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Abstract: The sol–gel process enables the preparation of silica-based matrices with tailored compo-
sition and properties that can be used in a variety of applications, including catalysis, controlled
release, sensors, separation, etc. Commonly, it is assumed that silica matrices prepared via the sol–gel
synthesis route are “inert” and, therefore, do not affect the properties of the substrate or the catalyst.
This short review points out that porous silica affects the properties of adsorbed/entrapped species
and, in some cases, takes an active part in the reactions. The charged matrix affects the diffusion of
ions, thus affecting catalytic and adsorption processes. Furthermore, recent results point out that
≡Si-O. radicals are long-lived and participate in redox processes. Thus, clearly, porous silica is not an
inert matrix as commonly considered.

Keywords: sol–gel; silica; adsorption; matrix inertness; hybrid matrices

1. Introduction

Sol–gel matrices are used for a variety of applications [1,2] of special importance
for separations [3–5] and catalysis [6–10], including electrocatalysis [11,12]. The sol–gel
process at the molecular level implies the ability to control the monomer → oligomer → sol
(colloidal solution) → gel transitions. Thereafter, consider a porous silicon oxide material
with the required chemical properties and surface morphological characteristics. The inner
porosity of the resulting silica-based material enables accessibility, dispersion, and effective
confinement of the entrapped molecular species. Three approaches are generally used for
the preparation of sol–gel matrices:

1. Gelation of a solution of colloidal powders;
2. Hydrolysis and poly-condensation of alkoxide precursors followed by hypercritical

drying of the gels;
3. Hydrolysis and poly-condensation of alkoxide or chloride precursors followed by

aging and drying in ambient atmospheres.

Generally, chlorides or metal alkoxides are used as precursors for the preparation of
the matrices through hydrolytic or non-hydrolytic processes [13]. The non-hydrolytic sol–
gel process is based on the reaction between the chloride precursors with ethers/alcohols
as oxygen donors as below (reaction (1)).

M-Cl + ROR/M-OR → M-OR/M-O-M + R-Cl
(M = metal, e.g., Ti, Zr, Al, R = alkyl residues)

(1)

The non-hydrolytic sol–gel synthetic route is particularly useful for the preparation
of mixed oxides, as it enables excellent control over the homogeneity and the texture
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of the matrices obtained [14–17]. Compared to the matrices prepared via the hydrolytic
process, these ones do not include hydroxyl groups. Instead, the residual surface groups
are chlorides, which impart different characteristics to the oxide surface that affect the
interactions with the immobilized species.

The low cost (economics) and control over the end-product composition are important
advantages of the sol–gel process. The silica-based matrices are usually prepared by
using tetramethyl orthosilicate (TMOS) or tetraethyl orthosilicate (TEOS), which contains
methoxide (-OCH3) and ethoxide (-OC2H5) groups [18–21] as a primary network-forming
agent, allowing for a high degree of control over synthesis conditions, including pH,
temperature, and the incorporation of additives. The synthesis of the sol–gel matrices
involves hydrolysis and condensation steps in reactions that are outlined in Figure 1. The
sol–gel chemistry of silica is typically driven by either acid or base catalysts, as the neutral
reaction is very slow. The structure of the resulting gel is significantly different depending
on the catalyst, and this is due to the relative rates of the hydrolysis and condensation
reactions [22]. Organically modified silica (ORMOSIL) matrices can be prepared by using
silane precursors of the type (RO)3Si-R′, where R′ contains the desired substituent [23].
Then, (RO)3Si-R′ is mixed with (OR)4Si, and the matrix is prepared through hydrolysis and
condensation stages. The use of precursors of the type (RO)3Si-R′, where R′ has a functional
substituent to which a desired compound can be covalently bound or itself has a role in the
final matrix network [24–26], enables the control of the functionality and hydrophobicity
of the matrix obtained [27–29]. These materials boast high specific surface areas (SSAs)
exceeding facile formation and functionalization, tunable pore structures, and thermal
stability [30]. While high-SSA silica has demonstrated functional effectiveness, continued
research and development are essential to addressing evolving energy and environmental
challenges.
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Silica-based sol–gel materials synthesized with entrapped organic molecules, metal
complexes, and metal nanoparticles (NPs) were extensively studied in the late 1980s. Early
research involving the sol–gel process was conducted by D. Avnir and R. Reisfeld in 1984,
who proposed to introduce a dopant solution (a dye molecule) at the preliminary stage of a
silicon alkoxide gelation process and studied the activity of the silica resulting from mild
drying of the intermediate alcogel [31]. They later demonstrated that any kind of organic
species could be entrapped and well dispersed inside the pores of such silica materials,
along with the complete retention of the chemical activity and considerable stability of
the entrapped molecule [32]. The substrates and/or the catalyst are entrapped [33] in the
matrix and/or adsorbed on its surface [34].

