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Abstract: Bacterial cellulose (BC) presents significant promise as a biomaterial, boasting unique
qualities such as exceptional cellulose purity, robust mechanical strength, heightened crystalline
structure, and biodegradability. Several studies have highlighted specific effects, such as the impact
of dehydration/rehydration on BC tensile strength, the influence of polymer treatment methods on
mechanical properties, the correlation between microorganism type, drying method, and Young’s
modulus value, and the relationship between culture medium composition, pH, and crystallinity.
Drying methods are crucial to the structure, performance, and application of BC films. Research
findings indicate that the method used for drying can influence the mechanical properties of BC
films, including parameters such as tensile strength, Young’s modulus, and water absorption capacity,
as well as the micromorphology, crystallinity, and thermal characteristics of the material. Their
versatility makes them potential biomaterials applicable in various fields, including thermal and
acoustic insulation, owing to their distinct thermal and mechanical attributes. This review delves into
the thermal and mechanical behavior of bacterial cellulose aerogels, which are profoundly impacted
by their drying mechanism.

Keywords: bacterial cellulose hydrogel; lyophilization; thermal and mechanical behavior; structure;
drying methods

1. Introduction

In recent years, there has been a growing emphasis on the development of bio-based
composites. Many studies have thoroughly explored different categories of bio-based
materials, including cellulose and its derivatives, chitin-chitosan, polylactic acid, and poly-
butylene succinate. These materials are recognized for their potential environmental safety
and non-toxicity, even when they reach the end-of-use stage [1–3]. Consequently, bio-based
materials have seen widespread development, spanning from academic research to indus-
trial adoption across various applications. These applications include infrastructure and
building materials, automotive components, food packaging, as well as medical and phar-
maceutical technologies. Moreover, the exploration of bio-based materials has centered on
the concept of the bio-economy, which entails leveraging biotechnology-driven economic
activities to establish industrial processes [4]. Cellulose is a widely available, eco-friendly
material known for its mechanical strength, biocompatibility, hydrophilicity, and ther-
mostability [5]. Traditionally used in energy, construction, fabrics, and paper production,
technological advancements have expanded its applications to chemical-based materials.
Research has investigated its use in pharmaceuticals, membranes and filtration, drug de-
livery, and as a stabilizer and emulsifier [6–8]. Additionally, cellulose has been advanced
for paper-based technologies, such as bioactive paper for clinical diagnosis, environmental
monitoring, food quality control, and biosensors. Innovations include gamma-irradiated
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paper and biohybrid cellulose paper with wet strength properties. However, producing
high-purity cellulose requires removing lignin, hemicellulose, and pectin, a process that
is pollution-prone and energy-intensive (about 1000 kWh/ton) with costly waste treat-
ment [9,10]. Consequently, developing highly pure and environmentally friendly cellulose
remains a key focus [11].

Aerogels are extremely porous open-cell solids with roughly 90% porosity produced by
a supercritical drying method. Their relatively low thermal conductivity (from 0.013 W/m K)
results in them being ideal thermal super-insulators. The low density (80–200 kg/m3) and
complicated solid nanostructure, with mesopore widths ranging from 4 to 20 nm, reduce
heat conduction and contribute to their high efficiency [12–14]. Aerogels can be made from
a variety of resources, including inorganic compounds, synthetic polymers, and natural
polymers [15–17], such as cellulose [18]. The initial component defines the particular kind
of aerogel formed [19,20]. Cellulose aerogels are notable for their renewability, biocom-
patibility, and biodegradability, along with low density (0.5–350 kg/m3), high porosity
(84.0–99.9%), and a large specific surface area. These characteristics make them highly
promising materials for the 21st century. They also offer superior compressive strength
(0.0052–16.67 MPa) and excellent biodegradability. Eco-friendly and versatile, cellulose
aerogels are ideal for applications in adsorption and oil/water separation, heat separa-
tion, biomedical materials, and metal nanoparticle/metal oxide carriers and as precursors
for carbon aerogels. Their high reusability reduces economic losses, and their natural
decomposition prevents additional environmental harm [21,22].

Bacterial cellulose represents an alternative source of cellulose distinct from plant-
derived cellulose. It is synthesized by various genera of bacteria, including Acetobacter,
Achromobacter, Agrobacterium, and Sarcina [23]. It serves as a hydrogel due to its inherent
purity and remarkable hydrophilicity, necessitating no additional treatment and preserving
its original properties. These distinctive attributes of bacterial cellulose pave the way for
numerous novel applications, as its properties can be tailored by adjusting the fermentation
process. In comparison to plant cellulose, bacterial cellulose offers several advantages.
Foremost among these is its exceptional purity, as it lacks the hemicelluloses and lignin
found in plant cellulose, thereby reducing the need for extensive processing steps. Addi-
tionally, the structure of bacterial cellulose is superior, characterized by longer and finer
fiber lengths that are approximately a hundred times smaller in proportion, contribut-
ing to its enhanced strength and fineness compared to plant cellulose [24]. The cellulose
chains are bound together by both intra- and intermolecular hydrogen bonds, which gives
BC its specific properties like exceptional purity, strong water retention, poor solubility,
mechanical resilience, plasticity, biodegradability, biocompatibility, non-toxicity, and non-
allergenicity [25]. Furthermore, its physiochemical qualities make it desirable for usage
in both the textile and paper industries along with the other applications because of its
multifunctionality. Its Young’s modulus is 20,000 mPa for sheets and 130,000 mPa for single
fibers compared to plant cellulose, which is 25–200 mPa [26].

The properties of BC, such as degree of polymerization, crystallinity, and moisture
absorption, can undergo alterations depending on various factors, including culturing
conditions, the type of microorganism, and nutrients present in the growth medium. Several
studies have highlighted specific effects, such as the impact of dehydration/rehydration
on BC tensile strength [27]; the influence of polymer treatment methods on mechanical
properties [28]; the correlation between microorganism type, drying method, and Young’s
modulus value [29]; and the relationship between culture medium composition, pH, and
crystallinity [30]. Furthermore, incorporating collagen between bacterial cellulose fibers
has been shown to improve thermal stability and cytocompatibility through collagen
fibrillogenesis, contributing to enhanced properties of BC-based materials [31]. Drying
methods are crucial to the structure, performance, and application of BC films [32]. Research
findings indicate that the method used for drying can influence the mechanical properties
of bacterial cellulose (BC) films, including parameters such as tensile strength, Young’s
modulus, and water absorption capacity, as well as the micromorphology, crystallinity,
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and thermal characteristics of the material [24,32–34]. This review examines the effects of
various drying techniques on the thermal and mechanical properties of bacterial cellulose
aerogels and their composites, highlighting their multifunctional applications and future
potential. The review mostly encompasses studies from 2014 to 2024, focusing on different
bacterial cellulose aerogels and comparing the impacts of various drying methods on their
properties. Non-peer-reviewed articles were excluded from the analysis.

