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Abstract: Acute febrile illness (AFI) and severe neurological disorders (SNDs) often present diagnostic
challenges due to their potential origins from a wide range of infectious agents. Nanopore metage-
nomics is emerging as a powerful tool for identifying the microorganisms potentially responsible
for these undiagnosed clinical cases. In this study, we aim to shed light on the etiological agents
underlying AFI and SND cases that conventional diagnostic methods have not been able to fully
elucidate. Our approach involved analyzing samples from fourteen hospitalized patients using a com-
prehensive nanopore metagenomic approach. This process included RNA extraction and enrichment
using the SMART-9N protocol, followed by nanopore sequencing. Subsequent steps involved quality
control, host DNA /cDNA removal, de novo genome assembly, and taxonomic classification. Our
findings in AFI cases revealed a spectrum of disease-associated microbes, including Escherichia coli,
Streptococcus sp., Human Immunodeficiency Virus 1 (Subtype B), and Human Pegivirus. Similarly,
SND cases revealed the presence of pathogens such as Escherichia coli, Clostridium sp., and Dengue
virus type 2 (Genotype-II lineage). This study employed a metagenomic analysis method, demon-
strating its efficiency and adaptability in pathogen identification. Our investigation successfully
identified pathogens likely associated with AFI and SNDs, underscoring the feasibility of retrieving
near-complete genomes from RNA viruses. These findings offer promising prospects for advancing
our understanding and control of infectious diseases, by facilitating detailed genomic analysis which
is critical for developing targeted interventions and therapeutic strategies.
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1. Introduction

Acute febrile illness (AFI) is a clinical syndrome characterized by fever (>38.0 °C)
and often accompanied by various non-specific symptoms such as headache, rash, and
muscle and joint pains. This illness frequently necessitates hospitalization and extensive
investigations to determine its cause, which is primarily due to infectious pathogens that
vary epidemiologically around the world. For instance, malaria is the predominant cause
of AFIlin Africa, whereas in Latin America and Asia, dengue and leptospirosis are more
common causes of this syndrome [1,2].

Despite advancements in medical diagnostics, a significant proportion of AFI cases re-
main unresolved. Conventional diagnostic approaches often yield inconclusive or negative
results. Studies indicate that nearly 50% of AFI cases remain undiagnosed, a figure that
may be higher due to the frequent misdiagnosis of AFI as arboviral disease in primary care
settings, where no further investigations are conducted [3,4].

Severe neurological disorders (SNDs) encompass a range of conditions that impact the
brain, spinal cord, and nerves. Symptoms of SNDs may include headaches, taste and smell
dysfunction, muscle weakness, paralysis, a loss of sensation, poor coordination, confusion,
seizures, and pain. SNDs are the second leading cause of death globally, with various
causes including infectious bacteria, fungi, and particularly viruses [5,6].

Due to the non-specific symptoms and the wide range of associated infections, SNDs
and AFI present significant diagnostic challenges. In many cases, supplementary method-
ologies are necessary to determine the etiological origins of these complex diseases. Among
these methodologies, metagenomics has emerged as a revolutionary approach. It provides
a comprehensive analysis of the microbial composition within biological samples. This
technique facilitates the identification of potential emerging and re-emerging pathogens
through nucleotide sequence analysis and generates valuable genomic data. These in-
sights enhance our understanding of disease biology, host—pathogen interactions, and
epidemiology [7].

The application of metagenomics in the detection of infectious agents, especially
those elusive to conventional diagnostic methods, has seen a marked increase in recent
years [8,9]. Metagenomic analysis leverages a variety of next-generation sequencing (NGS)
technologies. Among these, the MinlON sequencing platform is increasingly favored
due to its capacity to rapidly generate substantial data volumes. Its long-read sequencing
capabilities address the challenges associated with ambiguous repetitive regions, enhancing
genomic contiguity. The portability and cost-effectiveness of this technology further bolster
its adoption in genomic research [10]. As the epidemiological landscape of infectious
diseases continues to shift, the relevance of sophisticated metagenomic methodologies
becomes more pronounced. These technologies are crucial in elucidating the intricate
interactions between pathogens and their hosts, aiming to mitigate the public health burden
of diseases such as AFI and SND. They are instrumental in safeguarding public health in
an era characterized by the frequent emergence and re-emergence of infectious diseases.

In light of these capabilities, this study sought to employ the nanopore sequencing
platform to identify and characterize microorganisms linked to febrile or neurological
disorders of unknown etiology. The investigation focused on a cohort of hospitalized
patients with undiagnosed cases of AFI or SND, demonstrating the utility of metagenomics
in resolving complex diagnostic challenges in clinical settings.