Commonly, silica matrices prepared via the sol–gel synthesis route are used as the
matrix is “inert” and, therefore, is assumed not to affect the properties of the substrate or
the catalyst [33]. This is clearly not accurate; adsorption means that there is an adsorption
energy that clearly affects the properties of the adsorbate. Even entrapped species that
in principle do not interact with the walls of the matrix are affected by the entrapment.
First, the volume of the solvent in the pores is small, and thus their solvation/hydration is
affected [35–37]. Furthermore, if the solvent is water, then the silanol groups on the surface
have a pKa. For silanols, the point of zero charge (PZC) is ca. pH 4. Thus, the entrapped
species is exposed to an electrical field if the pH differs from the PZC. Furthermore, the
charges on the walls of the pores are expected to affect the diffusion of charged species
towards the entrapped catalyst [38,39]. Two classic examples of these effects are: I. Avnir
et al. have shown that an organo-metallic catalyst that is entrapped in a silica sol–gel matrix
is active even if the solvent is water, though it is unstable in aqueous media [32]. II. Avnir
et al. have shown that an enzyme entrapped in a silica sol–gel matrix is active at pHs and
temperatures at which it denatures in homogeneous aqueous media [40].

This short review aims to highlight the effect of an “inert” porous matrix on the
properties/reactivity of the adsorbate. The following sections discuss some specific effects
of porous silica on the properties/stability of adsorbates and reaction mechanisms.

2. Cation Adsorption/Separation

Many human processes, such as industrial activity and the hazardous wastes it gener-
ates, cause environmental pollution. Among the most pervasive contaminants are toxic
metals (e.g., Pu, U, Sr, Cs, Pb, Pb, Cd, Cr, and Hg), a particularly widespread group of
pollutants with dire consequences for all animal life. The ubiquity of heavy metals in
the environment can be traced to industrial development in parallel with the growing
world population. A variety of physicochemical methods have been suggested to achieve
the goal of reducing the environmental concentrations of toxic pollutants that are already
imposing a crippling burden on human health. Among these methods are precipitation [41],
filtration and membrane separation [42], reverse osmosis [43], and electrochemical [44] and
biological processes [45,46]. Alternatively, adsorption can be used for the purification of
wastewater from polluting metal cations. This method enables flexibility and can be easily
implemented. Different adsorbing materials have been studied for this purpose, with the
aim of finding cost-effective adsorbing materials with high capacity [47–50], selectivity,
kinetic efficiency, and stability.

