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Abstract: This work describes a simple, inexpensive, and robust method to prepare a flexible
“all in one” integrated hydrogel supercapacitors (HySCs). Preparing smart hydrogels with high
electrical conductivity, ability to stretch significantly, and excellent mechanical properties is the last
challenge for tailored wearable devices. In this paper, we employed a physical crosslinking process
that involves consecutive freezing and thawing cycles to prepare a polyvinyl alcohol (PVA)-based
hydrogel. Exploiting the self-healing properties of these materials, the assembly of the different layers
of the HySCs has been performed. The ionic conductivity within the electrolyte layer arises from
the inclusion of an H2SO4 solution in the hydrogel network. Instead, the electronic conductivity
is facilitated by the addition of the conductive polymer PANI-PAMPSA into the hydrogel layers.
Electrochemical measures have highlighted newsworthy properties related to our HySCs, opening
their use in wearable electronic applications.

Keywords: hydrogel; conducting polymer; supercapacitor; wearable sensor; flexible materials

1. Introduction

The constant development of portable technologies is establishing a demand for the
integration of smart devices in everyday objects [1,2]. The gap between human life and
technology must be compensated with biocompatible and wearable electronics that have the
purpose of introducing more accurate and precise procedures [3–6]. The study of wearable
electronics has peaked in recent years, thanks to the advent of commodities, especially in the
medical field, as devices that can monitor heart rate, skin temperature, muscle movement, or
sense chemical stimuli. The design of these devices requires flexible and deformable power
systems that can adapt to the human body in comfortable and biocompatible ways [5–7].
Electronic components with high technological maturity struggle to satisfy this demand,
as they are based on stiff materials and structures that do not match the characteristics of
human tissues. Research efforts will be necessary to answer these challenges. This work
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proposes a new strategy for the fabrication of flexible and deformable hydrogel-based
supercapacitors.

Wearable electronics can be powered by energy-harvesting [8] and energy storage
systems [9,10]. Because of discontinuous energy collection, devices with higher energy
adsorption must accumulate the energy, which is self-produced or externally supplied,
in batteries and/or supercapacitors. Supercapacitors (SCs) are devices that can electro-
chemically store energy, and efficiently release it with a high density over a relatively short
time [11,12]. Depending on their operating principle, supercapacitors are mainly catego-
rized into two types, which are pseudo capacitance and electric double-layer capacitance.
Pseudo supercapacitors store energy through electrochemical reactions, while double-layer
capacitors (EDLCs) employ predominantly electrostatic charge separation occurring at
the interface between the electrode surface and the electrolyte [13]. SCs are extensively
utilized in consumer electronics and renewable or industrial energy systems [12]. SCs are
promising devices in wearable electronics due to the simplicity, affordability, and safety
of their fabrication and operation modes. Traditional structures, composed of metallic
electrodes and a liquid electrolyte, experience great difficulties in wearable electronics
implementation caused by the physical state of the electrolyte. Firstly, the electrolyte leak
represents a concrete risk in terms of toxicity both for humans and the environment, with
obstacles in device recycling. Moreover, the presence of an aqueous or organic electrolyte
interlayer requires the insertion of a separator in the SC to avoid short-circuit during the
real operation that involves different mechanical stimuli. The consequent extra step during
fabrication increases the costs and the complexity of the device. Furthermore, mechanical
stress negatively affects the adhesion between the electrode material and electrode modifier,
both in area and strength, resulting in a decreased performance during operation. The
above-mentioned obstacles can be overcome with the implementation of a solid electrolyte
wherein the active materials are deposited [14]. Solid flexible compounds, as hydrogels,
can replace stiff materials in SC fabrication, resulting in a simple, cost-effective, and reliable
solution [10,15].