2. Production of Bacterial Cellulose Aerogel

The cellulose produced by bacteria (BC) stands out from other cellulose sources for en-
vironmentally friendly applications. BC, unlike plant cellulose, is an extracellular polymer,
which allows for high-purity extraction devoid of lignin and hemicellulose [35,36]. It has a
high degree of polymerization and crystallinity, as well as a unique micro- or nano-sized
fiber network, which increases its surface-to-volume ratio [37]. Bacterial cellulose (BC)
production is mostly dependent on the nutritional makeup of the production medium,
particularly carbon sources. Although many carbon sources and culture mediums have
been investigated, the Hestrin–Schramm (HS) medium is the most often utilized [38,39].
However, its high cost, which accounts for 30% of overall production expenses, presents a
significant barrier to commercial-scale fabrication [39,40]. Using agro-industrial waste for
sustainable BC production is a desirable and cost-effective option [41,42]. Additionally, the
selection of a BC-producing bacterium is critical [43], and cellulose production by bacte-
ria has been observed across various species. Among the bacterial strains identified, the
majority belong to Gram-negative species such as Acetobacter, Azotobacter, Rhizobium, Pseu-
domonas, Salmonella, Agrobacterium, Aerobacter, Achromobacter, and Alcaligenes. Additionally,
Gram-positive species like Sarcina ventriculi, Salmonella, and Escherichia also demonstrate the
capability to produce cellulose. Among the various bacterial strains identified, A. xylinum is
recognized as one of the most promising strains for cellulose production due to its large pro-
duction capacity, made possible by many copies of BC synthesis genes in its genome [38,44].
It has been documented that under optimal conditions, bacteria can convert nearly 50% of
the carbon source provided in the medium into cellulose, forming a pellicle. Specifically, A.
xylinum is a Gram-negative aerobic strain characterized by its rod-shaped morphology. This
bacterium produces cellulose through its primary metabolic activity, forming interwoven
ribbons. A notable advantage of A. xylinum is its ability to produce cellulose from various
carbon sources. BC finds application in diverse fields, necessitating the optimization of
its production for economic viability. Substantial research has explored optimal growth
conditions to achieve high BC yields across different media, cultivation techniques, and
environmental factors, including agitation levels, carbon and nitrogen sources, incubation
duration, and medium volume [45,46]. Additional factors such as microorganism type, pH
levels, and oxygen supply have been thoroughly investigated as they directly influence the
characteristics of BC. Such studies are essential for comprehending how growth conditions
affect the morphology and properties of BC [11]. As the cellulose structure and its physical
and mechanical characteristics are purely affected by the cultivation process of bacterial
cellulose, the methods for producing bacterial cellulose are critical parameters. Generally,
cellulose production by bacteria occurs under two distinct conditions: (i) static conditions
and (ii) agitated conditions (Figure 1 depicts the methods). Under static conditions, the
bacterial culture and medium are left undisturbed in an aerated dark environment until
fermentation is complete. In the agitated culture method, continuous stirring is maintained
throughout the fermentation period. In the former case, cellulose pellicle forms as a contin-
uous mat-like structure, while in the latter case, although cellulose growth is faster, there
occurs the formation of round cellulose balls [47].
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2.1. Static Culture

In this approach, the nutrient medium is tailored to meet the specific requirements
of the bacterial strain. Following inoculation, the medium remains undisturbed. In cellu-
lose production, during static conditions, aerating the medium in a well-ventilated area
enhances production by ensuring adequate oxygen supply. Additionally, some researchers
have noted that cellulose production from Acetobacter xylinum species may be increased by
excluding light. Although the static culture method is widely used, its primary drawback is
the extended fermentation period. Moreover, inadequate nutrient and oxygen distribution
during fermentation can lead to uneven cellulose production, resulting in variations in
thickness across the cellulose mat [47]. Hsieh and colleagues introduced a modified ap-
proach within the static culture method itself, involving intermittent feeding of the nutrient
medium during cultivation. In this method, after a certain number of days of fermentation,
a fresh batch of nutrient medium is introduced into the existing static culture medium.
This new medium is poured directly onto the newly formed pellicle from the previous
fermentation cycle. This process can be repeated multiple times until several layers of pelli-
cles are formed. The researchers observed that this method enables continuous cellulose
production, with an average of 0.02 g/day even after 30 days of cultivation, in contrast to
the previous cultivation method where production ceases entirely [48]. Figure 2 depicts
the BC production in static and agitated/shaking environments as each method offers
distinct benefits.

Fed-Batch

In a fed-batch process, the operation begins as a batch process, but nutrients are later
added either continuously or intermittently for a set duration without removing any culture
fluid. This method keeps the substrate concentration at optimal levels for microorganism
performance [49].

2.2. Agitated/Shaking Culture

Unlike the static method, in the dynamic method, the inoculated culture medium is
placed in a rotary shaker throughout the fermentation or incubation period. The constant
agitation of the culture enhances oxygen supply in the liquid medium containing the A.
xylinum bacterial strain. However, this method results in cellulose formation in the shape
of spheres, or it can be manufactured in other diverse shapes including fibrous suspen-
sions, pellets, and irregular masses [47,48]. Therefore, this approach is more conducive to
achieving higher cellulose production within a shorter timeframe compared to the static
medium [47]. Table 1 simply shows the generic comparison of the static and agitated
culture of bacterial cellulose production methods with their properties, nutrition type,
production yield, etc.
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Table 1. Comparison of static and agitated culture of bacterial cellulose growth.

Static Culture Agitated Culture
(Stirred Condition) Ref.

1 3D Interconnected network-like films Pointed, uneven sphere-like cellulose particles (SCPs) [51]

2 Carbon and air supply Stays completely dispersed within the culture medium [52]

3 Enhanced genetic robustness Commercial high yield [53]

4 Higher Young’s modulus Very low degree of polymerization [37]

5 Established geometrics Lower level of crystallinity [54]

6 Significant water retention capability Costly production [55]

7 Strong wet tensile strength - [56]

Bioreactor Culture

To address the emergence of non-cellulose mutants in agitated culture and enhance
the efficiency of BC production, various types of bioreactors have been utilized. These
bioreactors have been found to yield significant amounts of BC. Different bioreactor con-
figurations for BC cultures are distinguished by their operational methods, such as BC
production under oxygen-enriched air, the utilization of rotating discs, or reliance on
biofilm support [43].

3. Effect of Drying Characteristics of Bacterial Cellulose Aerogels on Their Thermal and
Mechanical Behavior

Bacterial cellulose and its composites can undergo various characterization methods,
with the significance of these properties differing depending on the application. The rapid
advancements in hydrogel research have placed hydrogels in scenarios that test their
thermal and mechanical limits [24]. On that point, the drying methods of the BC aerogels
are also important as well as its growing methods because drying can dramatically affect its
characteristics, such as pores, specific surface area, morphology, crystallinity, absorbability,
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and, additionally, thermal and mechanical properties. In this section, the thermal and
mechanical behavior of BC aerogels is discussed in detail. Figure 3 depicts the most used
drying methods for bacterial cellulose aerogels.
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3.1. Most Used Drying Methods
3.1.1. Hot Air Drying

In this method, thermal energy is imparted to the product via hot air, facilitating
moisture removal through the process of convection. A notable limitation of this technique
is the comparatively extended duration required for effective drying. Furthermore, the
direct application of heat can potentially compromise the quality of the product [56].