Expanding the sol–gel methodology to prepare gel materials for metal ion extraction
necessitates careful consideration of potential perturbations to complexation and, most
importantly, the matrix pore structure, surface area, pH, and hydrophobic nature. Vari-
ability in pore size and distribution can impact the efficiency of metal absorption, as it
may affect the accessibility of metal ions to active sites within the material. Additionally,
the formation of large or irregular pores may lead to decreased surface area and reduced
metal uptake capacity. Silica gels modified with complexing agents have also proven
their effectiveness in extracting metals from aqueous samples [4,51–55]. These silica-based
sol–gel materials offer distinct advantages, such as rapid exchange kinetics [4,56] and
robust physical stability [57,58], distinguishing them from conventional functionalized
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resins. The identity of the target heavy metal for extraction dictates the precursors that
are used in the matrix preparation. Silane precursors of the type (RO)3Si-R′, where R′

contains the desired substituent that can ligate to metal cations or can be used to bind
ligands that are known to be selective to certain metal cations [59–64], can be used for the
preparation of matrices with higher capacity and selectivity. Alternatively, ligands can be
encapsulated in the matrix [65,66] by their addition at different stages of the sol–gel process
(Figure 2). This allows for the precise control of both the kind of metal that will be bound
and the strength of the binding that affects the regeneration efficiency. The specificity of
the entrapment in terms of the target heavy metal cation can be achieved by rationally
designing the matrix and taking into account hard and soft acids and bases considerations
to enable the separation of metal cations in a common oxidation state.
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e.g., DTPMP or NTPH.

As the silanol groups of the silica matrices are weak acids, they can act as ion exchange
materials and separate cations from solutions. As the ≡Si-O− is a hard, strong base, it prefers
high-valent cations. Thus, though this was not reported, one can expect that the oxidation
potentials of cations adsorbed to a sol–gel matrix are considerably lower than those in ho-
mogeneous aqueous media. The selectivity of gels for the adsorption of certain ions can be
achieved by the addition of a complexing agent. For example, two experiments were performed
for the selective binding of UO2

2+. First, ethylenediaminetriacetate was covalently bound to
a silica-gel matrix; the resulting matrix bounds both CeIII

aq and UO2
2+

aq well, with a small
preference for UO2

2+
aq [67]. To improve selectivity, three kinds of matrices, which differ by the

entrapped ligand (nitrilotris(methylene)]tris(phosphonic acid) [NTPH], diethylenetriaminepen-
takis (methylphosphonic acid) [DTPMP] and N1-(3-trimethoxy-silylpropyl) diethylenetriamine
(N1)) were prepared [21]. In order to develop a method for uranyl separation from a solution
containing a mixture of cations, phosphonate ligands, which are known to form stable complexes
with uranyl [68–73], were chosen. The matrix that contained the DTPMP showed the highest
capacities under most experimental conditions. However, the NTPH matrix was shown to have
the best selectivity for cerium [21].

The results showed no selectivity for any of the cations that were studied with matrices
prepared at basic pH, and no separation ability for those cations was obtained. However, a
high capacity was found for the matrices that were prepared at pH 13 for all of the studied
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cations [21]. This result indicates that the sol–gel matrix could be applied as a method
for durable and simple cation entrapment. The TMOS-Blank sol–gel matrix (without a
ligand) was found to be selective for the adsorption of uranyl cations, and the addition of
NTPH increased the matrix capacity and selectivity for cerium and accelerated the cation
adsorption process. The density functional theory (DFT) calculations that were performed
in order to explain the experimental results indicate that the uranyl (from the divalent
cations) and chromium from the trivalent cations are bound to the matrix strongly, with
and without NTPH, and as expected, the binding of trivalent cations is more exergonic
than the divalent cations. Surprisingly, it was found by 31P-NMR and DFT calculations
that the phosphonates, at least in part, were covalently bound to the matrix formed [21],
probably via reaction (2):

≡Si-OH + R-PO3H− → ≡Si-O-P(R)O2
− + H2O (2)

DFT calculations, at the level of PBEPBE/6-311+G(d,p) (SCRF = SMD; Empirical-
Dispersion = GD3BJ) [74–78] using g16 software [79] were used to calculate the plausibility
of the reaction of the NTPH ligand with the silica matrix (reaction (3)).