2. Materials and Methods
2.1. Clinical Sampling

The Eduardo de Menezes Hospital in Belo Horizonte, Brazil, plays a crucial role in
healthcare by conducting etiological investigations for patients hospitalized with condi-
tions such as acute febrile illness or severe neurological disorders. The hospital ensures
the highest biosafety standards during the collection and identification of samples, fol-
lowing medical requests. Collaborating with the Ezequiel Dias Foundation (FUNED), the
hospital aims to uncover possible links between infections with inconclusive diagnoses
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and microbial infections. This is carried out through extensive serological and molecular
biology investigations targeting arboviruses, hepatitis, rickettsiosis, hantavirus, leptospiro-
sis, and other pathogens. Samples are collected based on clinical information and medical
requests and may include serum, whole blood, swabs, or cerebrospinal fluid. If an RNA
virus is suspected, blood is also collected in a Tempus tube, which contains chemicals that
preserve RNA for a longer period. Despite these efforts, in 2022, fourteen patients had
inconclusive results even after serological and molecular biology investigations. As an
alternative approach to identify the etiological agents, these patient samples were subjected
to metagenomic analysis (Figure 1).
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Figure 1. Metagenomic workflow analysis of AFI and SND in hospitalized patients. (1) Sample
collection: Collection of biological samples from hospitalized patients diagnosed with acute febrile
illness [AFI] or severe neurological disorder [SND] of unidentified origin. (2) Laboratory Processing:
Samples underwent RNA extraction using the SMART-9N protocol, followed by metagenomic
sequencing employing nanopore technology. (3) Data Analysis: Sequences were subjected to quality
control, the removal of host genetic material, and the generation of contigs through de novo genome
assembly. These contigs were then classified taxonomically. (4) Pathogen Identification and Further
Analysis: Identified pathogens with coverage exceeding 80% were used to assemble a consensus
genome. The completeness of these genomes was assessed, culminating in the construction of a
phylogenetic tree.

2.2. RNA Extraction and Nanopore Sequencing

RNA was extracted from a range of 200 to 500 uL of biological samples using the High
Pure RNA Isolation Kit (Hoffmann-La Roche, Basel, Switzerland) and concentrated using
the RNA Clean & Concentrator-5 (Zymo Research, Irvine, CA, USA). The samples then
underwent the SMART-9N PCR protocol [11], utilizing a three-random-primed SMART-Seq
model compatible with Oxford Nanopore Technologies (ONT) adapters. This protocol is
particularly effective in enhancing the detection and sequencing of pathogen genomes,
including RNA viruses, and facilitates the identification and sequencing of DNA viruses,
bacteria, fungi, eukaryotes, and archaea. Library preparation involved multiple steps:
PCR purification using AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA), the
normalization of DNA concentration, purification, end repair, and dA-tailing using the
Ultra II End Prep Kit (New England Biolabs, Ipswich, MA, USA). This was followed by
further purification, native barcode ligation using the PCR Barcoding Expansion (Ox-
ford Nanopore Technologies, Oxford, UK), and adapter ligation with the Adapter Mix II
Expansion protocol (Oxford Nanopore Technologies, UK).
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The genomic material at each step was quantified using the Qubit dsDNA Quantifica-
tion Assay Kit (Life Technologies, Carlsbad, CA, USA). Following barcoding, the samples
were pooled and loaded into an Oxford Nanopore MinlON R9.4.1 flow cell, primed accord-
ing to the manufacturer’s instructions using the Flow Cell Priming Kit (Oxford Nanopore
Technologies, UK). Sequencing was conducted on the ONT MinION Mk1B device using
MinKNOW software.

The initial sequencing run generated raw data in FAST5 format, capturing electrical
signals. These files were processed for base calling, converting them to FASTQ format, and
demultiplexed using Guppy software, developed by ONT [12].

2.3. De Novo Genome Assembly and Taxonomic Classification

The resulting FASTQ files were analyzed using the open-source metagenomic cloud-
pipeline provided by the Chan-Zuckerberg IDseq platform [13]. This analysis involved a
series of steps: initial quality assessment using Fastp software [14], followed by the removal
of human host sequences using minimap2 [15]. Subsequently, the remaining reads were
de novo-assembled using Flye software, specifically employing the metaFlye parameter
tailored for metagenomic analysis [16]. The resulting contigs and unaligned reads were
then classified using the DIAMOND software [17] and cross-referenced with the NCBI
Nucleotide database (NT). The complete list of detected microorganisms is provided in
Supplementary Table S1.

