly involves the grouping of reads into contigs. Multi-
ple techniques exist for determining the makeup of a multi-species microbial population
from a set of sequence reads. When it comes to the methodology of metagenome as-
sembly, the process is akin to piecing together individual whole genomes [68]. Different
computational strategies are utilized for reconstructing the composition of microbial com-
munities from a set of sequence reads, with the selection of approach being dependent
on the objectives of the study. There are two primary methods for assembling contigs:
(i) the utilization of a de Bruijn graph (DBG), and (ii) the alignment of overlapping OLC
(overlap/layout/consensus) reads.

The prevalent approach utilized is based on the de Bruijn graph. This graph is for-
mulated by disintegrating each read into overlapping fragments of a consistent length,
known as k-mers. These k-mers establish the vertices and edges of the de Bruijn graph.
Subsequently, the software traces a route within the graph, consequently ascertaining the
accurate genomic sequence. The emergence of branches in the graph, which complicates
the identification of the correct sequence, is attributed to sequencing inaccuracies, fluc-
tuations in coverage, the existence of repetitive sequences, and various other structural
variations [69].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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A less frequently utilized approach entails the superimposition of reads, where the
identification of overlapping sequences is achieved through the comparison of each read
with all other reads. The overlapping reads are then categorized into contigs. Subsequently,
a continuous sequence is established by choosing the most probable nucleotides from the
overlapping contigs. However, a limitation of this method lies in the need to compare
each read with every other read within the dataset, and in high-throughput sequencing
(HTS) methodologies, the number of reads can reach millions. Figures 4 and 5 illustrate the
techniques utilized in contig assembly.
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overlapping k-mers. Polymorphisms (highlighted in bold) create branches in the graph. The count of
each k-mer’s occurrences is indicated (number above the k-mer). (iii) Contigs are built by traversing
the graph between branching nodes. Algorithms may interpret branches differently; the example
shown ignores low-coverage paths.

Assembling metagenomes poses a greater challenge compared to assembling individ-
ual genomes due to the absence of uniform sequence coverage throughout the genome. The
coverage of each genome present in the metagenome is contingent upon the prevalence of
microorganisms within the environment under study. Genomes that are poorly represented
may experience fragmentation in cases where sequencing depth is insufficient [70]. The
reduction in k-mer length utilized for graph construction may facilitate the reconstruction
of less prevalent genomes, albeit with the drawback of heightened repeats that impede
precise genome assembly [71]. An additional complexity emerges from the examination of
closely related genomes exhibiting variations in individual genes or nucleotides, resulting
in graph branching. The occurrence of branching within the graph contributes to the
fragmented reconstruction of genomes.
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sequence construction.

Diverse strategies are being devised to tackle the challenges linked to metagenome as-
sembly. Meta-IDBA [72] and RAMPART [73] employ varied k-mer lengths, eliminating the
necessity of selecting a singular averaged k-mer length, thereby facilitating the assembly of
genomes with diverse abundances. Additionally, RAMPART produces a concise overview
for each assembly. In metagenome reconstruction, Meta-IDBA also accounts for irregular
sequencing depth [74]. MetaSPAdes software allows hybrid metagenome assembly by
utilizing short and long sequences acquired from different technologies [75]. Samples
containing intricate microbiota compositions often encompass numerous closely related
strains with varied abundances. Augmented sequencing depth enables their identification
but demands substantial computational resources and time, which may prove inadequate.
The MEGAHIT tool confronts this challenge by employing streamlined data structures
to diminish memory requirements and expedite the analysis process when assembling
intricate metagenomes [76]. A decentralized metagenome assembly framework harnesses
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Ray software [77] to allocate memory load across individual machines. Genovo diminishes
analysis duration via advanced learning methodologies [78].

The initial categorization of reads into potential taxonomic clusters by comparing
them to known genomes, and subsequently excluding them from the read collection, can
optimize the process of constructing intricate metagenomes. MEGAHIT differentiates reads
into well-defined and ambiguous categories based on their coverage relative to reference
genomes. Even reads with limited coverage could be integrated into the metagenome
assembly if they complement well-established contigs [76]. MetaCRAM [79] leverages
Kraken [80], a k-mer-centric tool for taxonomic classification, to assign reads to reference
genomes initially and eliminate any familiar sequences from the dataset before assembly.
VICUNA software [81] facilitates the elimination of non-target reads through multiple
sequence alignment (MSA) of the sequences.