Hydrogels are three-dimensional crosslinked polymer matrices capable of absorbing
aqueous solutions into pores [16–18]. Their structure allows them to retain abundantly
the electrolyte solution with their hydrophilic nature, while the porous polymer structure
creates a preferred path for charges, which provides ionic conductivity like traditional
aqueous electrolytes and improves mechanical properties with a minimal cost in terms
of electrochemical performances [19]. Indeed, their soft and solid-like structure allows
the fabrication of flexible materials, as they can sustain stretching, bending, and twisting
deformation while maintaining the original form and retaining electrochemical properties
after deformation and recovery cycles. These properties depend on the preparation of the
hydrogel, with particular attention to the composition, crystalline phase percentage, type
of crosslinking, and water content [18,20]. Because of their crosslinked porous structure,
hydrogels are intrinsically amorphous, independently from the composition. They can be
categorized as natural or synthetic [20]; hydrogels based on synthetic polymers tend to
exhibit tunable mechanical, optical, or electrochemical characteristics with a simpler com-
position, by tuning a few parameters. Chemically crosslinked hydrogels require specific
crosslinker agents, acting as bridges where macromolecules are knotted and bonded [17,18].
The resulting materials are extremely stable and mechanically performant, but lack bio-
compatibility and recyclability, as the bonds are irreversible and crosslinker agents tend
to be toxic [21,22]. Physical crosslinking hydrogels are based on physical interactions
between the polymer macromolecules, tend to be more environmentally friendly, and
present simplicity in preparation. Among the different materials that are used for hydrogel
fabrication, polyvinyl alcohol (PVA) has piqued researchers’ interest because of its chemical
stability, nontoxic biocompatible nature, and the possibility to tailor mechanical, electrical,
and optical properties by implementing fillers [23,24]. As a macromolecule, the structure is
linear and hydrophilic thanks to the presence of hydroxyl groups, allowing the dissolution
of the compound in aqueous solutions. Physically crosslinked PVA hydrogels obtained
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by the establishment of hydrogen bonds between the hydroxyl groups of the chains give
rise to the formation of a three-dimensional matrix, with a simple yet effective way of
fabricating a material that is valid for various applications, as in medical [23–27] and en-
ergy fields [10,28–30]. An easily reproducible method to induce physical crosslinking is
letting the PVA solution undergo repetitive and alternate freeze–thaw cycles so that the
macromolecules align and entangle between the ice crystals formed at freezing tempera-
ture [31–33]. By alternating freezing cycles, the ice crystals entrapped between the chains
melt, and new hydrogen bonds can be formed repeating the process. Key parameters for
this method are molecular weight (MW), polymer amount, temperature, duration of each
step, and number of cycles. The resulting material presents high stretchability, resistance
to deformation, high solution retention, and self-healing properties [32,33]. Recently, our
group has studied the role of PVA molecular weight in hydrogel preparation for energy
purposes and its influence on electrochemical properties [34].

A fundamental element in SCs is the electrode material. The more consolidated elec-
trodes can hardly be implemented in wearable devices [11,35]. Carbon-based materials
and conductive polymers (CPs) have paved new ways to fabricate advanced wearable
SCs due to their lightweight, processability, and biocompatibility. In the vast scenario of
conductive polymers, the environmental stability, simple synthesis, and interesting optical,
electrochemical, and electrical properties of polyaniline (PANI) are characteristics that
enhance its usage in newly produced devices [36–38]. PANI varies in optical properties
during redox processes, making the different states recognizable through color and pre-
senting electrochromic characteristics [39,40]. PANI in its half-oxidized state, emeraldine
form [37,41], thanks to its thrilling conductivity, has been implemented in various types
of devices and materials as pH [42,43], humidity [44], chemical sensors [45], or electrode
material for rechargeable batteries and SCs [46,47]. Due to the high potential, systems that
combined the properties of PVA and PANI for developing batteries and SCs are still under
study today [32,48–50]. In this work, exploiting the self-healing properties of polyvinyl
alcohol (PVA)-based hydrogel obtained by a freezing–thawing physical method, a sym-
metric all-in-one supercapacitor (HySCs) with electrode/electrolyte hydrogel has been
prepared. The ionic conductivity within the electrolyte layer arises from the inclusion of an
aqueous H2SO4 solution in the hydrogel network. The addition of polyaniline stabilized
with poly(2-acrylamido-2-methyl-1-propanesulfonic acid (PANI_PAMPSA) derives the
electronic conductivity of the hydrogel electrode layers [44]. The raw materials used to
synthesize the PANI:PAMPSA hydrogel are relatively low-cost and commercially available.
This allows for potentially more cost-effective manufacturing of the hydrogel compared to
specialized hydrogel formulations. These innovative HySCs have been characterized and
tested, presenting newsworthy properties for wearable electronic applications.

2. Results and Discussions
2.1. Hydrogels Characterizations

The hydrogel electrolytes (Hyx) were obtained by a freeze–thaw method which pro-
motes the formation of physical crosslinks via hydrogen bonding interactions [31]. To
this purpose, PVA with different molecular weights (31,000–50,000 and 89,000–98,000)
have been used for their preparation (Hy1 and Hy2 respectively). The hydrogel elec-
trodes (Hyx-PANI_PAMPSA) were obtained with the same procedure, but with the addition
of the conductive polymer PANI_PAMPSA after the PVA dissolution. Due to the self-
healing properties of PVA hydrogels and the integration of different hydrogel layers (i.e.,
electrode/electrolyte or electrode/electrolyte/electrode configurations), semi-cells and
symmetric supercapacitors have been fabricated, as reported in Section 4.

The SEM, TGA, and ATR-FTIR analyses were carried out on the semi-cells (Sx) with
each constituent layer being analyzed individually, subsequently labeled as the white layer
(WL = Hyx) and the green layer (GL = Hyx-PANI_PAMPSA). The internal morphological
structure of the single hydrogel layer was investigated by SEM microscopy (Figure 1A).
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The images highlighted a notable morphological difference between the electrolyte
(S2-WL) and the electrode (S2-GL) layers, where the electrode layer was characterized by
the copresences of two distinct networks [50]. This peculiar morphology was not observed
for the WL layers.

The porosity tests conducted on each semi-cell (Figure S1A) showed that the presence
of the PANI_PAMPSA in the hydrogel matrix changes its morphology but not the degree
of porosity, which is strictly related to the PVA molecular weight. A decreasing porosity
can be observed for the hydrogel obtained with lower molecular weight but with a higher
amount of PVA (Hy1), due to a major number of entanglements per unit volume that reduce
the pore areas.