2.4. Phylogenetic Analysis

Pathogens with genome coverage exceeding 80% were subjected to genome assembly
using the Genome Detective online tool [18]. The resulting consensus genomes were
then assessed for quality and completeness using CheckV software [19]. These genomic
sequences were aligned to reference genomes retrieved from the NCBI database using
MAFFT with default parameters [20]. Manual curation was performed using Aliview [21]
to eliminate biological artifacts. Phylogenetic trees were constructed using Maximum
Likelihood (ML) estimation performed by IQ-TREE2, employing the general time reversible
(GTR) model of nucleotide substitution and supported by 1000 bootstrap replicates, with
the command iqtree -s archive.fasta -m GTR+F+R5 -bb 1000. The final visualization of the
phylogenetic trees was facilitated using FigTree software. The datasets used to build the
phylogenetic trees are in Supplementary Table S2.

3. Results

In this study, nine hospitalized patients were diagnosed with acute febrile illness (AFI),
while three exhibited symptoms indicative of severe neurological disease (SND). Notably,
two AFI patients lacked sufficient epidemiological data, resulting in their exclusion from
further analysis. Table 1 summarizes the epidemiological data of the included patients,
showing an age distribution ranging from 14 to 61 years. The gender distribution was
equal, with 50% female and 50% male participants. All patients were residents of Minas
Gerais, predominantly from Belo Horizonte, although some were from nearby cities such
as Ouro Preto or Ribeirao das Neves.

Clinically, the hospitalized patients presented a variety of symptoms that necessitated
their admission. Those with AFI commonly reported fever, myalgia, arthralgia, and
headaches. In contrast, SND cases were primarily associated with symptoms like headaches,
seizures, and potential neurosyphilis. A total of 14 samples were analyzed from these
12 patients, with 2 individuals (patients 7 and 11) contributing 2 samples each. The types
of samples included five whole blood, two cerebrospinal fluid, five serum, and two RNA
Tempus blood samples.
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Table 1. Epidemiological information from the patients analyzed in this study.
Patient Gender Age Cit State Clinical Symptoms Sample
& y Classification ymp P
Belo . .
1 Male 53 . Minas Gerais SND Headaches Serum
Horizonte
Belo Fever, myalgia, arthralgia,
2 Female 38 . Minas Gerais AFI fatigue, headache, and skin Tempus
Horizonte .
lesions (rash)
3 Male 38 Belo Minas Gerais SND Headache, convulsive seizure, ) 10 1004
Horizonte and neurological symptoms
4 Male 53 Ouro Preto  Minas Gerais SND Suggestive O.f Teuros yp.h.lhs Whole blood
and bacterial meningitis
5 Female 43 B.e o Minas Gerais AFI Myalgia, arthralg1.a ,fatigue, Serum
Horizonte and petechiae
6 Male 34 B.e lo Minas Gerais AFI Fever, myalgia, h.eadache, and Whole blood
Horizonte petechiae
7 Female 97 Ribeirao das Minas Gerais AFI Fever, cough, myalgla, fatigue, Tempus,
Neves and petechiae serum
8 Female 14 B.e lo Minas Gerais AFI Fever, myalgia, and headache = Whole blood
Horizonte
Belo . .
9 Male 37 . Minas Gerais AFI Fever Serum
Horizonte
10 Male 61 Betim Minas Gerais AFI Fever Serum
Belo . . Fever and subacute Cerebrospinal
1 Female 23 Horizonte Minas Gerais AL myeloradiculopathy fluids
Belo Fever, myalgia, skin lesions,
12 Female 32 . Minas Gerais AFI immunosuppression, and Whole blood
Horizonte

acute hepatitis

Among the patients, 25% were clinically classified as SND cases (n = 3), while 75%
were classified as AFI cases (n = 9) (Figure 2A). Among the SND cases, nine microorganisms
were identified, with three pathogens (34%) associated with SND: Escherichia coli (33%),
Clostridium sp. (33%), and Dengue virus type 2 (33%) (Figure 2B,C).

Regarding the AFI cases, a total of 21 microorganisms were identified, with 8 (38%)
of them being pathogens associated with AFI symptoms (Figure 2D). Bacterial detection
was predominant, with Escherichia coli (76%) being the most prevalent, followed by Strep-
tococcus sp. (8%). Furthermore, viruses were identified in two cases, including Human
Immunodeficiency Virus 1 (HIV-1) (8%), and Human pegivirus (HPgV) (8%) (Figure 2E).

