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Abstract: Background: Segmenting computed tomography (CT) is crucial in various clinical applica-
tions, such as tailoring personalized cardiac ablation for managing cardiac arrhythmias. Automating
segmentation through machine learning (ML) is hindered by the necessity for large, labeled training
data, which can be challenging to obtain. This article proposes a novel approach for automated,
robust labeling using domain knowledge to achieve high-performance segmentation by ML from a
small training set. The approach, the domain knowledge-encoding (DOKEN) algorithm, reduces the
reliance on large training datasets by encoding cardiac geometry while automatically labeling the
training set. The method was validated in a hold-out dataset of CT results from an atrial fibrillation
(AF) ablation study. Methods: The DOKEN algorithm parses left atrial (LA) structures, extracts
“anatomical knowledge” by leveraging digital LA models (available publicly), and then applies this
knowledge to achieve high ML segmentation performance with a small number of training samples.
The DOKEN-labeled training set was used to train a nnU-Net deep neural network (DNN) model
for segmenting cardiac CT in N = 20 patients. Subsequently, the method was tested in a hold-out
set with N = 100 patients (five times larger than training set) who underwent AF ablation. Results:
The DOKEN algorithm integrated with the nn-Unet model achieved high segmentation performance
with few training samples, with a training to test ratio of 1:5. The Dice score of the DOKEN-enhanced
model was 96.7% (IQR: 95.3% to 97.7%), with a median error in surface distance of boundaries of
1.51 mm (IQR: 0.72 to 3.12) and a mean centroid–boundary distance of 1.16 mm (95% CI: −4.57 to 6.89),
similar to expert results (r = 0.99; p < 0.001). In digital hearts, the novel DOKEN approach segmented
the LA structures with a mean difference for the centroid–boundary distances of −0.27 mm (95% CI:
−3.87 to 3.33; r = 0.99; p < 0.0001). Conclusions: The proposed novel domain knowledge-encoding
algorithm was able to perform the segmentation of six substructures of the LA, reducing the need for
large training data sets. The combination of domain knowledge encoding and a machine learning
approach could reduce the dependence of ML on large training datasets and could potentially be
applied to AF ablation procedures and extended in the future to other imaging, 3D printing, and data
science applications.

Keywords: cardiac CT segmentation; machine learning; domain knowledge encoding; atrial fibrillation;
ablation
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1. Introduction

The segmentation of cardiac computed tomography (CT) images has historically
been performed by semi-automated algorithms such as graph-cuts [1], region growing [2]
with manual seed inputs, and other traditional image-processing methods. Deep neural
networks (DNN) showed superior performance to traditional image processing even for
complex tasks such as segmenting a person of interest in an image of a crowded street [3]
or classifying complex diseases from radiology scans [4,5]. However, DNN models require
a large amount of training data, which, in the context of cardiac CT segmentation, is
challenging to obtain. Several publicly available medical datasets include <100 cases [6–8]
due to technical, privacy, and regulatory concerns. Since deep learning typically reserves
the majority of cases for training, models are thus often tested on <40 cases [8], which may
limit generalizability [9,10].

This begs the question as to whether high DNN performance can be obtained when
the number of training samples is smaller than that of test-set samples. The focus of this
work is to explore the idea of achieving high DNN segmentation performance in cardiac CT
images from a small number of training samples. A DNN was applied to raw CT images to
segment the left atrium (LA) body and other LA substructures: four pulmonary veins (PVs)
and one LA appendage (LAA), which are central to treating patients with atrial fibrillation
(AF). Although this paper focuses on a label-efficient segmentation approach of the six LA
substructures for AF application, the approach can theoretically be extended to segment
other chambers of the heart as well.

This article proposes a novel approach called the domain knowledge-encoding (DO-
KEN) algorithm, which extracts “anatomical knowledge” by leveraging digital LA models
(available publicly) and then applies this knowledge to achieve high DNN segmentation
performance with small number of training samples. The DOKEN algorithm essentially pre-
processes the training samples before inputting them for DNN training. The pre-processing
involves automatic labeling to obtain robust ground-truth labels of LA substructures. The
performance of the DOKEN-labeled DNN model was tested in a hold-out dataset >5 times
larger than the training set.