Moreover, the thermal stability was investigated by TGA, and the related thermograms
reported in Figure S1B, (red line) exhibit three degradative steps in agreement with the
studies reported in the literature [51,52]. The first step (50–200 ◦C) can be attributed to the
loss of water residue in the sample, while the second one (200–340 ◦C) was related to the
loss of hydroxyl groups of the polymer matrix. The third degradation step (340–450 ◦C) can
be associated with polymer chain decomposition. Instead, the thermograms of Sx-GL (in
green line) exhibited two main degradative steps: the first in the temperature range up to
200 ◦C derived from the loss of moisture present in the sample; the second one (400–500 ◦C)
was due to polymeric backbone degradation.

A slight shift in the last step degradation temperature can be observed in the presence
of PANI_PAMPSA due to the aromatic structure that influences the hydrogel thermal
properties at high temperature [52].

ATR-FTIR spectroscopy was carried out on Sx samples previously washed to remove
the acidic media and subjected to freeze-drying. By analyzing the compared spectra that
are available in the Supplementary Materials, Sx-WL layers, and the pure PVA show
both the characteristic peak at 3400 cm−1 corresponding to O-H stretching, the peak at
2950 cm−1 typical of C-H stretching, at 1640 cm−1 the C-O-H out of plane bending, and
lastly the signal at 1090 cm−1 corresponding to the C-O stretching [53,54]. Despite the PVA
matrix representing the most prominent contributor in the Sx-GL spectrum, the presence
of PANI_PAMPSA in the conductive layers can be confirmed from the peak at 1660 cm−1

associated with the C=O stretching of PAMPSA (Figure S2) [50].
Furthermore, the mechanical properties of Sx have been investigated with uniaxial

tensile tests, and the measured values are reported in Table 1 and Figure S3.

Table 1. Mechanical properties of semi-cells (Sx).

Semi-Cell Young’s Modulus (MPa) Strain (%)

S1 0.18 ± 0.03 53 ± 4

S2 0.05 ± 0.02 170 ± 1

A strict correlation exists between the PVA’s molecular weight and its mechanical
properties, where an increase in molecular weight results in a decrease in Young’s modulus
and an increase in maximum tensile strain, due to the enhanced likelihood of polymeric
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chains to form entanglement-type interactions with other chains as the length of the
macromolecules increases [55].

The water content (Wc%), the swelling ratio (SW%), and the swelling ratio normal-
ized to the polymer fraction (SPVA%) were calculated for the Hyx layers as described in
Supplementary Materials. The results highlighted good swelling capacity for both PVA
hydrogels (Hy1 and Hy2); the system prepared using PVA with higher molecular weight
(Hy2) exhibited the most pronounced swelling due to the higher porosity observed. Instead,
the symmetric cells (HyxSC) showed a notable correlation with the water content and
swelling ratio observed in the constituent hydrogel layers (Table 2).

Table 2. Wc%, Sw%, and SPVA% results.

Sample Wc% Sw% SPVA%

Hy1 71 ± 2 245 ± 1 10
Hy2 77 ± 1 345 ± 9 38

Hy1SC 65 ± 2 191 ± 23 8
Hy2SC 72 ± 2 264 ± 20 29

Moreover, the self-healing property was investigated in our previous work, in agree-
ment with M. Shin et al. [56]. Material can be classified as self-healing if it satisfies three
rheological criteria: (i) demonstrates terminal flow pseudoplastic behavior; (ii) possesses
a chain flow relaxation time (tf) within a reasonable time scale; and (iii) behaves as a
viscous fluid at low frequencies [56]. As described in Supplementary Materials, the slope
of the initial dynamic viscosity (η′) curve (Figure S4) with an absolute value equal to 0.07
confirms the Newtonian character of the hydrogel at low frequency, typical of self-healing
materials (pseudoplastic fluids) [56]. Furthermore, the results of the frequency sweep test
(Figure S4B) suggest that the dynamic bond-based gel network forms a pseudo-structure
with minimal steric hindrance for the chain flow, owing to the short lifetime of the dynamic
bond. Indeed, a tf value of 0.03 s can be calculated for Hyx, given by the reciprocal value
of the crossover frequency, confirming that the chain flow relaxation strongly contributes
to self-healing on a reasonable time scale (for no self-healing materials tf results impossi-
ble to calculate). Moreover, Figure S4C shows an upward trend of tanδ, confirming the
hydrogel liquid-like behavior. Finally, the crossover between G′ and G′′ occurred with 4.7%
of applied shear strain and 8.2 Pa of applied shear stress (Figure S4D). This information
was used to perform the three-interval thixotropic test (3ITT) in controlled shear rate (CSR)
mode to assess the hydrogel’s mechanical properties (Figure S4E). From the curve, it was
possible to calculate the % recovery of the viscosity of the hydrogel after the high shear
rate applied, which amounted to 64% after 2 min. The obtained results suggested that
Hyx completely fulfilled the three required criteria, from a rheological point of view, to be
classified as a self-healing material.