Among the bacteria and fungi detected, Escherichia coli was identified in all types
of collected samples and was associated with a variety of symptoms including fever,
myalgia, arthralgia, fatigue, headaches, skin lesions, petechiae, and non-specific signs
of neurosyphilis and meningitis. While E. coli is often considered part of the normal
microbiome, it can also act as a pathogen, particularly when it is the sole pathogen detected
or depending on the type of sample in which it is found.

Clostridium species were identified in a serum sample from a hospitalized patient
with SND presenting severe headache symptoms. Given the range of diseases caused by
different species of Clostridium, their detection cannot be overlooked. A similar situation
occurred with Streptococcus species, which were found in a whole blood sample from an AFI
patient exhibiting symptoms of fever, myalgia, headaches, and petechiae. In the sequencing
control, no microorganisms were detected in the contigs, which highlights the absence of
cross-contamination.

The disease-associated bacterial detections had a diverse range of read counting, with
some bacterial detections presenting a high number of reads. However, all exhibited very
low coverage and depth, which hindered further analysis (Table 2). In contrast, the viruses
detected were sequenced with a high number of reads and great quality, allowing the
assembly of near-complete genomes of HIV, HPgV, and Dengue virus type 2 (DENV-2)
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with the current protocol. This enabled the construction of a phylogenetic tree to identify
viral lineages associated with these infections (Figure 3).
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Figure 2. Overview of the proportion of cases per classification and microorganisms identified.
(A) Percentage of cases per clinical classification. (B) Proportion of SND-associated microorganisms
in the samples. (C) SND-associated microorganisms identified: Clostridium sp. (light green), E. coli
(dark green) and DENV-2 (light orange). (D) Proportion of AFI-associated microorganisms in the
samples. (E) AFI-associated microorganisms identified: E. coli (dark green), Streptococcus sp. (light
green), HIV (orange) and HPgV (dark orange).
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Figure 3. Genome coverage of the viral pathogens identified. (A) The genome coverage of the HIV

genome, (B) the genome coverage of the HPgV genome, and (C) the genome coverage of the Dengue
virus 2 genome.
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Table 2. Sequencing data from the detected disease-associated microorganisms.

Patient Sample Type Pathogen Reads Contigs Coverage Depth
1 Serum Clostridium sp. 6554 1 0.8% 0.25x
2 Tempus E. coli 63 1 0.1% 0.005x
3 Whole blood DENV-2 72,078 3 99.8% 1145x
4 Whole blood E. coli 6939 1 0.1% 0.61x
5 Serum E. coli 10,968 1 0.3% 1x

HPgV 511 2 86.2% 41x
6 Whole blood E.col 4635 1 0.4% 0.18x
Streptococcus sp. 1347 1 0.1% 0.17x
7 Tempus E. coli 173 1 0.7% 0.012x
Serum E. coli 9889 1 0.1% 0.95x
8 Whole blood E. coli 5280 1 0.1% 0.41x
HIV-1 52,420 2 92% 1805 x
? Serum E. coli 13,778 1 0.2% 12x
10 Serum E. coli 22,622 1 0.1% 1.6X%
Cerebrospinal fluid 1 E. coli 2084 1 0.1% 0.19x
H Cerebrospinal fluid 2 E. coli 1703 1 0.2% 0.11x
12 Whole blood - - - - -
13 Negative control E. coli 27 - -

The significance of these findings is highlighted by the identification of specific viral
subtypes, as demonstrated by the confirmation of HIV in a serum sample from a patient
diagnosed with acute febrile illness (AFI). This virus was phylogenetically classified as HIV
type 1, subtype B (Figure 4), thereby elucidating the viral subtype present in the patient.
This classification enhances our understanding of the pathogenic landscape within the AFI
patient cohort.

HIV-1 Subtypes
@ Subtype F1
@ Subtype F2
@ Subtype K
@ Subtype B
@ Subtype D
(@ Subtype C
@ Subtype L
(O Subtype H
(O Subtype G
@ Subtype A
@ Subtype )
() Subtype N
() Subtype O
© Subtype P

100

100

4{ "

007

Figure 4. Phylogenetic tree of the HIV genome analysis. The sample from the study is the highlighted
sample grouped with subtype B.
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The HPgV-positive sample was obtained from a whole blood specimen, which also
tested positive for Escherichia coli and Streptococcus species. This sample was associ-
ated with symptoms typical of AFI, including fever, myalgia, headaches, and petechiae
on the skin. The genome analysis of the sample yielded an 86% complete genome of
HPgV. Subsequent phylogenetic analysis classified this virus as belonging to the human
strain HPgV-1 (Figures 3C and 5), providing insights into the viral strains affecting this
patient population.