The purpose of this study is to test the hypothesis that ML models could be trained
using very small datasets if combined with some domain knowledge of the task at hand.
This method of training using conceptual domain knowledge principles rather than massive
training data [11,12] is analogous to how humans can learn from small data [12]. Lake et al.
used this approach to generate handwritten characters with human-level performance from
one exemplar by parsing characters into simple primitives that were composited to create
new characters [13]. However, for medical image analysis, such domain knowledge has
rarely been used to reduce training sizes for DNN [14,15]. In the following sections, we
describe the methods, results, discussion and conclusions.

2. Methods

Figure 1 outlines the method. (1) The proposed DOKEN algorithm encoded domain
knowledge of the LA body and other anatomies; (2) the algorithm was used to train a
nnU-Net DNN to segment cardiac CT images using only a small training set; and (3) the
trained DNN was tested in a large hold-out set.

2.1. Dataset for Training and Testing

The CT dataset used in this study consists of N = 120 patients who had undergone AF
ablation between October 2014 and July 2019 and had cardiac CT scans. All patients signed
informed consent at Stanford Health Care. We split this dataset randomly into N = 20 for
DNN model training (Training Set), with N = 100 patients as a hold-out test set (Test Set).
Note that the number of samples in the training set is 5 times smaller than the test set
samples, which is one of the key contributions of this study. Separately, for developing the
DOKEN algorithm, N = 6 publicly available 3D digital heart models built using Gaussian
process morphable models [16] was used.
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Figure 1. Method overview: proposed domain knowledge-encoding algorithm used to label CT
images for efficient DNN training on a training set significantly smaller than the test set. LA: left
atrium, LSPV: left superior pulmonary vein, LIPV: left inferior pulmonary vein, RSPV: right superior
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2.2. Domain Knowledge-Encoding (DOKEN) Algorithm

The goal of the DOKEN algorithm is to automatically generate robust ground-truth
labels of LA substructures for DNN training. The algorithm consists of the following
two steps:

I. Segmentation of digital LA models: N = 6 digital LA models (publicly available) were
segmented based on an iterative erosion–dilation (ED) process (Figure 2).

II. Tuning ED parameter using patient LA models: The iterative ED process requires
optimal iteration number as a parameter, which decides the accurate segmentation
of the LA body and other substructures. To determine this parameter, 5 manually
segmented LA models were used to train support vector machines (SVMs) to predict
the optimal iteration in the ED process.

The two steps are used to develop the DOKEN algorithm, and once its developed,
it takes training images as input and generates ground-truth labels as output. The two
development steps are detailed below.

I. Segmentation of digital LA models

We reasoned that heart structures can be geometrically parsed by separating the convex
LA body from the concave whole heart. Three-dimensional voxel erosion, dilation [17],
and subtraction were used for this purpose.

To segment PV and LAA from the digital heart, a binary erosion operation was
used, which can be defined as A ⊖ B = {x ∈ EN | x + b ∈ A f or every b ∈ B

}
. Then, in

order to recover the original dimension of LA, binary dilation was applied, defined as
A ⊕ B = {x ∈ EN | c = a + b f or some a ∈ A and b ∈ B

}
, where A and B are sets in N-

space (EN) with elements a and b. In our case, A is the heart model and B is a structuring
element, which is a 3 × 3 × 3 cube where the center and its 6 neighbors are set to 1 and the
remaining elements are 0s.

First, the digital shells were segmented by the application of erosion to concave
junctions between PVs and LAA with the LA (Figure 2(A1)). The PVs and LAA are smaller
and consist of more 1-connected voxels than the LA body and thus erode more rapidly.
However, it is non-trivial to iteratively erode just the PVs and LAA to leave the residual
convex LA. To do so, an Erosion Index was proposed to monitor the progression of erosion:

Erosion Index =
V(Convex(Ei))− V(Ei)

V(Ei)
,
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where Ei is the 3D model after the ith erosion, Convex(·) is the convex hull, and V(·) returns
the volume of a 3D shape. The erosion index approaches 0 as the shape becomes convex.
The index data are preprocessed with a Savitzky–Golay filter and fitted with a polynomial
function. The global minimum of the fitting function is calculated to determine the number
of iterations for erosion (Figure 2B).
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Figure 2. Segmentation of digital LA models by erosion–dilation: Detailed description of the first step
of the DOKEN algorithm. (A1–A4) The pipeline of our DOKEN algorithm. (B,C) Iterative variations
of the erosion and dilation indices along with variations in LA model corresponding to iterations.
The ED parameters from this step are then learned by an SVM for labeling clinical data.