Paired-end sequencing reads, encompassing both brief and extended fragments, offer
significant advantages in the process of constructing individual genomes from scratch,
yielding insights into the interconnections among divergent contigs and facilitating the
formation of scaffolds. The utility of paired-end reads is less evident when dealing with
metagenomic datasets. Several software applications designed for metagenome assembly
adopt a methodology akin to that employed for individual genome assembly, involving
the creation of scaffolds. Utilizing paired-end reads, tools such as MEGAHIT [78], BIG-
MAC [82], SPAdes [77], PRICE [83], and Omega [84] aim to identify and eliminate chimeric
contigs resulting from the erroneous merging of distinct genomes, thereby enhancing the
quality of the resultant assemblies. A comparative analysis of contig assembly software is
presented in Table 3.

Table 3. Programs assembling contigs.

Program

Method
(dBG—de Bruijn Graph;
OLC—Overlap Layout

Consensus)

Characteristic
Feature Publications

Genovo OLC It employs deep learning; randomly selects contigs for
matching reads [78]

IDBA-UD dBG It breaks down the graph locally at each depth. [72,74]

MEGAHIT dBG K-mers split based on identification with reference genomes. [76]

Omega OLC Scaffolding using long reads; unmatched contigs are grouped
based on coverage. [85]

Price Hybrid Identical reads are assembled first, followed by less
similar ones. [86]

Ray dBG Distributed program connected to the network; profiles the
microbiome based on unique labeled k-mers. [77]

SPAdes dBG The metaSPAdes extension utilizes stream processing to resolve
the graph. [75]

5.3. Contig Clustering

Complex metagenomes, characterized by extensive fragmentation resulting in thou-
sands of contigs, pose challenges in determining the number of genomes present in the
dataset and the assignment of contigs to specific genomes. The process of contig clustering
aims to categorize these fragments into distinct groups representing individual species.
This clustering endeavor leads to the reconstruction of components of intricate metage-
nomic genomes, referred to as metagenomic assembled genomes (MAGs). Subsequently,
contigs belonging to each cluster are stored in separate files formatted in FASTA. FASTA-
formatted data comprises sequences presented in a single line of text, with descriptions on
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subsequent lines initiated by the “>” symbol. Ideally, each file corresponds exclusively to a
single genome.

Currently employed clustering methods can be divided into two categories: (i) super-
vised and (ii) unsupervised. Both methods assess the similarity between contigs and sets,
subsequently transforming these similarities into assignments.

The method of supervised learning makes use of reference databases to categorize
contigs into distinct taxonomic categories. Moreover, a distinction can be made within this
method between sequence homology-based strategies and sequence structure-based strate-
gies. Various tools that utilize sequence homology, such as PhymmBL [82] and BLAST [83],
rely on vast and inclusive databases. Software programs such as PhyloPythiaS+ [84],
EnSVMB [87], and Kraken [80] utilize k-mers to either compare sequences or generate
patterns, ultimately reducing the time taken for analysis. The k-mer approach mandates
the development of specific reference databases, while pattern generation necessitates the
use of training files. The examination of metagenomes which encompass a multitude of
genomes, lacking any reference databases, presents a significant challenge. The absence
of reference genomes hinders the creation of training files. The substantial diversity of
species within the files requires the generation of a larger quantity of patterns, consequently
extending the time required for analysis.

Unsupervised clustering techniques aim to identify intrinsic variations within the
examined dataset. The genomes of diverse organisms exhibit distinct arrangements of
nitrogenous bases, which are manifested by discrepancies in the occurrence of k-mers [88].
The use of tetramers is considered to be most effective for clustering metagenomic informa-
tion [89]. The process of grouping contigs is employed in various automated tools such as
SCIMM [90] and MegaWatt [91], which rely on parameters related to species distribution
and DNA sequence representation. Additionally, more advanced automated software
such as MetaBAT2 [92], GroopM [93], and CONCOCT [94], as well as semi-automated
algorithms that involve human evaluation, utilize contig clustering for analysis [95].

The hybrid method BMCCR (Binning Metagenomic Contigs using unsupervised
Clustering and Reference databases) introduces a novel approach that integrates the benefits
of two distinct methods, as outlined in a previous study [96].

5.4. Quality Assessments of MAGs

The quality of MAGs depends on the genome size of the species, its abundance in the
environment, and the sequencing depth. Parameters determining MAG quality include
completeness and the degree of genome contamination. CheckM [97] utilizes a set of
marker genes, along with information about their positions in reference genomes, and then
utilizes information about the co-localization of these genes in the studied genomes. The
program initially places individual MAGs in the reference tree to adapt the set of marker
genes to the specific lineage.