2.2. Electrochemical Behavior

To investigate the electrochemical behavior, 4-point conductivity, EIS, and galvanos-
tatic charge/discharge (GCD) measurements were conducted on the semi-cells and then on
integrated hydrogel supercapacitors as previously described. All measurements have been
performed in triplicate on three different samples at environmental conditions (25 ◦C).

2.2.1. Semi-Cell and Symmetric Cell

The conductivity of the semi-cells depended on both the specific conductance (κ)
for the Sx-GL, and the ionic conductivity obtained from the EIS measurements on the
Sx-WL samples (Figure S5). The specific conductance comes from electron mobility into the
hydrogel containing the conductive polymer. The data reported in Table 3 reveal a higher
specific conductance for S1 than S2.
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Table 3. Electrochemical parameters of semi-cells.

Semi-Cell PANI_PAMPSA
Amount (g)

Specific
Conductance κ

(mS/cm)

R
(Ohm)

Ionic
Conductivity

σc (S/cm)

Specific
Capacitance
Cp (mFg−1)

S1 0.065 13.9 ± 0.4 4.41 ±0.04 0.130 ±0.001 242 ± 3
S2 0.023 5.5 ± 0.9 1.25 ± 0.01 0.408 ±0.002 398.0 ± 0.9

The ionic conductivity (σc) obtained from EIS measurements (Figure S5) highlighted
a trend in agreement with the data relating to % porosity previously discussed. The
conductivity of the gels is high enough to ensure high currents flowing in the electrolyte.
The three-dimensional porous network plays a crucial role in ensuring the flow of ionic
charges. Specifically, hydrogel semi-cell S2, characterized by higher ionic conductivity,
exhibited a porosity greater than S1.

The parameter that most effectively assesses the functionality of the SC devices is the
specific capacitance (Cp). The semi-cell Cp values have been obtained from galvanostatic
charge–discharge (GCD) tests conducted for each semi-cell, at a constant current density of
0.025 mA cm−2 within the potential window between 0.00 and 0.90 V vs. SCE (saturated
calomel electrode) for five cycles totals. Subsequently, by Equation (2), specific capacitance
was calculated as described in Table 3. Figure 2 reported, as an example, the GCD mea-
surements of S1 (Figure 2A) and the comparison of the third GCD cycle between S1 and S2
(Figure 2B).
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The symmetric cell HyxSC can be considered as an equivalent circuit comprising two
capacitances in series (Figure 3A). The equivalent specific capacitance corresponds to the
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sum of the reciprocals of the capacitances of the system, as described by the following
equation, where m is the mass of conductive polymer introduced inside each electrode layer:

1
Ceq

=
1

C1
+

1
C2

+ · · · 1
Cn

(1)

where C1 = C2 = C
1

Ceq
=

2C
C2 =

2
C

(2)

Ceq =
C
2
= Cdevice (3)

Cp =
Cdevice

m
(4)
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Hy2SC, obtained from PVA with a molecular weight of 89,000–98,000, resulted in
the most efficient charge accumulation at the interface and showed a higher Cp value.
In Figure 3B, the trend of specific capacities is calculated on consecutive cycles. After
500 cycles, the specific capacitance reached a value corresponding to 78% of the initial
capacitance.

An alternative to the previous cell has been assembled using two flexible current
Grafoil collectors on the external sides of electronic layers. Preliminary tests have been
conducted by interposing two 3.0 mm diameter Grafoil disks between the symmetric cell
and the Swagelok-type electrodes (Figure 4A). The Grafoil allowed us to increase the Cp
values of the symmetric cells (Table 4) and to decrease the IR drop in the GCD curves
(Figure 4B).
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Table 4. Cp values were obtained with symmetric cells with and without Grafoil.

Symmetric Cell Applied Current Density (mA) Cp

Swagelok type cell

Hy1SC 0.025 94 ± 1 (mFg−1)

Hy2SC 0.025 466 ± 2 (mFg−1)

Swagelok type cell with Grafoil

Hy1SC 0.025 13 ± 3 (Fg−1)

Hy2SC 0.025 73 ± 1 (Fg−1)

Hy2SC 0.1 65 ± 1 (Fg−1)

Hy2SC 0.3 48 ± 2 (Fg−1)

Moreover, charge and discharge measurements can be conducted by increasing the
applied current density to 0.1 and 0.3 mA. As reported in Table 4, the Cp values decreased
with increasing current due to the kinetics associated with charge movement. The cell had
the same resistances to overcome and was subjected to a higher current density, so it had
less time to rebalance, leading to less charge accumulation.

2.2.2. Flexible Supercapacitor Unit Assembly and Application

The flexible supercapacitor (FSC) units were assembled by interposing a square of
symmetric cell hydrogel (1 cm2) between two strips of Grafoil with a width of 1.0 cm as
shown in Figure 5.
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Figure 5. Flexible symmetric integrated hydrogel supercapacitors (HySCs) with corresponding
scheme and assembly for GCD measurements.