3.1.2. Freeze-Drying

Freeze-drying is a dehydration process conducted at low temperatures. This technique
involves freezing the material and subsequently removing its moisture content through the
sublimation of ice. Freeze-drying is favored over conventional heat-drying and evaporation
methods due to the superior quality of the resultant samples. The primary advantage of
this method is its ability to preserve the shape of the sample, which is largely attributed to
the low-temperature processing conditions [57].

3.1.3. Room Temperature

Room temperature drying is a simple and cost-effective method for drying bacterial
cellulose, involving exposure to ambient air until constant weight is achieved. Moisture
loss is measured by the difference in mass before and after drying. This method can cause
structural changes in porosity and density due to atmospheric pressure. Comparative
studies show similar crystallinity between room temperature and freeze-dried samples
(71% and 76%, respectively). Room temperature drying results in thinner films and higher
fiber density compared to freeze-drying at −80 ◦C [58].

3.1.4. Supercritical CO2 Drying

Supercritical CO2 drying, or critical point drying, removes moisture using CO2 at
74 bar and above 31 ◦C. In this supercritical state, CO2 penetrates samples effectively,
making the process faster than other methods. CO2 can be recycled, enhancing energy
efficiency and sustainability. Researchers have used this method to study bacterial cellulose
drying, comparing it with freeze-drying and room temperature drying [59].

3.1.5. Microwave Drying

Several researchers have employed microwave ovens, traditionally used for cooking,
to dry bacterial cellulose. This technique, which is also prevalent in the food industry for
drying vegetables and fruits, uses high-frequency electromagnetic waves in the range of
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300 MHz to 300 GHz. It is regarded as an energy-efficient method. Microwave drying
shortens processing time by converting the absorbed electromagnetic waves into heat,
which facilitates the evaporation of moisture within the material [60]. Compared to hot
air oven drying, microwave drying yields a smoother bacterial cellulose surface. This
smoothness results from the even heat distribution throughout the structure due to water
molecule vibrations. In contrast, hot air drying can cause surface wrinkles due to rapid
water evaporation [47].

3.1.6. Bidirectional Freezing

Directional freezing involves freezing from one direction to produce clear ice. In a
domestic freezer, this can be performed by placing water in an insulated container, al-
lowing it to freeze from the top down. The container is removed before fully frozen to
avoid mineral incorporation [61]. However, the bidirectional freezing technique organizes
small constituents, including ceramic particles, platelets, and polymers, into a large-scale,
single-domain porous lamellar structure measuring in the centimeter range. This structure
is analogous to natural nacre, albeit lacking the “mortar” component [62]. The bidirectional
freezing technique is an advanced method for creating anisotropic porous structures with
specialized spatial arrangements. According to Zhu et al., they synthesized the aerogel
via bidirectional freezing, incorporating PVA (polyvinyl alcohol) and BC as the matrix
and Ti3C2 MXene as the filler for enhanced thermal conductivity. A wedge-shaped PDMS
(Polydimethylsiloxane) structure induced temperature gradients in both vertical and hor-
izontal directions, thereby regulating ice crystal formation during the freezing process.
The microstructural characteristics and thermophysical properties of the aerogels were
systematically investigated by varying the PDMS wedge angle from 0◦ to 30◦. The resulting
BC/PVA/MXene (BPM) aerogels demonstrated promising applications in photothermal
harvesting and conversion, particularly in solar thermal systems. In Figure 4 is an illustra-
tion of the preparation process of BPM aerogel and BG PCM [(BPM/PEG (polyethylene
glycol)) phase change material]. According to the study, anisotropic PCM composites made
with a bidirectional freezing process have good thermal conductivity, photothermal conver-
sion, and storage properties. This approach uses simultaneous temperature gradients in
both horizontal and vertical directions, with the long-range aligned structure acting as a
directional heat transport channel. Bidirectional aligned PCMs with temperature gradients
of 0◦ and 20◦ exhibit high thermal conductivities of 0.716 W m−1 K−1 and 0.768 W m−1 K−1,
which are 184% greater than PEG. They also show photothermal conversion efficiencies of
55.17% and 76.91 percent. Furthermore, the vertically oriented pore structure confines the
PEG, resulting in form durability and a high enthalpy of 157.7 J/g [63].
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3.1.7. Oven Drying

The oven-drying method, a thermo-gravimetric process involving consistent tem-
perature drying for a set duration, is commonly employed to assess moisture content in
materials by comparing original and dried weights [64]. This method’s straightforward
application makes it widely favored for drying bacterial cellulose. Florentina Sederaviciute
et al. utilized this method to investigate the drying effects on the mechanical properties
of cellulose films produced from kombucha-derived G. bacter xylinus in a tea medium.
Following neutralization with distilled water and gentle tissue paper pressing, the cellulose
films were dried at temperatures of 25 ◦C, 50 ◦C, and 75 ◦C. Results showed that higher
temperatures led to quicker and more significant moisture loss, with losses recorded as
91.8% at 50 ◦C and 88.3% at 75 ◦C during the specified drying period [65].

In the rest of the sections, the effect of the drying methods of BC aerogels on ther-
mal and mechanical behavior will be explained according to the composition of BC
aerogels, including those produced with polymeric, inorganic, and other additives for
each characterization.

3.2. Effect of Drying Methods of BC Aerogels on Thermal Behavior
3.2.1. Effect of BC Aerogels Composed of Polymeric Additives on Thermal Properties