Because erosion may remove outer layers of the LA, a dilation operation was applied to
recover its original dimension (Figure 2(A2)) by paving voxels on the contour and stopping
just before the PVs and LAA are re-attached (Figure 2(A3)), which is monitored by the
proposed Dilation Index by measuring the number of added voxels after each dilation:

Dilation Index =
V(Di+1)− V(Di)

V(Di)
,

where Di is the 3D shell after the ith dilation and V(·) returns the volume of a 3D shape.
Similarly, we processed the index data using a Savitzky–Golay filter then fitted them with
a polynomial function. The first stationary point of the fitting function determines the
number of dilation iterations (Figure 2C).

After the left atrium body is isolated after erosion and dilation, the boundaries between
the LA body and the PVs and LAA were refined by calculating centerlines from the LA
centroid to the centroid of each segmented structure. This approach has been used to
extract and segment the aorta and great vessels [6,18,19]. Below is a step-by-step algorithm
of boundary refinement and centerline calculation:
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1. Extrapolate a Voronoi diagram [20] from the shell (Figure 2(A1)) to all internal points
to create a maximal sphere centered at that point.

2. Calculate the centroid of the LA body and the centroid of each virtually dissected
substructure (4 PVs and LAA).

3. For each substructure centroid, create a centerline automatically by minimizing the
integral of the radius of maximal inscribed spheres along the path that connects the
substructure centroid to the LA body centroid.

4. Replace the boundary between the left atrium and each substructure by a plane or-
thogonal to the corresponding centerline and close to the original boundary generated
by the ED process (Figure 2(A4)).

II. Tuning the ED parameter using patient LA models

The parameters for the ED process, i.e., the optimal number of iterations, that are
suitable for digital models may not apply to clinical data due to heterogeneities such as
anatomy variability and imaging artifacts present in the clinical data. The parameters
were made suitable for clinical data using a support vector machine (SVM) to predict the
parameter value for input clinical CT. Two SVMs (one for each parameter) were trained
with manually annotated seed samples (N = 5) to predict the optimal number of erosion
and dilation iterations. The ED process with parameters predicted by SVMs forms the
DOKEN algorithm and will be used to generate robust labels for training the DNN model.

2.3. Training the DNN for CT Segmentation from a Small Training Set

DOKEN was applied to N = 20 training data to label the different LA structures in
each sample. This was used as ground truth for training the DNN.

We implemented nnU-Net (Figure 3)—a DNN model which has been widely used in
23 public datasets [21]. To train the nnU-Net model, first, each input CT scan was z-score
normalized by subtracting its mean, followed by division by its standard deviation. Then
the images were re-sampled using third-order spline interpolation. The target voxel spacing
was set as the median spacing of the training samples. To improve the generalizability, a
set of data augmentation techniques were randomly applied on the fly during training,
including rotations, flipping, scaling, Gaussian noise and blur, and random changes in
brightness, contrast, and gamma. During the training process, the batch size was set to
2 due to the GPU memory limitation, and the DL model was trained for 1000 epochs.
Stochastic gradient descent [22] was used to optimize the model. The initial learning rate
and Nesterov momentum were set to 0.01 and 0.99, respectively. The sum of cross-entropy
and Dice loss were used as training loss. Figure 4 shows the convergence of training loss,
validation loss, and validation accuracy (measured by Dice) during training.
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2.4. Experimental Setting for Performance Evaluation