The optimal scenario entails acquiring a solitary contig within a document of compa-
rable length to the taxonomically aligned genome. Nevertheless, the attainment of such a
scenario is practically unattainable, hence, it becomes imperative to employ criteria that
evaluate the assembly’s quality. One such criterion is N50, while another is L50. The
quality of a MAG is deemed superior when N50 exhibits a higher value and L50 displays a
lower value for the genomes being analyzed. The elucidation of parameters N50 and L50 is
depicted in Figure 6.

Contigs sorted by length in descending order with a total length of 350 kbp. The
N50 parameter for this sequence is the length of the contig located at the midpoint of the
sequence–70 kbp. The L50 parameter is the position of the contig located at the midpoint of
the sequence–3.
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5.5. Defining and Analyzing the Pangenome

The pangenome denotes the entire array of genes discovered in diverse strains of a
certain species, as ascertained through the utilization of comparative genomics examina-
tions. This pangenome is structured hierarchically, comprising a genomic core, an accessory
genome, and single genes. The genomic core consists of genes present in all strains of
the species analyzed and is primarily responsible for crucial functions necessary for the
microorganism’s survival [98], including those related to pathogenicity and virulence [99].
The accessory genome encompasses genes found in at least two strains but not in all [100],
while single genes are those present in only one strain. Genes within the accessory genome
or single genes can be acquired through processes such as horizontal gene transfer or muta-
tions evolving in other genes. These genetic elements are crucial in facilitating adjustment
to the surroundings, such as distinct biochemical pathways, harmfulness characteristics,
and drug resistance [101]. The configuration of the pangenome can either be open or closed,
depending on the likelihood of identifying novel gene families through the inclusion of
genomes for comparative study. An open pangenome, when more genomes are added,
tends to exhibit a growing diversity of gene families. Conversely, a closed pangenome
remains stable in terms of the number of gene families present.

Pangenomic analysis entails a three-step procedure: (i) standardizing annotations,
(ii) categorizing genes by orthology, and (iii) adjusting curves. Standardizing annotations
in the initial stage aims to avoid misidentifying core genes as universal and incorrectly
assigning universal genes to individual genes. This task typically utilizes genome anno-
tation tools such as RAST [102] and Prokka [103]. At the second phase, a comprehensive
table containing all orthologous genes is acquired. In this phase, software programs such
as OrthoMCL [104] and Orthofinder [105] are utilized. This table enables the fitting of the
specific curve that arises from permutations of all genomes at various positions during
the third step. The alignment process incorporates Heaps’ law and the power law, while
the alignment of the curve of the common genome and individual genes is accomplished
through an exponential regression distribution. Table 4 showcases instances of pre-existing
bioinformatics solutions that are capable of carrying out all three phases of analysis.

Table 4. Programs designed for the analysis of pangenomes.

Software Orthology Analysis Pangenome
Construction References

BPGA CD-HIT, OrthoMCL Power-law
regression [106]

EDGAR 2.0 Score ratio values Heaps’ law [107]

GET_HOMOLOGUES COGtriangles, OrgoMCL Plot_pancore_matrix.pl [108]

PanWeb PGAP PGAP [109]
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Table 4. Cont.

Software Orthology Analysis Pangenome
Construction References

PGAP MultiParanoid, Gene Family Heaps’ law [110]

Roary CD-HIT, BLAST, MCL (Not mentioned) [111]

5.6. Taxonomic Profiling

The process of taxonomic profiling entails the assignment of operational taxonomic
units (OTUs) to individual contigs. The primary objective of profiling is to ascertain the
species composition of a metagenome and to estimate the representation of each species.
There are two predominant strategies utilized for taxonomic identification: (i) aligning
sequences using databases such as BLAST [83] and (ii) employing k-mers, exemplified by
Kraken [80]. Kraken makes use of databases that house sequences fragmented into k-mers
to seek out distinct fragments based on taxonomic categories, ranging from the lowest
common ancestor (LCA) to the target species. The software dissects the queried contig
into k-mers and subsequently assigns them to the most likely position in the reference
taxonomic tree. A notable result of profiling is the prevalence of each OTU in the sample.
The prevalence of individual species can be expressed in relative or absolute counts of
OTUs [112].

5.7. Construction of Phylogenetic Trees from Metagenomic Data

The procedure for constructing a phylogenetic tree is a multi-step process. It consists of
the following: (i) orthology prediction (orthologous genes, i.e., genes whose relationships
will reliably reflect species relationships), (ii) alignment, (iii) identification of outliers,
(iv) site filtering, and (v) phylogenetic inference.