The Grafoil acted as a flexible current collector due to its high conductivity. The
assembled system was first covered with a transparent inert adhesive tape to enhance
adhesion between the layers; finally, it was sealed inside a transparent LDPE (low density-
polyethylene) film.
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The Cp values obtained for the flexible supercapacitor units were reported in Table 5
and compared with those of PANI-based composite thin films for both flexible and tradition
supercapacitor applications reported in the literature [50,57–62]. The specific capacitance
of Hy2SC results are higher than Hy1SC and fit well with some values reported in the
literature. Although the specific capacitance of our PANI:PAMPSA composite device is
approximately four times lower than that of the best traditional PANI-based supercapacitor,
it is important to note that the specific capacitance was calculated here considering the total
mass of the PANI:PAMPSA composite. Since PAMPSA is non-electroactive, it does not
contribute to the overall electrochemical capacity of the composite material, resulting in
lower observed specific capacitance values. Moreover, the decrease in specific capacitance
observed during cycling is in line with recent literature.

Table 5. Comparison of capacitance value with data reported in the literature.

Symmetric Cell Capacitance Value
Retain of Specific

Capacitance/
Number of Cycles

Device Electrolyte Ref

Hy1SC 26 ± 3
(Fg−1) Flexible SC 1 M H2SO4 This work

Hy2SC 156 ± 38
(Fg−1) 78%/500 Flexible SC 1 M H2SO4 This work

PANI 150–606
(Fg−1) 55%/1000 Traditional SC 10−3 M HCl a [57]

PANI + Carbon 144–160
(Fg−1) 90%/1000 Traditional SC 1 M H2SO4

a [58]

BP/PANI 347–424
(Fg−1) 70%/1000 Flexible electrode 1 M H2SO4

a [59]

PANI + MWNT 300–430
(Fg−1) 68%/1000 Traditional SC 0.5 M H2SO4

a [60]

PVA/PANI 571
(Fg−1) 75%/2000 Traditional SC 1 M H2SO4

a [50]

PVA/PANI 420
(Fg−1) 93%/2000 Flexible hydrogel

electrode ATMP [61]

PVA/TA/PANI/Carbon
cloth

102.7
(Fg−1) 94.8%/1000 Flexible SC 2.8 M H3PO4 [62]

a from CCD measures; MWNT = multi-wall carbon nanotube; BP = PANI-coated buckypaper; ATMP = trimethy-
lene phosphonic acid.

Table 5 highlights how the production of an all-in-one supercapacitor with an electrode–
electrolyte composite hydrogel is a promising approach for the fabrication of wearable
energy storage devices. The hydrogel structure allows for high ionic conductivity and flexi-
bility, making it well-suited for integration into wearable systems that require conformable,
lightweight energy storage. The all-in-one design could simplify manufacturing compared
to multi-component supercapacitor assemblies. Importantly, the use of a gel electrolyte in
our device represents an advantage over traditional liquid electrolyte supercapacitors, as
it significantly reduces the risk of electrolyte leakage—a common issue with liquid-based
systems. The integrated hydrogel structure further minimizes the potential for leakage,
enhancing the safety and reliability of the wearable energy storage solution.

For a demo usage of HyxSC as flexible supercapacitors, three supercapacitor units have
been prepared as previously described and connected to a red light-emitting diode (LED).

Due to the presence of Ohmic drops within the assembled circuit, the desired potential
for the LED was achieved by connecting in series four 100 Ohm resistors with the three
Hy2SC assemblies. In Figure 6A,B, the equivalent circuit and the three supercapacitors
connected in series consecutively were reported.
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The curve obtained from the plot of LED turn-on maintenance times in function of
supercapacitor charging times showed a linear trend up to 80 s, and the curve achieved a
constant value due to the maximum storage capacitance reached.

In a different configuration obtained by overlapping three supercapacitors in series
(Figure 6D,E), a linear trend persisted, but with a higher maximum storage capacitance
achieved after 150 s.

The last configuration allowed fewer resistors and can be considered a valid option in
view of developing wearable devices.

To further investigate Hy2SC performances under mechanical deformation in a rele-
vant environment, the SC was encapsulated in a silicone shell and subsequentially evalu-
ated in terms of capacitance while undergoing finger bending deformation and after 25
and 50 bending cycles. The charge–discharge curves were recorded with a resting finger
(indicated 0◦), as shown in Figure 7A, and with the finger bent at 90◦ to compare Hy2SC
electrochemical performances while intact or bent and stretched. The considered curves
were obtained between 0 and 0.8 V, with five charge–discharge cycles and 25 µA cm−2 of
current density, with the capacitance values ensuing.

Figure 7B shows the capacitance values expressed as percentages concerning the
pristine device measured at 0◦ after 0, 25, and 50 deformation cycles. These results highlight
that the as-prepared supercapacitor exhibited a higher capacitance value when it was bent.