The DOKEN algorithm’s ability was empirically evaluated to parse cardiac geometry
and the DNN model’s ability to segment cardiac structures from CT images. The large test
set (N = 100) was used to manually annotate the ground-truth labels for the 6 substructures
by a panel of clinical experts. The manual annotation was performed using a commercially
available software tool (EnSite Verismo Segmentation Tool v.2.0.1; Abbott/St Jude Medical,
Inc., St. Paul, MN, USA) to manually segment a shell containing the LA body with 4 PVs
and the LAA. This whole shell was further parsed (“refined”) into its 6 substructures using
3D Slicer [23], manually. The parsing performance of the DOKEN algorithm was measured
by centroid–boundary distances against manual annotations. The CT segmentation per-
formance of the DNN model was measured by Dice scores, average surface distance, and
centroid–boundary distances, also against manual annotations.

2.5. Performance Evaluation

A newly designed metric, the centroid–boundary distance, was used along with two
standard metrics for segmentation tasks [6–8,24–27]—Dice similarity coefficient and aver-
age surface distance—to evaluate the model’s accuracy in capturing the 2D LA-PV/LAA
boundaries, the global 3D structures, and the local 3D shapes and contours, respectively.
Mathematically, the centroid–boundary distance is calculated as the average of all the
distances from the centroid of the heart to points on the LA-PV/LAA boundary. The
Dice similarity score measures spatial overlap between the model prediction and the
ground truth, while 0 indicates no overlap and 1 indicates complete overlap, which can be
mathematically expressed as

Dice Similarity Score =
2 × True Positive

2 × True Positive + False Positive + False Negative
.

The average surface distance is calculated as the average of all the distances from
points on the boundary from model prediction to the ground-truth boundary. The success
rate of the DOKEN algorithm was also calculated, where success was defined as an intersect
over union (IoU) between the algorithm prediction and expert manual annotation larger
than 0.5. This metric has been widely used for detection tasks [28].

2.6. Statistical Analysis

Continuous data are expressed by mean ± SD and categorical data by percentages. The
distance and Dice scores were summarized as medians and interquartile range (IQR). Pear-
son correlation’s test was used to assess the similarity of LA volumes and the LA sphericity
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index estimated from model prediction and ground truth. The Student’s t-test, Chi-square
test, or McNemar’s test was applied as appropriate. p < 0.05 was considered significant.

3. Results
3.1. DOKEN Algorithm Can Robustly Parse Cardiac Geometry

In digital hearts, the novel DOKEN approach separated the PVs and LAA from the
left atrial bodies (Figure 5A) with a mean difference for the centroid–boundary distances
of −0.27 mm (95% CI: −3.87 to 3.33; r = 0.99; p < 0.0001; Figure 5B). Randomly, five shells
of seed data was selected from the N = 5 digital atria for tuning, with LA sizes from 71 to
140 mL that cover a broad range of patients [29].
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Figure 5. Evaluation of the DOKEN algorithm and the DNN performance for CT image segmentation.
(A) Examples of digital LA models segmented by the DOKEN algorithm. (B) Bland–Altman plot of
centroid–boundary distance of N = 6 digital LA models segmented by DOKEN compared to experts.
(C) Examples of patient LA models segmented by the DOKEN algorithm. (D) Bland–Altman plot
of centroid–boundary distance of N = 100 patient LA models in the test set segmented by DOKEN
compared to experts. (E) Success rate of DOKEN algorithm with different seed cases for SVM training.
Refer to panel D for color codes for the plot in panel B.
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In the test set (N = 100), the performance of the tuned DOKEN algorithm was compared
to expert annotations. Figure 5C presents example results on the test set. The DOKEN
method produced a mean difference and limits of agreement for the centroid–boundary
distance of 1.46 mm (95% CI: −5.58 to 8.49; r = 0.99; p < 0.0001; Figure 5D). The success rate
of the algorithm’s parsing when adding more seed data for tuning was assessed. As shown
in Figure 5E, the success rate increased from 67% (no tuning) to 94% by tuning with N = 5
shells of seed data (p = 0.034; McNemar’s test) and then showed only modest changes
(consistency) when tuning in 10–30 shells (92–94%), justifying the selection of seed number.