The significance of thermal analysis in hydrogel manufacturing is in its impact on
processing, storage, and application. For instance, thermal analysis is crucial for identifying
the optimal processing temperature to produce hydrogels with the desired properties.
Moreover, the insights gained from thermal analysis ensure that the hydrogel is stored
at suitable temperatures to prevent degradation and extend its shelf life [24]. As the
drying methods are also crucial for BC aerogels, we aim to show the importance of drying
methods; even though limited, there is some research on the different drying methods
with different types of bacteria. Zhang et al. used the Gluconacetobacter Xylinum strain
for the preparation of BC gelatinous membranes dried using three different methods,
which are (BC1) hot air drying at 60 ◦C, (BC2) vacuum oven drying at 60 ◦C, and (BC3)
vacuum freeze-drying at −50 ◦C. The BC gelatinous aerogel samples were characterized in
SEM (scanning electron microscope) for the surface and a section; with an FT-IR (Fourier
transform infrared spectrometer); and with X-ray diffraction for the crystallinity of BC
films. Their results indicated that films dried using hot air displayed a uniform and dense
surface. In contrast, films dried under vacuum exhibited cavities and cracks, while those
subjected to vacuum freeze-drying revealed layered and porous structures. FT-IR spectra
and X-ray analysis confirmed that vacuum freeze-drying weakened the hydrogen bonds
between cellulose macromolecules and reduced the degree of crystallinity in bacterial
cellulose films, though it had minimal impact on the crystal structure itself [32]. In general,
compared to supercritical drying, the freeze-drying method offers several advantages: it
is environmentally friendly, straightforward, and cost-effective. Additionally, the porous
structure can be easily tailored by using water-soluble polyamic acid as a precursor. Fan
et al.’s previous research demonstrated that polyimide (PI) aerogels prepared through
freeze-drying exhibit a thermal conductivity of 53 mW m−1 K−1, attributed to the large
pore sizes formed during the freezing process [66]. In the research conducted by Zang
et al., a lightweight, bidirectional anisotropic aerogel composed of polyimide and bacterial
cellulose (b-PI/BC) was developed using a bidirectional freezing technique. Bacterial
cellulose, with its superfine nanofibrous structure, serves as a reinforcing nanofiller for
PI aerogels. This inclusion prevents shrinkage and maintains the aerogel’s structural
integrity, resulting in higher porosity and lower density. These characteristics enhance
thermal insulation by reducing heat conduction. Compared to random and unidirectional
freezing methods, the b-PI/BC aerogel produced through bidirectional freezing exhibits a
well-aligned lamellar porous structure. This parallel lamellar configuration significantly
reduces heat transfer perpendicular to the lamellae while facilitating in-plane heat diffusion,
thus preventing heat localization. The b-PI/BC aerogel demonstrates an exceptionally
low thermal conductivity of 23 mW m−1 K−1 in the radial direction (perpendicular to the
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lamellae) and nearly double that value (44 mW m−1 K−1) in the axial direction (parallel to
the lamellae) [67]. Regarding the improvement of the thermal stability of BC, the researchers
used two different composites, where one of them is with collagen and its three forms of
collagen gel, collagen solution, and hydrolysed collagen with lyophilization and another
is a mixture of BC powder in collagen solutions (collagen solution, collagen gel, and
hydrolysed collagen) with, again, lyophilization. The findings indicated that BC functions
as a thermal stabilizer for the collagen solution (CS) matrix, while it synergistically interacts
with the collagen gel (CG) matrix, resulting in composites with enhanced properties.
Furthermore, BC sheets impregnated with collagen demonstrated significantly improved
thermal stability [68]. Vasconcellosa et al. also studied the effect of two different drying
methods on the properties of bacterial cellulose aerogel, which were oven drying at 50 ◦C
and freeze-drying. They only used the Gluconacetobacter hansenii-type bacteria. The two
samples exhibited distinct visual characteristics: the oven-dried BC was transparent, while
the freeze-dried BC appeared whitish. SEM images revealed that both samples had a
similar interwoven structure. However, the freeze-dried material displayed higher porosity,
whereas the oven-dried sample showed collapsed fibers, resulting in reduced film volume.
Thermal stability analysis indicated that both films had comparable degradation profiles,
with degradation beginning at 319 ◦C for the oven-dried sample and 325 ◦C for the freeze-
dried sample. Both BC films exhibited similar crystallinity levels (85%), although their
diffractograms showed different peaks. This suggests that the drying process altered the
ratio of Iα/Iβ polymorphs in the films, a finding supported by FT-IR results [33].

There are certain limitations to the insulation properties of cellulose aerogels: (1) ther-
mal conductivity is primarily influenced by solid and gas conduction (approximately 70%),
and (2) gas conduction significantly diminishes when the average pore size is much smaller
than the mean free path of gas molecules, a phenomenon known as the Knudsen effect. Low
bulk density is advantageous in this context, as high porosity and small beam diameters
inhibit the propagation of phonons in the delicate scaffold, thereby reducing the contri-
bution of solid-phase radiation [69,70]. Due to the demand for novel thermal insulation
materials and the need to enhance bacterial cellulose’s thermal properties, research in this
area has grown despite some limitations. Traditional materials fall short in intelligent
heat management, driving interest in new solutions. This study focused on bidirectional
anisotropic polyimide/bacterial cellulose (b-PI/BC) aerogels, prepared via a bidirectional
freezing technique. These aerogels demonstrated excellent structural formability, mechani-
cal strength, and thermal insulation. Polyimide enhanced mechanical robustness, while
bacterial cellulose prevented shrinkage, maintaining structural integrity and resulting
in higher porosity and lower density. Consequently, the aerogels exhibited anisotropic
thermal insulation with an ultra-low thermal conductivity of 23 mW m−1 K−1 radially and
44 mW m−1 K−1 axially, effectively reducing radial heat transfer and facilitating in-plane
heat diffusion, making them ideal for complex thermal insulation applications [67].

Another study showed that a thermal conductivity as low as 13 mW/(K·m) was
recorded for native pellicle-based aerogels by using Gluconacetobacter hansenii bacteria
dried in their original state with minimal additional processing using the super critical CO2
drying method. Utilizing waste from the beer-brewing industry as a growth medium for the
pellicle preserved the cellulose yield achieved with conventional Hestrin–Schramm media,
enhancing both the cost-effectiveness and sustainability of our product for a reduction in
energy consumption in building applications [71].

3.2.2. Effect of BC Aerogels Composed of Inorganic and Different Types of Additives on
Thermal Properties

Despite BC aerogels having strong thermal insulation performance due to their dense
inner porous network, they are easily ignited and burned out, restricting their potential uses
as domestic appliances or materials for construction. Improving BC aerogels’ resistance
to flames has turned into a major focus of numerous fascinating scientific projects [72].
Adding other agents, such as graphene, halogens, clay, phosphorus, nitrogen, organic
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polymers [73,74], and metallic nanoparticles, by in situ forming or doping inside the BC
network is a practical strategy [75]. Collaborating additives could take the form of a
dense protective layer on the surface and segregate oxygen to achieve a flame-retardant
effect. Researchers Wang et al. developed a flame retardant and heat-insulating composite
aerogel by incorporating zinc borate (ZnB) particles into bacterial cellulose (BC) using an
ultrasound-assisted deposition process followed by freeze-drying. The in-situ formation
of ZnB particles facilitated the separation of individual fibers from fiber bundles within
BC, preserving its homogeneous porous structure. This modification enhanced the ther-
mal stability of the aerogel by diminishing the convective heat transfer. The composite
aerogel demonstrated outstanding flame retardancy, with a heat release capacity of merely
8 J g−1 K−1. The suggested mechanism involves the dehydration of ZnB particles, which
lowers the surface temperature by releasing bound water and concurrently produces metal-
lic oxides (ZnO and B2O3), which inhibit heat propagation and isolate flammable fibrils
within the combustion zone [76]. Sai et al. modified the surface of bacterial cellulose
aerogel (BCA) using a trimethylsilylation reaction with trimethylchlorosilane (TMCS) in
the liquid phase followed by freeze-drying. Compared to the original cellulose aerogel,
thermogravimetric analysis (TGA) revealed notable differences in the thermal properties of
the trimethylsilylated cellulose aerogels. It is well established that the thermal decomposi-
tion of cellulose can be accelerated by modification with organic acids and acyl chlorides
(such as acetic acid, dodecanoic acid, p-toluenesulfonyl chloride, oleic acid, and stearic
acid). In this study, the decomposition temperature of BCAs showed a slight increase after
trimethylsilylation, with higher degrees of substitution (DS) resulting in higher decom-
position temperatures (shifting from 370 ◦C to 380 ◦C). This indicates that TMCS has a
stabilizing effect on bacterial cellulose when subjected to lyophilization. While silica is
known to raise the decomposition temperature of cellulose, TMCS, which contains silicon,
also forms Si–O bonds upon reacting with cellulose. Therefore, the presence of silicon
and Si–O bonds likely contributes significantly to the improved thermal stability of the
modified cellulose [77].