There are bioinformatics solutions that perform all these steps within their scope.
These include: PhyloPhlAn [113], PhyloSift [114], ezTree [115], GToTree [116], and AM-
PHORA [117], which rely on the analysis of specific genes, their sets, or specific regions
in the genome [118]. Additionally, there are algorithms responsible for specific stages of
the analysis, such as algorithms for multiple-sequence alignment (MSA): MUSCLE [119],
MAFFT [120], T-Coffee [121], OPAL [122], PASTA [123], and UPP [124], and phylogenetic
reconstruction algorithms such as FastTree [125,126], RAxML [125,127,128], ASTRAL [129],
ASTRID [130], and IQ-TREE [131]. Each algorithm performs analyses separately or sequen-
tially, requiring the researcher to have substantial knowledge in identifying appropriate
targets, parameters, and steps of computational phylogenetics. A detailed review on ob-
taining phylogenetic trees using a non-automated multi-step method has been presented
by P. Kapli in his article [132].

The separate and human-monitored execution of these processes is not feasible, es-
pecially when a large quantity of genomes are collected and analyzed together. Efficient
algorithms have been suggested, such as those utilizing a small number of representative
marker genes, such as the multilocus sequence typing (MLST) method or core genes at the
species level. Computational MLST can function rapidly by employing only five to ten loci
for each species. An example of an MLST-based program is chewBBACA. chewBBACA is
capable of constructing phylogenetic trees using whole-genome MLST (wgMLST) or core
genome MLST (cgMLST) [133]. Nevertheless, this is achieved at the cost of significantly
reduced accuracy in phylogenetic placement. Pangenome-based profiling, exemplified by
Roary [111], excels in accurate phylogenetic modeling at the species level but cannot be ap-
plied broadly to higher clades. Phylogenies that isolate strains and incorporate thousands
of reference genomes from various species—or at least those most closely related to new
sequences—result in a more precise depiction of microbial population structures and traits,
aiding in more precise taxonomy.
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5.8. Determining Gene Functions and MAG Metabolic Profiles

For fragmented yet of high quality MAGs, it is possible to establish a metabolic profile.
The process of genome annotation can be conducted using two primary methodologies. One
strategy entails the identification of genes along with their respective functions; however,
this approach is constrained by a vast reservoir of genes in databases that lack charac-
terization. The alternative approach involves a translational search for proteins affiliated
with specific functional categories. Databases such as UniProt [134] and KEGG [135] offer
both annotation services and insights into the categorization of proteins into distinct func-
tional clusters and metabolic pathways. The annotation outcomes are typically displayed
graphically or in the format of a TSV file containing numerical data regarding the presence
or absence of particular pathways. A notable limitation in metabolic profiling lies in the
absence of scrutiny of accessory genes, thereby leading to the recognition and quantification
of primary metabolic pathways within a comparable framework. Despite variations in mi-
crobiological and environmental compositions, samples demonstrate analogous functional
attributes [136].

Moreover, the process of identifying genes can be further advanced through the
utilization of specific software designed for identifying virulence genes, such as MetaPhin-
der [105], or genes associated with antibiotic resistance [106].

5.9. Integrating Metagenomic Data with Metadata

The obtained data on the microbiological characteristics of the metagenome are pro-
cessed using statistical tools for interpretation and exploration of correlations with the
collected metadata of the samples. R, a popular programming language, is commonly
employed for statistical analysis. It encompasses a range of packages dedicated to both
metagenomics and genomics, which can be adapted for metagenomic purposes. Detailed
packages have been described by Calle in his review article [112].

6. Software for Comprehensive Metagenomic Analyses

There exist pre-configured software bundles with predetermined parameters for every
phase of analysis. These are characterized by a higher level of user-friendliness attributed to
a graphical user interface (GUI), thereby obviating the necessity of employing a text-based
interface. In addition, these bundles encompass an exhaustive array of tools essential for
multifaceted data analysis, visualization, and interpretation. The setup process of such
bundles is streamlined through an integrated automated installer that is compatible with
various platforms. Illustrative instances of such software bundles encompass Parallel-Meta
Suite [82] and EPA-ng [137]. One drawback of these solutions pertains to the limited
adaptability in adjusting parameters at specific analysis stages, a factor that could prove
pivotal in achieving the desired outcomes.