Moreover, capacitance values increase over time and after bending deformations for
both bent and relaxed measurements. The supercapacitor not only maintains its perfor-
mance, but improves it after mechanical deformation. These unexpected behaviors can
be ascribed to the boosted electrical contact between the hydrogel interlayer and Grafoil
collectors because the charge transfer between electrode and gel plays a key role, as demon-
strated by the low performance of the metal collector in the Swagelok cell. On one hand,
the compression due to the device bending improves the contact between the electrodes
and PANI gel and, at the same time, reduces the charge path in the gel layer. Consequently,
the performance is boosted when the device is bent.
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Figure 7. (A) Digital image of flexible Hy2SC attached to a resting finger and subjected to bending;
(B) variation of the percentage capacitance of Hy2SC before and after 25 and 50 repetitive and
consecutive bending stimuli on a finger. Data were obtained in triplicate from three different samples.

On the other hand, mechanical stress could exfoliate the flaky and irregular structure
of Grafoil, with the effect of improving the electrical contact between the carbonaceous
material and PANI. This phenomenon could lead to deep contact between the two materials
and improve performance.

3. Conclusions

In this work, appropriately modified PVA-based physical hydrogels have been used
to prepare symmetric supercapacitor cells thanks to the self-healing capabilities of PVA.
The cheap and reproducible preparation method guarantees strict contact between the
interfaces of electrode and electrolyte layers with the consequent minimization of the charge
flow resistances. PANI_PAMPSA added to the PVA hydrogel emerges as a good conductive
polymer for the preparation of the electronic layers. Comparing the obtained data from
the mechanical–morphological and electrochemical characterizations of both semi-cells
and symmetric cells that were investigated, 89,000–98,000 MW PVA results as the most
promising material for flexible supercapacitor preparation.

The use of flexible Grafoil sheets as charge collectors as an alternative to the Swagelok
cell electrodes gives the possibility of achieving values of specific capacities of hundreds of
Fg−1, comparable with most systems reported in the literature.

Finally, the actual functioning of HyxSC as a supercapacitor has been verified through
an assembled circuit in which the switching and keeping on of a red light-emitting diode
confirms the ability of this hydrogel system to store and release charge.

Moreover, the stretchability of this kind of material can be an important aspect to
further improve the increase in versatility of these systems for biomedical sensors or elec-
trostimulation applications. Therefore, charge–discharge measurements were conducted to
obtain capacitance responses while the sample was realistically mechanically deformed by
bending and stretching, with an interesting linear capacitance output.

4. Materials and Methods
4.1. Materials and Characterizations

Commercial poly(vinyl alcohol) (PVA) with different molecular weights, (i) 31,000–
50,000 (98.0–98.8% hydrolysis degree), (ii) 89,000–98,000 (+99% hydrolysis degree), were
purchased from Merck KGaA, Darmstadt, Germany. Sulfuric acid (H2SO4, 95.0–98.0%),
ammonium persulfate [APS, (NH4)2S2O8), ≥98%], and aniline (≥99%) were purchased
from Sigma-Aldrich (now Merck KGaA, Darmstadt, Germany); H2SO4 solution 1.0 M was
prepared from dilution of a 95–98% H2SO4, Sigma-Aldrich. Aniline was further purified by
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distillation under nitrogen before use. Poly(2-acrylamido-2-methyl-1-propanesulphonic
acid) (PAMPSA), MW ~ 800,000, 10 wt% aq. sol. was purchased from Acros Organics.

A Perkin Elmer Spectrum Two spectrophotometer (resolution of 0.5 cm−1 in the range
4000–400 cm−1 using 40 scans) was adopted to record the ATR-FTIR spectra. SEM images
were taken by a Renishaw field-emission scanning electron microscope, equipped with
an InLens detector, operating at 10 kV and a current of 80 pA. Before ATR-FTIR and SEM
analysis, the hydrogel samples were washed many times with distilled water, and then
placed into a LabConco lyophilizer working at −50 ◦C and 0.850 mbar for 24 h.

Thermogravimetric Analysis (TGA) was carried out under an inert atmosphere (N2)
heating from 25 ◦C to 600 ◦C, with a scan rate of 20 ◦C/min with a NETZSCH TG 209F1
Libra instrument. Before the analysis, the samples were kept in the oven for 48 h at 50 ◦C.

Tensile strength–strain curves were obtained from 40 mm × 10 mm strips by an
INSTRON testing machine 5900R with a 1 N load cell at room temperature and 1 mm min−1

crosshead speed. Three independent samples were used for each set of hydrogels. The
stress σ and the strain ε were calculated as reported in literature [33] and described in the
Supplementary Materials.

Rheological properties of PVA-H2SO4 hydrogels were determined using an MCR 102
parallel-plate rheometer (Anton Paar, Graz, Austria) as described in our previous work [35].
The water content (Wc%), swelling ratio (Sw%), and porosity of the PVA-H2SO4 hydrogels
were calculated as reported in Supplementary Materials.