(OH)Si(OSi(OH)3)3 + N(CH2PO(OH)2)3 → NTPH_silica +H2O
∆G0 = −14.6 kcal/mol

(3)

This is an exergonic reaction, indicating that a variety of oxo-acids might be covalently
bound to silica sol–gel matrices during their formation. In general, it is evidence that the
sol–gel matrix is not inert. Figure 3 presents the structures used for the DFT calculations:
the blank silica, the ligand, and the NTPH-entrapped matrix with the new bonds formed.
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29Si and 31P solid-state NMR measurements were also used to study the structure and
possible interaction between the silica network and the nucleic acids in DNA formed upon
its encapsulation in a silica sol–gel matrix. While the 29Si NMR data did not indicate a
possible bonding between siloxane chains and the DNA molecules, the 31P NMR spectrum
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showed that a complexation between the Si network and the DNA phosphate groups
probably occurred through the formation of the P-O-C:(Si) link [80].

The formation of covalent bonds between the immobilized species and the silica
matrices was also reported for the entrapment of dye molecules [81]. The absorption
magnitude of the doped sol–gel films decreased with the increase in aging time, indicating
changes in the interaction with the pore walls, and the conversion of indirect hydrogen
bonds to direct hydrogen and covalent bonds by the elimination of water. Capeletti et al.
have shown that the synthesis route affects the interaction formed between the encapsulated
pH sensors, alizarin red, and the silica matrix. These interactions were studied by cyclic
and differential pulse voltammetry. Matrices prepared via the base-catalyzed procedure
showed differently shaped redox waves, thus indicating different interactions and/or the
presence of other products formed during material preparation or in the cathodic/anodic
scans [82]. Pereira et al. reported that C–OH bonds in polyvinyl alcohol were converted
into C-O-Si bonds by esterification reactions occurring during the sol–gel process used to
prepare the hybrid matrix [83,84], as observed by infrared spectroscopy.

2.1. Electron Exchange Columns

Electron exchange in which a redox agent bound to the solid packing matrix oxidizes
or reduces one or more substrates passing through the column without releasing the
entrapped moiety to the solution can facilitate the heterogenization and performance
under the flow of numerous redox reactions that are highly relevant to a broad range
of industrial and environmental remediation processes. Two types of electron exchange
columns were prepared:

1. Oxidizing electron exchange columns by entrapping NiII(cyclam)2+ in a sol–gel ma-
trix [20] or by covalently binding NiII(cyclam)2+ to a porous silica nanoparticle [85].
Transition metal complexes with high and low oxidation states are suitable redox
active agents for heterogeneous electron exchange applications. The rational design
of the ligand, i.e., altering the ligand structure to manipulate the redox potentials of
the complexes, enables uncommon oxidation states of the metal to be stabilized. Both
matrices were oxidized by S2O8

2− and then shown to oxidize reducing agents. The
lifetime of the NiIII(cyclam)3+ oxidizing agent formed in these systems is considerably
longer than in homogeneous media due to the inhibition of the reaction between two
NiIII(cyclam)3+ complexes [85].

2. Reducing electron exchange columns by entrapping polyoxometalates (POMs). In
recent years, POMs have attracted significant attention due to their alterable physical
and chemical properties [86–91]. Moreover, they are known for their flexible redox
behavior, which can be fine-tuned during the synthesis process by changing their
composition [92–94]. The oxidized forms of POMs can accept electrons, whereas their
reduced forms can function as the donors and the acceptors of several electrons while
retaining their structures [92,95–97]. This property renders POMs ideal candidates
for electron exchange applications [93,98–100]. Matrices prepared by the entrapment
of PW12O40