Mothur [138] and Qiime2 [139] are widely used solutions in bioinformatics analysis,
offering flexibility in parameter adjustments. Mothur, initiated in 2009 by Dr. Patrick
Schloss at the University of Michigan, provides an integrated platform for ecological
research through a command line interface, while Qiime2, designed with a plugin system,
allows operation via API, graphical interface, and command line for decentralized use.
Figure 7 illustrates a graph presenting the citation frequencies of Qiime2 and Mothur in
scholarly articles from the last 5 years, based on data obtained from PubMed on 7 July 2024.
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7. Conclusions

“Foodomics” represents a novel research approach within the realm of food studies,
demonstrating considerable potential for application in the realm of food production. This
methodology facilitates a profound examination of food microbiota through the utiliza-
tion of contemporary, cost-effective, and efficient DNA sequencing techniques. Through
metagenomic scrutiny, a precise taxonomic classification can be achieved, pinpointing indi-
vidual species and strains. Furthermore, this approach allows the identification of specific
gene functions that could influence the production process and, consequently, the sensory
attributes of the final product. The acquisition of dependable and replicable outcomes
necessitates the consideration of various factors during the design phase of studies. Funda-
mental elements encompass the approach to sample collection, storage, and pre-sequencing
preparation, alongside subsequent bioinformatic scrutiny. The formulation of optimal and
consistent sampling techniques, coupled with the meticulous documentation of pertinent
environmental variables specific to distinct production procedures, is imperative. The
realm of bioinformatic solutions geared towards comprehensive microbiota analysis is in
a perpetual state of evolution, being continually generated, refined, and enhanced. At
present, a majority of existing programs lack a user-friendly graphical interface, thereby
heightening initial operational complexities. In the forthcoming years, bioinformatic so-
lutions featuring intuitive graphical interfaces will emerge. Software integrating deep
learning methodologies will streamline the analysis timeframe and diminish hardware
prerequisites. Nevertheless, systems leveraging deep learning necessitate a training phase,
mandating substantial resources and time investments. The efficacy of bioinformatic tools
is contingent upon the breadth of reference databases, underscoring the need for their
continual expansion to encompass newly unearthed genes and proteins. The evolution of
foodomics towards heightened accessibility and efficacy paves the way for its integration
into the commercial sphere. The employment of foodomic technologies in production
monitoring will aid in refining the production pipeline by pinpointing and eradicating
avenues of entry for pathogenic microorganisms, while simultaneously overseeing the
growth of beneficial microorganisms. In contrast to traditional microbiological methodolo-
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gies, outcomes will be expedited (independent of microbial incubation periods) and will
furnish a more precise depiction of the scrutinized metagenome composition.

8. Glossary

• ASCII (American Standard Code for Information Interchange) is a character encoding
system utilized in computers and communication devices to symbolize textual charac-
ters, with each character being allocated a distinct numerical value represented as an
integer within the range of 0–127.

• FASTA is a file format employed for the storage of DNA, RNA, and protein sequences.
• Deep learning is a division of artificial intelligence (AI) that concentrates on the

development and training of neural networks capable of learning and executing tasks
automatically, without the need for explicit programming.

• HTML (Hypertext Markup Language) is a markup language utilized for the construc-
tion of websites, serving as the foundational language for structuring and presenting
content on the web.

• HTS (high-throughput screening) involves high-throughput techniques for screening
vast quantities of substances, leveraging automation and miniaturization to analyze
numerous substances simultaneously. Various detection methods are employed, such
as chemical reactions, absorbance, fluorescence, and bioluminescence, to identify the
substances being tested.

• Kbp (kilobase pair) is a unit of measurement in molecular biology equivalent to 1000
nucleobase pairs.

• A k-mer is a nucleotide sequence of length k in DNA or RNA, comprising any of the
four nucleotides: adenine, guanine, cytosine, and thymine in DNA or uracil in RNA.

• Contig refers to a continuous series of nucleotides within the genome, generated by
amalgamating DNA sequence reads.

• MAG (metagenome-assembled genome) denotes a genome reconstructed from the
combined genetic material present in a sample containing taxonomically diverse
organisms from a specific environment.

• NGS (next-generation sequencing) encompasses advanced sequencing methodologies
that facilitate rapid and simultaneous reading of multiple DNA fragments.

• OTU (operational taxonomic unit) is a taxonomic grouping for nucleotide sequences
based on their sequence similarity.

• PHRED is a computational tool that evaluates the quality of DNA sequences acquired
during sequencing, providing a probability estimation of errors in reading specific
nucleotides. The resultant quality assessment, known as the PHRED score, is expressed
as a numerical value on a logarithmic scale (0, 20, 40, 60), where higher values indicate
greater accuracy in reading.

• Scaffolds denote extended sequences comprising ordered and linked contigs, repre-
senting a segment of the genome not assigned to a particular chromosome.

• TSV (tab-separated values) is a text file format where values are delimited by the tab
character (TAB), facilitating the storage and transmission of data in tabular form.

• WMS (whole-metagenome sequencing) encompasses complete sequencing of the
metagenome, enabling the analysis of all genetic material within a metageno-
mic sample.
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