4.2. Preparation of PVA-H2SO4 Hydrogel

The hydrogel preparation via the freezing–thawing method is described in our previ-
ous paper [34] and reported in Scheme 1. Briefly, the PVA was added to 15 mL of aqueous
1.0 M H2SO4 solution in agreement with the chosen PVA/H2SO4 weight ratio (optimal
PVA/H2SO4 weight ratio: 1/4 for PVA 31,000–50,000 (Hy1) and 1/11 for PVA 89,000–98,000
(Hy2)) and heated at 70–90 ◦C in a water bath under stirring to obtain a transparent solution
with reduced presence of bubbles. The solution was then transferred into a Petri dish
(8 cm in diameter) and the PVA-H2SO4 solid hydrogel layer (Hyx where x depends on
the molecular weight of PVA used) was obtained after three freeze–thaw cycles between
−18 ◦C for 3 h and room temperature for 1 h
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4.3. Preparation of PVA-H2SO4-PANI_PAMPSA Hydrogel, Semi-Cell, and Integrated Hydrogel
Supercapacitors

The PVA-H2SO4-PANI_PAMPSA hydrogel (Hyx-PANI_PAMPSA, green layer), was pre-
pared from a pre-synthetized PANI_PAMPSA polymeric suspension obtained via an oxida-
tive polymerization process [44] and from PVA with different molecular weight solutions
(Table 6). Briefly, 1.3 g of PVA was dissolved in 7.6 mL 1.0 M H2SO4 solution at 80 ◦C under
stirring at 350 rpm (solution A). Then, 1.3 g of PANI_PAMPSA suspension (3.5% w/w
PANI_PAMPSA) was added to solution A after turning off the heating, and kept under
vigorous stirring until a homogeneous green solution; then, the mixture was placed in an
ultrasonic bath at 70 ◦C for 6 min.

Table 6. Semi-cell and cell hydrogel composition with PANI_PAMPSA suspension/PVA (w/w) ratio
of 0.5.

Semi-Cell Integrated Hydrogel
Supercapacitor

PVA/H2SO4
(w/w)

PVA
(%) PVA MW

S1
Hy1/Hy1-PANI_PAMPSA

Hy1SC
Hy1/Hy1-PANI_PAMPSA/Hy1

1/4 25 31,000–50,000

S2
Hy2/Hy2-PANI_PAMPSA

Hy2SC
Hy2/Hy2-PANI_PAMPSA/Hy2

1/11 9 89,000–98,000

To obtain the double-layer hydrogel semi-cell (Sx: Hyx-PANI_PAMPSA/Hyx), a layer of
Hyx (electrolyte) solution was first poured into a Petri dish of 8 cm diameter and subjected to
30 min of freezing. Afterward, a Hyx-PANI_PAMPSA solution layer (electrode) was deposited
on the top of Hyx (Scheme 2A). Finally, the double-layer hydrogel configuration was
subjected to 6 freeze–thaw cycles. The amount of conductive polymer inside the hydrogel
layer is 0.023 g. A symmetric HyxSC was assembled following the procedures previously
described. In specific, three hydrogel solutions were prepared in three different flasks,
one containing only PVA-H2SO4 and two also containing the PANI_PAMPSA. The two
Petri dishes containing the Hyx-PANI_PAMPSA were placed in the freezer at −18 ◦C for
30 min to ensure a semi-solid consistency. Then, without waiting for its thawing, the
electrolyte solution (Hyx), kept at room temperature, was poured onto the layer of Hyx-
PANI_PAMPSA prepared before. Finally, the second layer of Hyx-PANI_PAMPSA was gently
overlapped as shown in Scheme 2B. After 6 freeze–thaw cycles, the final compact integrated
system (HyxSC) was obtained.

Gels 2024, 10, x FOR PEER REVIEW 14 of 18 
 

 

containing only PVA-H2SO4 and two also containing the PANI_PAMPSA. The two Petri 
dishes containing the Hyx-PANI_PAMPSA were placed in the freezer at −18 °C for 30 min 
to ensure a semi-solid consistency. Then, without waiting for its thawing, the electrolyte 
solution (Hyx), kept at room temperature, was poured onto the layer of Hyx-
PANI_PAMPSA prepared before. Finally, the second layer of Hyx-PANI_PAMPSA was gently 
overlapped as shown in Scheme 2B. After 6 freeze–thaw cycles, the final compact 
integrated system (HyxSC) was obtained. 

Table 6. Semi-cell and cell hydrogel composition with PANI_PAMPSA suspension/PVA (w/w) ratio 
of 0.5. 

Semi-Cell 
Integrated Hydrogel 

Supercapacitor 
PVA/H2SO4 

(w/w) 
PVA 
(%) 

PVA MW 

S1 
Hy1/Hy1-PANI_PAMPSA 

Hy1SC 
Hy1/Hy1-PANI_PAMPSA/Hy1 

1/4 25 31,000–50,000 

S2 
Hy2/Hy2-PANI_PAMPSA 

Hy2SC 
Hy2/Hy2-PANI_PAMPSA/Hy2 

1/11 9 89,000–98,000 

  
Scheme 2. Assembly schemes of (A) semi-cell and (B) integrated hydrogel supercapacitors. 

4.4. Material Characterizations 
A Perkin Elmer Spectrum Two spectrophotometer, (resolution of 0.5 cm−1 in the range 

4000–400 cm−1 using 40 scans) was adopted to record the ATR-FTIR Spectra. 
SEM images were taken by a Renishaw field-emission scanning electron microscope, 

equipped with an InLens detector, operating at 10 kV and a current of 80 pA. 
Before infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM), 

the PVA-H2SO4 hydrogel samples were first washed many times with distilled water, 
frozen at –19 °C overnight, and then placed into a LabConco lyophilizer working at −50 
°C and 0.850 mbar for 24 h. 