3.2. DNN Trained by DOKEN-Labeled Samples Can Accurately Segment CT

Figure 6 shows comparisons between DNN prediction (left) and manually labeled
(right) atria from select samples representing the 25th, 50th, and 75th percentile accuracy in
the hold-out set (N = 100). The Dice score was 96.7% (IQR: 95.3% to 97.7%, Figure 7A), with
a median error in surface distance of boundaries of 1.51 mm (IQR: 0.72 to 3.12, Figure 7B)
and a mean centroid–boundary distance of 1.16 mm (95% CI: −4.57 to 6.89, Figure 7C),
again similar to expert results (r = 0.99; p < 0.001, Figure 7D).

Thus, this approach enabled a >10-fold reduction in the relative ratio of training to test
cases, inverting the ratio of training:test cases to less than 1:5 from a typical ratio of >3:1.

3.3. Analysis of Anatomical Variants

As previously noted, real CT data have more heterogeneity than digital models, such
as variation in patient anatomies. Some anatomies could, in fact, be outliers, i.e., their shape
does not follow the typical configuration identified in clinical studies. As no pre-screening
was performed to eliminate such anatomy variants, it was analyzed if and how variation in
anatomies would affect the method’s performance.
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Figure 7. Accuracy of CT image segmentation between DNN prediction and expert labeling in the
test set (N = 100). (A) Violin plot of mean Dice score. (B) Box plot of the surface distance of boundaries
of 4 PVs and LAA. (C,D) Bland–Altman and linear regression plots of centroid–boundary distance of
4 PVs and LAA.

Overall, 100% cases with four PV ostia (the most common anatomic configuration,
representing 66 cases) were parsed with boundary distances of 1.26 mm (95% CI: −5.15 to
7.68; r = 0.99; p < 0.0001). Three main outlier variants were identified (Figure 8): (1) common
left PV ostia (N = 12), which was successfully parsed despite a lack of specific training on
such cases; (2) LAA occlusion by a closure device (N = 3), where residual LAA stumps
proximal to the occlusion device were correctly identified despite a lack of specific training
in such cases; and (3) supplemental PVs or ostial-branch PV, where the DOKEN algorithm
was able to segment 19/25 cases.

In summary, 28/34 of identified variants were successfully parsed with anatomic
agreement within 1.95 mm (95% CI: −6.34 to 10.25), which again was in line with expert
annotations (r = 0.99; p < 0.0001), despite lack of specific training for variants. In the
remaining six cases, errors arose mostly from missing PVs or branches relative to the
four-PV digital model, which could be addressed by geometric models that adapt to a
range of PVs.
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Figure 8. Robust segmentation performance of anatomical variants by the DOKEN algorithm. Three
main variants were identified: (A) common left PV ostia (N = 12), (B) LAA occlusion by a closure
device (N = 3), and (C) supplemental PVs or ostial-branch PV (N = 25). DOKEN successfully parsed
28/34 of the identified variants (boxed/circled in yellow). However, it missed some extra PVs or
branches in the remaining cases (circled in red).

4. Discussion

Domain knowledge encoding of atrial geometry was able to accelerate a DNN for the
segmentation of CT images and enable its training on very small datasets. In this study,
the training-to-testing ratio was <1 training to 5 test, which indicates a far lower need for
training than the conventional published ratios of >3:1 for ML [8,24,26]. This approach
was then tested in a hold-out test set, in which the model accelerated segmentation while
maintaining similar accuracy to experts. This novel approach could broaden the ease of
access and accuracy of AF ablation. More broadly, this approach has analogies to natural
intelligence, which has the potential to reduce the need for large, annotated datasets to
train ML and could be applied for diverse applications in imaging as well as 3D printing. A
simple post-processing step involving a 3D smoothing operation such as a Taubin filter [30]
could extend the proposed work for 3D printing applications (illustrated in Supplemental
Figure S1).