From the DENV-2 positive case, a genome was recovered with 99% coverage (Figure 4,
which was classified as belonging to genotype 1II, also known as the cosmopolitan lineage
(Figure 6). This virus was detected in a whole blood sample from a patient diagnosed with
a severe neurological disorder (SND), presenting with symptoms including headaches,
convulsive seizures, and other nonspecific neurological symptoms.

HPgV Genotypes

. Genotype 1 @

O Genotype 2A 9 O O

O Genotype 2B _ |

@ Genotype3 10

O Genotype 4

O Genotype 5

‘ Genotype 7

0.03 O

Figure 5. Phylogenetic tree of the HPgV genome analysis. The study’s sample is the one that is
highlighted in the human clade.
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DENV-2 Genotypes

@ Genotype |

@ Genotype Il

@ Genotype Il

100
@
100 I_O
O

0.009

Figure 6. Phylogenetic tree of the DENV2 genome analysis. Comparing the detected genotypes of
DENV?2 in Brazil, the sample from the study is the highlighted sample that is grouped in genotype II.

4. Discussion

The utilization of metagenomic analysis to elucidate the etiology of AFI and SNDs
with unknown origins presents a significant advancement in clinical medicine. The ability
to identify a specific etiology can greatly enhance the efficacy of treatments for hospitalized
patients. In our research, the application of metagenomic techniques facilitated the iden-
tification of diverse microorganisms. This detection capability potentially elucidates the
etiological factors underlying the symptoms and resultant hospitalizations of the patients
included in the study. Notably, Escherichia coli was the most commonly identified pathogen.
While E. coli is a typical constituent of the human microbiome, under certain conditions,
pathogenic strains can lead to various diseases, including acute febrile and neurological
disorders [22-26]. The detection of E. coli in critical samples such as cerebrospinal fluid,
whole blood, and serum necessitates heightened attention due to its potential to trigger
systemic inflammatory responses, potentially leading to septicemia [27]. Additionally, our
metagenomic analysis recovered nearly complete genomes of several viruses, facilitating
further analyses to determine their lineages and genotypes. Such information is crucial for
developing targeted treatment strategies and understanding the epidemiological character-
istics of these viruses within the population. For example, HIV was identified and classified
phylogenetically as HIV type 1, subtype B, which is prevalent both globally and in the
Minas Gerais state [28,29]. This subtype was also detected in a patient who had previously
reported being HIV-positive but had elected not to pursue treatment in 2020. This case
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underscores the utility of metagenomic analysis in identifying secondary infections that
could explain the patient’s hospitalization for AFL

The study also highlighted the controversial pathogenicity of HPgV, detected in a
sample co-infected with Streptococcus. While some studies do not associate HPgV with any
specific human diseases, others suggest potential links to conditions such as lymphoma
or brain encephalitis [30]. This ambiguity points to the need for further research to clarify
the clinical significance of HPgV, particularly when found in conjunction with typical
arbovirus-like symptoms such as fever, myalgia, headache, and petechiae. Our findings
also identified pathogens associated with SNDs, including Clostridium sp. and DENV-2.
The presence of the Clostridium genus, known for its association with severe neurologi-
cal symptoms, raises public health concerns, although the specific species could not be
determined [31,32]. Moreover, DENV-2 is a well-known neurological pathogen [33,34],
which genetically belonged to the genotype II cosmopolitan lineage, recently reported to be
spreading in Brazil and also specifically in Minas Gerais State [35-37]. This lineage was
first detected in the region in April 2022 and has since been prevalent, highlighting the
benefits of metagenomic analysis in tracking the spread and evolution of pathogens.

5. Conclusions

In conclusion, our metagenomic analysis has yielded significant insights into the
pathogens associated with AFI and SND. This comprehensive approach has delineated
a spectrum of bacteria, fungi, and viruses, illuminating their potential roles in the patho-
genesis of these conditions. The precise identification of these pathogens, along with their
genetic profiles and involvement in co-infection scenarios, substantially augments our
capacity to formulate timely and specifically targeted therapeutic strategies. Furthermore,
this study underscores the critical need for continued research into the pathogenicity of
relatively unexplored microbes such as HPgV. The outcomes of this research not only
contribute to a deeper understanding of infectious disease dynamics but also enhance the
implementation of metagenomic methodologies in clinical diagnostics and public health,
thereby laying the groundwork for future exploratory and applied research in this field.
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