Thermogravimetric analysis (TGA) was carried out under an inert atmosphere (N2) 
heating from 25 °C to 600 °C, with a scan rate of 20 °C/min with a NETZSCH TG 209F1 
Libra instrument. Before the analysis, the samples were kept in the oven for 48 h at 50 °C. 

Tensile strength–strain curves were obtained from 40 mm x 10 mm strips by an 
INSTRON testing machine 5900R with a 1 N load cell at room temperature and 1 mm 
min−1 crosshead speed. Three independent samples were used for each set of hydrogels. 

Scheme 2. Assembly schemes of (A) semi-cell and (B) integrated hydrogel supercapacitors.



Gels 2024, 10, 458 14 of 17

4.4. Material Characterizations

A Perkin Elmer Spectrum Two spectrophotometer, (resolution of 0.5 cm−1 in the range
4000–400 cm−1 using 40 scans) was adopted to record the ATR-FTIR Spectra.

SEM images were taken by a Renishaw field-emission scanning electron microscope,
equipped with an InLens detector, operating at 10 kV and a current of 80 pA.

Before infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM), the
PVA-H2SO4 hydrogel samples were first washed many times with distilled water, frozen
at –19 ◦C overnight, and then placed into a LabConco lyophilizer working at −50 ◦C and
0.850 mbar for 24 h.

Thermogravimetric analysis (TGA) was carried out under an inert atmosphere (N2)
heating from 25 ◦C to 600 ◦C, with a scan rate of 20 ◦C/min with a NETZSCH TG 209F1
Libra instrument. Before the analysis, the samples were kept in the oven for 48 h at 50 ◦C.

Tensile strength–strain curves were obtained from 40 mm × 10 mm strips by an
INSTRON testing machine 5900R with a 1 N load cell at room temperature and 1 mm
min−1 crosshead speed. Three independent samples were used for each set of hydrogels.

The stress σ and the strain ε were calculated as reported in literature [31] and described
in the Supplementary Materials.

Rheological properties of PVA-H2SO4 hydrogels were determined using an MCR 102
parallel-plate rheometer (Anton Paar, Graz, Austria) as described in our previous work [33].

The water content (Wc%), swelling ratio (Sw%), and porosity of the PVA-H2SO4 hydro-
gels were calculated as reported in the literature and in detail reported in Supplementary
Materials.

4.5. Electrochemical Characterization

The ionic conductive properties were obtained from an electrochemical workstation
Autolab GSTAT128 N (Metrohm-Autolab) controlled by NOVA 2.10 software via electro-
chemical impedance spectroscopy (EIS) analysis. A Swagelok-type cell (two 316 stainless
steel electrodes model with a testing diameter of 1.0 cm, area = 0.785 cm2, Figure S5A)
was used. EIS was conducted at room temperature, (25 ◦C) at the AC voltage amplitude
of 10 mV, and frequency range of 0.01–105 Hz. The ionic conductivity (σc, S cm−1) was
calculated with the following equation [32]:

σc =
s

RA
(5)

where s is the thickness of the sample (cm), R is the ionic resistance (Ω), and A (cm2) is the
area of the analyzed sample. All the samples investigated were cut with a circular metal
mold. A digital caliber was used to measure the sample’s thickness.

The electronic conductive properties were investigated with 4 probe measurements
carried out with a Keysight B2902A source meter unit. The inner electrodes measure the
voltage while a constant current flow is forced between the two outer electrodes (Figure
S5B and detail in Supplementary Materials).

The specific capacitance (Cp) was evaluated from galvanostatic charge–discharge
(GCD) tests carried out on semi-cells hydrogel at a current density of 0.025 mA cm−2 in a
voltage range between 0.00 and 0.90 V, according to the equation:

Cp =
I
m

∆t
∆V

(6)

where I (A) is the discharge current, m (g) is the mass, ∆t is the difference between the
end-of-discharge time and the end-of-charge time, and ∆V is the difference between the
end-of-charge potential and the end-of-discharge potential [49].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels10070458/s1 (Additional material characterization (ATR;
Stress/Strain curves) [32,56,63–65]. Figure S1: (A) Swagelok type cell with 316 stainless steel caps of
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1.0 cm diameter and configuration for electrochemical measurements; (B) the electronic conductive
properties resistance measurements; Figure S2: (A) porosity (%) distribution of WL and GL in
Sx; (B) TGA curves of WL and GL of Sx; Figure S3: ATR-FTIR spectra of PVA, Sx-WL Sx-GL and
PANI_PAMPSA; Figure S4: Tensile stress/strain curves of S1 and S2; Figure S5: (A) Dynamic viscosity
(η’) versus angular frequency curve; (B) Frequency sweep curves; (C) Tanδ versus angular frequency
curve; (D) Amplitude sweep curves; (E) 3ITT test of PVA-based hydrogels.
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