Besides the freeze-drying method, some of the studies have also shown the effect of
the ambient/room temperature drying method by using the purchased 0.8% bacterial cellu-
lose with γ-aminopropyl triethioxysilane (APTES) linked by the freeze-linking technique.
Aerogels produced through atmospheric pressure drying are cost-effective to manufacture
and can be redried through solvent exchange even after being used in aqueous environ-
ments. As per the research results, during the solvent exchange process, the loss of some
polysiloxane leads to defects in the aerogel. Aerogels prepared by atmospheric pressure
drying are cost-effective and re-dryable after aqueous use. Thermogravimetric analysis
in Figure 5 shows that PCA has a maximum mass reduction at 298 ◦C, while ADCA’s
(atmospheric drying cellulose aerogel) occurs at 358 ◦C due to its double crosslinked net-
work. PCA’s (pure cellulose aerogel without APTES) carbon residue is 16.8%, compared
to ADCA’s 24.5% due to Si. Heat release rate tests indicated that PCA’s maximum rate is
102.9 W/g, while ADCA’s is 60.6 W/g, with the total heat release of ADCA at 5.3 kJ/g
versus PCA’s 6.6 kJ/g due to N and Si’s flame-retardant effect. Thermal conductivity for
FDCA (freeze-drying cellulose aerogel) is 44.5 mW/m·K and for ADCA is 37.9 mW/m·K.
FDCA’s dense structure aids solid heat conduction, whereas ADCA’s structural defects
from APTES removal reduce it. Infrared imaging showed that heat dissipates through air,
not ADCA. Freeze-drying forms the aerogel skeleton but creates dense structures; APTES
removal during solvent replacement reduces solid heat conduction, suggesting a way to
enhance aerogel insulation properties. This not only lowers its thermal conductivity but
also increases its specific surface area. Additionally, the aerogel’s water resistance, thermal
performance, and dye adsorption capabilities are significantly enhanced [78].



Gels 2024, 10, 474 11 of 21

Gels 2024, 10, x FOR PEER REVIEW 11 of 21 
 

 

ADCA’s (atmospheric drying cellulose aerogel) occurs at 358 °C due to its double cross-
linked network. PCA’s (pure cellulose aerogel without APTES) carbon residue is 16.8%, 
compared to ADCA’s 24.5% due to Si. Heat release rate tests indicated that PCA’s maximum 
rate is 102.9 W/g, while ADCA’s is 60.6 W/g, with the total heat release of ADCA at 5.3 kJ/g 
versus PCA’s 6.6 kJ/g due to N and Si’s flame-retardant effect. Thermal conductivity for 
FDCA (freeze-drying cellulose aerogel) is 44.5 mW/m·K and for ADCA is 37.9 mW/m·K. 
FDCA’s dense structure aids solid heat conduction, whereas ADCA’s structural defects 
from APTES removal reduce it. Infrared imaging showed that heat dissipates through air, 
not ADCA. Freeze-drying forms the aerogel skeleton but creates dense structures; APTES 
removal during solvent replacement reduces solid heat conduction, suggesting a way to en-
hance aerogel insulation properties. This not only lowers its thermal conductivity but also 
increases its specific surface area. Additionally, the aerogel’s water resistance, thermal per-
formance, and dye adsorption capabilities are significantly enhanced [78]. 

 
Figure 5. (a) Thermogravimetric analysis of PCA and ACDA. (b) Heat release rate profiles for PCA 
and ACDA. (c) Total heat release data for PCA and ACDA. (d) Thermal conductivity measurements 
for ADCA and FDCA. (e) Diagram illustrating the heat conduction mechanism in ADCA. (f) An-
other diagram depicting the heat conduction mechanism in ADCA. (g) Infrared thermal images of 
ADCA. (h) Temperature changes in weight and ADCA aerogel over a 5 min period (permission was 
approved by Elsevier, Food Hydrocolloids, under license number 5806700171839) [78]. 

Figure 5. (a) Thermogravimetric analysis of PCA and ACDA. (b) Heat release rate profiles for PCA
and ACDA. (c) Total heat release data for PCA and ACDA. (d) Thermal conductivity measurements
for ADCA and FDCA. (e) Diagram illustrating the heat conduction mechanism in ADCA. (f) Another
diagram depicting the heat conduction mechanism in ADCA. (g) Infrared thermal images of ADCA.
(h) Temperature changes in weight and ADCA aerogel over a 5 min period (permission was approved
by Elsevier, Food Hydrocolloids, under license number 5806700171839) [78].

Bacterial cellulose aerogels exhibit low thermal conductivity, similar to loose-fill cellu-
lose. For commercialization, identifying optimal cultivation conditions—considering the
bacterial strain, growth medium composition, additive types, and cultivation techniques—is
crucial. These conditions should facilitate the formation of largely isotropic cellulose
networks with nanopores having a narrow size distribution and maximum pore diam-
eters not exceeding 70 nm. Such finely tuned structures can potentially serve as super-
insulating materials.

Revin et al. optimized the fabrication of robust, thermally efficient aerogels derived
from BC synthesized by Komagataeibacter sucrofermentans H-110 and freeze-dried. Aerogels
made from TEMPO-oxidized BC (OBC) exhibited enhanced strength and reduced shrinkage
compared to those made from native BC (NBC). The addition of 20–40 mM Mg2+ further
increased the aerogel strength by 4.9 times, minimized pore size, and decreased thermal
conductivity from 0.036 to 0.0176 W/(m·K). Additionally, aerogels incorporating sodium
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fusidate demonstrated significant antibacterial activity against Staphylococcus aureus,
making them suitable for applications in tissue engineering and wound dressing. The
temperature stability of BC aerogels is crucial for high-temperature applications. In the
study, a thermogravimetric analysis was conducted on BC aerogels made from native
bacterial cellulose (NBC) and TEMPO-oxidized BC with an oxidation degree (OD) of 1.44%,
with or without 20 mM Mg2+ (Figure 6). The NBC aerogel exhibited initial decomposition
between 275 ◦C and 330 ◦C, with a weight loss starting at 57 ◦C and reaching 7.5% at
250 ◦C, attributed to the evaporation of water related to bacterial cellulose [79]. The thermal
decomposition of the NBC aerogel began at 275 ◦C, resulting in a 70% mass loss by 330 ◦C,
consistent with previous findings on BC film thermal stability [80]. The OBC and OBC-Mg
aerogels showed main mass losses beginning at 275 ◦C, reaching 43% and 39% by 330 ◦C
and 300 ◦C, respectively. At 500 ◦C, the mass loss for OBC and OBC-Mg aerogels was 63%
and 60%, respectively, while the NBC aerogel lost 99% of its mass. These results indicate
that TEMPO oxidation does not alter the thermal stability of BC, though the nature of
thermal degradation varies with BC oxidation and the presence of Mg2+ [81].