4.1. DNN Segmentation of Cardiac CT Images

Cardiac CT is increasing used [24,26,31] to guide ablation for AF and to predict clinical
endpoints such as the risk of AF recurrence [32,33]. However, the segmentation of these
large 70–200 MB datasets manually by experts takes tens of minutes [6–8,24] and 4.4–10 min
even with latest commercial software such as the CARTO Segmentation Module version 6
(Biosense Webster, Irvine, CA, USA) [34,35]. The present approach greatly accelerates these
reports while retaining high accuracy for routine and variant anatomy while achieving
competitive accuracy (93.5–96.7%) with previous work (e.g., 91–97% [25] and 93.4% [24]).
This study involved a dataset of N = 120 patients at a single center. The future extension of
this work should expand the study cohort with data from multiple institutions, and the
labeling should be further refined using a fusion of annotations from multiple experts and
addressing discrepancies by an adjudication committee. One such example is demonstrated
in our previous work [36], where we used an independent external dataset to test the
performance of the algorithm.

The approach also circumvents the limitation that most CT studies that segmented
the LA often did not specifically segment the PVs and LAA [24,26]. Similarly, software
tools such as SimVascular (v.2023, https://github.com/SimVascular, accessed on 14 May
2024) provide automatic segmentation, which uses an ML model (CNN) that was trained
using a public dataset MM-WHS [7], which only focuses on labels for the chambers but not

https://github.com/SimVascular
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specifically for the complex substructures such as narrow veins (PVs) and the anisotropic-
shaped LAA, which are critical for AF ablation. The DOKEN algorithm, on the other hand,
offers a scalable solution to segment complex structures in large medical databases. Further,
the DOKEN algorithm’s goal is focused on segmenting intricate cardiac structures and is
not intended to be an alternative for advanced tools like SimVascular, which can perform
high-fidelity simulations.

Another limitation is the size of publicly available labeled datasets, which are often
small, typically provide test cohorts of <40 cases [6–8], and may create overfitted ML
models that generalize poorly [37]. The DOKEN algorithm enabled training from smaller
datasets, inverting the typical ratio of training:test cases and reducing the relative size of
training to test cases by 10-fold. This “inversed training–test ratio” paradigm has recently
been applied in domains outside medicine such as for Amazon co-purchasing product
predictions [38]. Other cardiac imaging applications include the segmentation of magnetic
resonance imaging (MRI) data to boost ML by reducing the need for large training data sets.

4.2. Challenges in Machine Learning

LeCun et al. and others have stated that difficulties in obtaining large training datasets
are among the greatest challenges to machine learning [39]. Obtaining such data is par-
ticularly challenging in medicine [40], healthcare [41], and biosciences [42] due to pri-
vacy and regulatory requirements. The mathematical encoding of domain knowledge,
which emulates some features of natural intelligence, may be a useful approach to address
such limitations.

Domain knowledge can be applied in diverse ways. Databases and anatomic at-
lases have long been used for image segmentation [43,44] but do not encode knowledge
principles in a fashion that could be generalized by learning algorithms. Indeed, Trutti
et al. [44] pointed out that atlases may identify only a fraction of important structures
(7% of 455 subcortical nuclei in the brain), and it is not clear how such “flat” data could
be used to identify variants, as we demonstrated. Encoding anatomical knowledge also
de-emphasizes low-level details while maintaining high-level abstract information, which
may be central to human cognition [12]. The extent of detail required for mathematically
encoding is unclear and should be defined for separate applications. Domain knowledge
encoding need not be restricted to anatomy and could be applied to processes such as
cellular metabolism and physician diagnostic patterns or reports [15].

Alternative approaches are being studied to circumvent large training datasets. Syn-
thetic data may be generated in large quantities to mitigate a lack of actual training data [45],
but while they may appear very realistic, they may lack diversity or even introduce bias
due to the overfitting [46]. Data augmentation is a widely used approach to training ML on
altered versions of the input data to increase the size of the training set [47] but does not
capture variations in larger real data [48].

5. Conclusions

The novel domain knowledge-encoding algorithm was able to perform the segmen-
tation of six substructures of the LA, reducing the need for large training data sets. The
training set had as few as 20 samples, and the hold-out test set included hundreds of pa-
tients. The combination of domain knowledge encoding and machine learning approaches
could reduce the dependence of ML on large training datasets and could potentially be
applied to AF ablation procedures and extended in the future to other imaging, 3D printing,
and data science applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14141538/s1, Figure S1: Demonstration of a potential
application of our DOKEN algorithm in 3D printing.
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