Gels 2024, 10, x FOR PEER REVIEW 12 of 21 
 

 

Bacterial cellulose aerogels exhibit low thermal conductivity, similar to loose-fill cel-
lulose. For commercialization, identifying optimal cultivation conditions—considering 
the bacterial strain, growth medium composition, additive types, and cultivation tech-
niques—is crucial. These conditions should facilitate the formation of largely isotropic 
cellulose networks with nanopores having a narrow size distribution and maximum pore 
diameters not exceeding 70 nm. Such finely tuned structures can potentially serve as su-
per-insulating materials. 

Revin et al. optimized the fabrication of robust, thermally efficient aerogels derived 
from BC synthesized by Komagataeibacter sucrofermentans H-110 and freeze-dried. Aerogels 
made from TEMPO-oxidized BC (OBC) exhibited enhanced strength and reduced shrink-
age compared to those made from native BC (NBC). The addition of 20–40 mM Mg2+ fur-
ther increased the aerogel strength by 4.9 times, minimized pore size, and decreased ther-
mal conductivity from 0.036 to 0.0176 W/(m·K). Additionally, aerogels incorporating so-
dium fusidate demonstrated significant antibacterial activity against Staphylococcus au-
reus, making them suitable for applications in tissue engineering and wound dressing. 
The temperature stability of BC aerogels is crucial for high-temperature applications. In 
the study, a thermogravimetric analysis was conducted on BC aerogels made from native 
bacterial cellulose (NBC) and TEMPO-oxidized BC with an oxidation degree (OD) of 
1.44%, with or without 20 mM Mg2+ (Figure 6). The NBC aerogel exhibited initial decom-
position between 275 °C and 330 °C, with a weight loss starting at 57 °C and reaching 7.5% 
at 250 °C, attributed to the evaporation of water related to bacterial cellulose [79]. The 
thermal decomposition of the NBC aerogel began at 275 °C, resulting in a 70% mass loss 
by 330 °C, consistent with previous findings on BC film thermal stability [80]. The OBC 
and OBC-Mg aerogels showed main mass losses beginning at 275 °C, reaching 43% and 
39% by 330 °C and 300 °C, respectively. At 500 °C, the mass loss for OBC and OBC-Mg 
aerogels was 63% and 60%, respectively, while the NBC aerogel lost 99% of its mass. These 
results indicate that TEMPO oxidation does not alter the thermal stability of BC, though 
the nature of thermal degradation varies with BC oxidation and the presence of Mg2+ [81]. 

 
Figure 6. A thermogravimetric analysis was performed on BC aerogels made from native bacterial cellu-
lose (NBC) and TEMPO-oxidized BC with an oxidation degree (OD) of 1.44%, with and without 20 mM 
Mg2+. [The article “Production of Bacterial Cellulose Aerogels with Improved Physico-Mechanical Prop-
erties and Antibacterial Effect” is an open-access article distributed under the terms of the Creative Com-
mons Attribution License (CC BY). The use, distribution, or reproduction in other forums is permitted, 
provided the original author(s) and the copyright owner(s) are credited and that the original publication 
in this journal is cited, in accordance with accepted academic practice] [81]. 

3.3. Effect of Drying Methods of BC Aerogels on Mechanical Behavior 
3.3.1. Effect of BC Aerogels Composed of Polymeric Additives on Mechanical Behavior 

Figure 6. A thermogravimetric analysis was performed on BC aerogels made from native bacterial
cellulose (NBC) and TEMPO-oxidized BC with an oxidation degree (OD) of 1.44%, with and without
20 mM Mg2+. [The article “Production of Bacterial Cellulose Aerogels with Improved Physico-
Mechanical Properties and Antibacterial Effect” is an open-access article distributed under the terms
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3.3. Effect of Drying Methods of BC Aerogels on Mechanical Behavior
3.3.1. Effect of BC Aerogels Composed of Polymeric Additives on Mechanical Behavior

The mechanical qualities of bacterial cellulose are principally determined by its chemi-
cal composition and structural features. Increased fiber alignment and crystallinity result
in a stronger material that can withstand more mechanical stress. Because crystallinity
varies depending on the source and production processes, the mechanical characteristics
of bacterial cellulose can differ. Post-chemical treatments and ex situ alterations can also
improve or degrade certain qualities, depending on the chemicals used in the composite
synthesis. As previously noted, as BC properties are influenced by the production process,
consequently, so are its applications. The impact of various cultivation methods (static
or agitated; batch or fed-batch processes), different bacterial strains, and types of culture
media (complex or industrial waste) on BC properties has been extensively studied. Addi-
tionally, downstream processing treatments can significantly affect the final characteristics
of BC. In particular, the effects of different drying processes on BC properties continue to
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be a subject of ongoing research [33,82]. Therefore, BC films were produced by G. hansenii
using static cultivation, followed by a purification step and subsequent drying through
two different methods: oven drying and freeze-drying. The diverse applications and
biological functions of BC membranes are attributed to their unique morphology, with
the intertwining fibers in the films providing significant mechanical strength and water
absorption capacity, as highlighted in the studies by Vasconcellos et al. [33]. Their findings,
along with those of Zeng et al., who evaluated three different drying processes—room
temperature drying, freeze-drying, and supercritical CO2 drying—revealed that the drying
method impacts mechanical properties such as penetration depth, hardness, and water
absorption capacity, with each method enhancing specific characteristics [58]. In another
study, the effect of different cultivation methods and freeze-drying with different freezing
modes on the physical and mechanical properties was examined by using the strain of
Gluconacetobacter sucrofermentans H-110 bacterial cellulose aerogels. The bacterial cellulose
hydrogel samples underwent freezing in a controlled manner, utilizing foil containers sized
at 90 mm × 60 mm × 25 mm (length × width × height) in a single stage freezing process.
Attempts at rapid freezing in liquid nitrogen or multistage cooling did not produce aerogels
with satisfactory strength characteristics. To ensure a uniform hydrogel, the bacterial cellu-
lose gel film was subjected to grinding. By adjusting the concentration of bacterial cellulose
in the hydrogels, the density, porosity, and average pore size of bacterial cellulose-based
aerogels can be tailored. This allows for easy manipulation of aerogel properties during
the initial processing of the bacterial cellulose. The mechanical grinding of bacterial cellu-
lose was complemented with ultrasonic treatment, a widely used technique for polymer
breakdown. This disintegration method does not modify the chemical composition of the
polymers but reduces their molecular weight effectively [80]. In addition to the invaluable
insights provided by thermal analysis techniques, mechanical analysis techniques also
offer a wealth of crucial information. Commonly employed methods include compression
testing, tensile testing, and dynamic mechanical analysis (DMA). Table 2 shows the effect
of different drying methods on the thermal and mechanical properties of bacterial cellu-
lose aerogel for different applications. Some studies show comparable methods, which
are freeze-drying and traditional drying methods regarding the process speed, cost, and
retention of the sample’s properties. Some studies show the effect of freeze-drying on the
properties of the native BC aerogel compared to modified BC aerogel.

3.3.2. Effect of BC Aerogels Composed of Inorganic and Different Types of Additives on
Mechanical Properties

Cellulose aerogels can be obtained from aqueous dispersions of nanocellulose fibers
(CNF), nanocellulose crystals (CNC), and bacterial cellulose (BC) [83]. Although CNC and
CNF are renewable, their extraction processes are environmentally detrimental, requiring
hazardous chemicals and significant energy consumption. BC, produced by microorgan-
isms, is an eco-friendlier alternative. However, despite the high theoretical strength of
these nanofibers, cellulose aerogels suffer from poor mechanical properties due to weak
hydrogen bonding and physical entanglement among the fibers. This results in collapse
when absorbing water and deformation under pressure, limiting practical applications [43].
Developing cellulose aerogels with robust mechanical properties, including high elasticity
and fatigue resistance, is essential for their effective use in thermal insulation, oil contamina-
tion adsorption, and high-performance sensors [84,85]. Generally, cellulose aerogels can be
chemically changed, crosslinked, or mixed with other functional materials to increase their
elasticity. Crosslinking agents or functional modifiers can increase both the mechanical
and hydrophobic properties of cellulose aerogels [86]. This increase is mostly owing to
cellulose’s hydroxyl groups, which serve as target locations for the majority of modification
and crosslinking techniques [87]. Studies have focused on improving the resilience of BC
aerogels generated for oil/water separation by thermochemical vapor deposition (CVD)
mediated by 1,2,3,4-butanetetracarboxylic acid (BTCA). BTCA performs two functions:
esterification with BC and accelerating CVD after freeze-drying. The resulting aerogel re-



Gels 2024, 10, 474 14 of 21

covers rapidly following compression, with elastic recovery surpassing 90% at a maximum
deformation of 80%. It also has high fatigue resistance, with over 80% elastic deformation
after 50 cycles. This highly elastic and hydrophobic aerogel is perfect for oil absorption and
desorption using simple mechanical squeezing. Its adsorption capabilities for n-hexane
and dichloroethane persist at 87% and 81% after 50 cycles, respectively, suggesting high
reusability [88]. Another study outlines an eco-friendly, one-pot synthesis method for
creating a versatile bacterial cellulose/γ-(2,3-epoxypropoxy) propytrimethoxysilane com-
posite aerogel (BK aerogel) following freeze-drying. This composite aerogel demonstrates
exceptional elasticity, retaining up to 96.4% of its original form after being compressed at an
80% strain. Furthermore, it exhibits notable fatigue resistance, achieving an elastic recovery
of 87.8% after 50 compression cycles at the same strain level. The BK aerogel can effectively
absorb cationic dyes when immersed in water and can be reused multiple times without
experiencing degradation. The aerogel’s richness in hydroxyl and epoxy groups allows for
extensive surface chemical modifications. For example, through hydrophobic modification,
the aerogel can be utilized for oil–water separation and is capable of being reused through
mechanical squeezing [89].

To enhance the mechanical properties of aerogel blocks or films, high-performance
fibrous silica-BC composite aerogels were synthesized using freeze-drying in one of the
studies, andthis structure has been shown to possess significantly superior mechanical
properties. Silica sol was infused into a BC hydrogel matrix, which was then cut and
reshaped to form a composite wet gel fiber with a nanoscale interpenetrating network.
This process increased the tensile strength of the aerogel fibers to 5.4 MPa by significantly
increasing the quantity of BC nanofibers per unit volume. The composite aerogel fibers
exhibited a high specific surface area (up to 606.9 m2/g), low density (less than 0.164 g/cm3),
and excellent hydrophobicity. SEM images in Figure 7 revealed that at low precursor
concentrations, the aerogel fibers were primarily composed of BC nanofiber aggregates
with minimal silica attachment. At higher concentrations, a silica gel skeleton formed
within the BC network, creating a more compact structure. The diameter of the samples,
approximately 0.7 mm, indicated minimal shrinkage during drying. Ensuring an adequate
concentration of TEOS (Tetraethoxysilane) precursors was crucial for constructing a robust
gel skeleton to maintain structural integrity during the drying process [90].

Table 2. Some research on effects of drying methods shows thermal, mechanical, and other properties
of BC aerogels.

BC Aerogels Effect of Drying Methods on Thermal & Mechanical
Behavior of BC Aerogels Drying Methods Applications Ref.

Gluconacetobacter xylinus
BC membrane

The material’s ability to swell is much more decreased
with evaporation drying than freeze-drying.

Gas permeability of freeze-dried membranes is higher
than evaporation-dried membranes.

The Young’s modulus of polymer membranes varies
depending on the bacterial strain used.

Freeze-drying,
Evaporation drying

Wet wound
dressing [91]

Fermented coffee
kombucha (CK) BC

aerogels by
Gluconacetobacter

Oven-dried BCs exhibited the highest tensile stress at
break, measuring 24.67 ± 4.40 MPa.

All BCs decomposed between 230 and 400 ◦C
regardless of drying conditions.

Oven drying (OD),
freeze-drying, vacuum

oven drying, and
Büchner funnel vacuum

drying (BFVD).

Distinctive
applications in

various industries
[92]

Gluconacetobacter
sucrofermentans H-110

BC aerogels

With an aerogel density of 22.8 kg/m3, the modulus
of elasticity at 80% compression was 0.1 MPa. Lower

aerogel density resulted in larger pore sizes (20 to
1000 µm) and reduced modulus of elasticity.

Freeze-drying
Heat- and

sound-insulating
materials

[80]
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Table 2. Cont.

BC Aerogels Effect of Drying Methods on Thermal & Mechanical
Behavior of BC Aerogels Drying Methods Applications Ref.

Comparing of native BC
aerogel and TEMPO

((2,2,6,6-
tetramethylpiperidin-1-

yl)oxyl)) oxidized
BC aerogels

Aerogels synthesized from oxidized BC demonstrate
increased durability and reduced shrinkage relative

to those produced from native BC through
freeze-drying. Additionally, TEMPO-mediated

oxidation of BC, in conjunction with Mg2+ addition,
yields aerogels with substantially improved

mechanical strength and a more uniform
microporous architecture.

Freeze-drying Biomedical
applications [81]

Natively produced BC
pellicles by

Gluconacetobacter
hansenii

Native cellulose aerogels exhibited a very low
thermal conductivity of 13 mW/(K·m). Mechanical
and thermogravimetric analysis demonstrated the

potential of BC aerogels with added carboxymethyl
cellulose for building insulation. These aerogels could

enhance thermal insulation and add fireproofing
properties in multilayer insulation blankets.

Super critical carbon
dioxide drying

Building envelope
applications [71]

Bacterial cellulose films

Microwave drying of films is 95% faster than air
convection drying.

The structure, color, and mechanical properties of BC
films dried by microwave and air convection heating

were nearly identical.
However, microwave-dried films had slightly lower

crystallinity and higher swelling.
Elongation of samples with air convection drying was

higher than microwave oven drying at break.

Microwave oven and air
convection heating

drying

Food packaging
and edible film [28]

Gelatinous Bacterial
Cellulose Film by
Gluconacetobacter

Xylinum

The mechanical properties of BC films prepared by
vacuum freeze-drying were inferior to those prepared

by other methods; hot air drying showed the best
results on mechanical properties.

Hot air drying, vacuum
drying and vacuum

freeze-drying
- [32]

Producing of
Komagataeibacter
hansenii 23769 and

Herman Schermann BC
aerogels

Oven-dried samples’ Young’s modulus, tensile
strength, and lower strain are higher than those of the

freeze-dried ones.
Oven-dried BC had higher crystallinity, LOI (lateral
order index), and lower porosity with narrower fiber

diameter and distribution than freeze-dried BC,
regardless of bacterial strains.

Oven and freeze-drying Anodic
applications [29]

Kombucha bacterial
cellulose (KBC)

The microwave drying method showed a lower
activation energy (131.70 Wg−1), higher moisture

diffusivity (48.27 × 10−11 m2s−1), and greater tensile
strength (59.45 MPa). It was more efficient due to

faster drying, higher rehydration ratio, and increased
tensile strength. In contrast, room temperature drying

was better for water affinity.

Microwave drying
(180–900 W), hot air

oven drying (30–70 ◦C),
and shade drying

(25 ◦C).

Various
applications [93]

Dehydration of wet
bacterial cellulose (BC)

from OPF (oil palm
frond) juice

Thermal analysis using TGA and DSC showed that
hot-pressed BC had higher thermal resistivity but

lower thermal stability than freeze-dried BC.

Hot-pressed and
freeze-dried - [94]

BC aerogel from fruit
waste by kombucha

fermentation

The alterations resulted in significant improvements
in aerogel mechanical properties, with rebound
values exceeding 90%. Derived from three raw

materials, the aerogels display low density, high
porosity, and reduced thermal conductivity,

suggesting suitability for insulation applications.

Two directional
freeze-drying

Oil–water
separation and

thermal insulation
[95]
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The material’s ability to swell is much more de-
creased with evaporation drying than freeze-drying. 

Gas permeability of freeze-dried membranes is 
higher than evaporation-dried membranes. 

The Young’s modulus of polymer membranes varies 
depending on the bacterial strain used. 

Freeze-drying, Evap-
oration drying 

Wet wound dress-
ing 

[91] 

Fermented coffee kombucha 
(CK) BC aerogels by Glu-

conacetobacter 

Oven-dried BCs exhibited the highest tensile stress at 
break, measuring 24.67  ±  4.40 MPa. 

All BCs decomposed between 230 and 400 °C regard-
less of drying conditions. 

Oven drying (OD), 
freeze-drying, vac-
uum oven drying, 

and Büchner funnel 
vacuum drying 

(BFVD). 

Distinctive applica-
tions in various in-

dustries 
[92] 

Gluconacetobacter 
sucrofermentans H-110 BC 

aerogels 

With an aerogel density of 22.8 kg/m3, the modulus 
of elasticity at 80% compression was 0.1 MPa. Lower 

aerogel density resulted in larger pore sizes (20 to 
1000 µm) and reduced modulus of elasticity. 

Freeze-drying 
Heat- and sound-

insulating materials 
[80] 

Comparing of native BC 
aerogel and TEMPO 

((2,2,6,6-

Aerogels synthesized from oxidized BC demonstrate 
increased durability and reduced shrinkage relative 
to those produced from native BC through freeze-

Freeze-drying 
Biomedical applica-

tions 
[81] 

Figure 7. The SEM images of CAF-1 (a–c), CAF-2 (d–f), CAF-3 (g–i), and CAF-4 (j–l) are shown at
various magnifications (CAFs: Silica–BC composite aerogel fibers (CAFs)) [Licensee MDPI, Basel,
Switzerland. The article “Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal
Insulation Textile” is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)] [90].

4. Conclusions & Future Perspectives

Although most studies indicate that the production method and bacterial strain used
in producing BC aerogels are primary factors influencing their thermal and mechanical
properties, it has also been observed that the final drying method significantly impacts
these properties. Due to the high production costs associated with bacterial cellulose,
drying methods that maintain the properties of BC aerogels while being cost-effective are
preferred. As per the given research in the review, the thermal stability of BC aerogels,
influenced by various treatments and additives, is crucial for high-temperature applications.
The studies on the thermal behavior of BC aerogels showed that freeze-drying methods
have improved the BC aerogels’ porous structure and decreased the thermal conductivity;
moreover, depending on the type of composite structure used, it is environmentally friendly
and low cost compared to supercritical CO2 drying. However, the studies on the mechan-
ical behavior of BC aerogels showed that the mechanical qualities of BC are determined
by its chemical composition and structural characteristics, such as fiber alignment and
crystallinability. These properties, which differ depending on the source and manufac-
turing technique, determine the material’s capacity to sustain mechanical stress. Ex situ
modifications and post-chemical treatments can both influence BC characteristics. Various
cultivation methods, bacterial strains, and types of culture media have a considerable
impact on BC characteristics. Furthermore, downstream processing techniques, notably
varied drying methods, play an important impact in shaping the final properties of BC.
According to studies, the drying procedure that is the most used is freeze-drying, which
preserves the desirable porous structure and influences the final mechanical properties of

https://creativecommons.org/licenses/by/4.0/
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the material, and it has an impact on qualities including penetration depth, hardness, and
water absorption capacity. Despite ongoing studies on the effects of drying methods on
bacterial cellulose aerogels, the research is still insufficient and opens new avenues for fur-
ther investigation. Recent studies reveal that in primary drying methods like freeze-drying,
not only the drying process itself but also the pre-drying freezing speed significantly affects
the bacterial cellulose samples [96–98]. To realize the entire potential of this ecological
material, detailed investigations on drying processes, cost reductions in BC manufacturing,
improved structural and functional qualities, and the exploration of new solvents and
potential uses are all required.
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