3− and AlW12O4
5− in silica or organically modified silica by using the

sol–gel procedure were used as reducing electron exchange columns [98,101]. The
entrapped polyoxometalates were reduced by sodium borohydride, and the reduced
product was shown to reduce halo-organic compounds [101] and bromate [102]. NMR
studies proved that the polyoxometalates were bound covalently to the sol–gel matrix
via a mechanism analogous to reaction (2). Also, the average number of electrons
loaded on each silica-entrapped POM, n, was considerably smaller than that observed
in experiments performed with POM dissolved in solution. Moreover, it depends
strongly on the nature of the precursors. Higher values of n were obtained when
matrices were more hydrophilic and prepared only from TEOS [17].
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2.2. Electrocatalytic Processes by Entrapped/Adsorbed Species in Sol–Gel Matrices

Nickel [103] and ruthenium complexes [33] entrapped in sol–gel matrices were studied
as electrocatalysts for water oxidation. A copper complex entrapped in sol–gel matrices
was shown to be an efficient electrocatalyst for the heterogeneous de-chlorination of alkyl
halides [104]. The results obtained in these studies point out that the precursors used
to prepare the matrices dramatically affect the efficiency of the catalytic process. Thus,
the use of trimethoxy-(phenyl)silane as one of the precursors considerably decreases the
electrocatalytic current [33,104,105]. This is attributed to the hydrophobic properties of the
pores induced by the phenyl groups in matrices prepared using a mixture of the silane
precursors trimethoxymethylsilane (MTMOS) and trimethoxyphenylsilane and the steric
hindrance they cause.

The results of the electrocatalytic water oxidation in the presence of a ruthenium
complex and a co-catalyst, bicarbonate/carbonate, indicated that the current decreases
in alkaline media [33], though it increases with pH when the same process is studied in
homogeneous solutions [106]. This is attributed to the decrease in the diffusion coefficient
of carbonate compared to bicarbonate in the negatively charged pores.

The study of the electrocatalytic de-halogenation in the presence of Cu(2,5,8,11-
tetra-methyl-2,5,8,11-tetraazadodecane)2+ entrapped in a sol–gel matrix revealed three
further effects of the matrix: I. The Cu(2,5,8,11-tetra-methyl-2,5,8,11-tetraazadodecane)2+

(CuIIL)-entrapped complex is stable even in acidic media. II. The redox potential of the
entrapped complex is shifted somewhat cathodically, probably due to the charged pores.
III. The mechanism of the de-halogenation in the heterogeneous system [105] differs from
that in the homogeneous one [107,108]. In both media, the first step is:

RX + CuIL+ → CuIIL2+ + R. + X− (X = Cl/Br) (4)

In homogeneous solutions, this is followed mainly by:

R.+ CuIL+ → LCuII-R+; LCuII-R+ + H2O → CuIIL2+ + RH + OH− (5)

Whereas in the heterogeneous system, the main follow up reactions are:

R. + CuIIL2+ → LCuIII-R2+; LCuIII-R2+ + H2O → CuIL+ + ROH + H+ (6)

The reason for the different mechanisms is that in the homogeneous system, excess
CuIL+ is present, whereas in the heterogeneous system, the radical is trapped in the pore in
the presence of CuIIL2+ formed in reaction (4).

2.3. M0-NPs as Catalysts for Reduction Processes of Halo-Organic and Nitroaromatic Pollutants

The catalytic de-halogenation of halo-aliphatic compounds, e.g., haloacetic acids and
chloroacetamides, by reduction with sodium borohydride in the presence of Ag0-NPs [109,110],
Au0-NPs [110], and Fe0-NPs [111,112] entrapped in sol–gel matrices was studied. The results
indicate that the de-halogenation rate and mechanism are affected by both the nature of the halo-
organic substrate and the nature of the metal used to prepare the M◦-NPs. The de-halogenation
products of Br3CCO2H vary for M0 = Au0, Ag0, or Fe0. Nitrobenzene reduction with sodium
borohydride was studied by comparing the catalytic performance of Fe0-NPs entrapped in organ-
ically modified silica matrix ZVI@ORMOSIL and Ni0 formed in situ by the reduction of Ni2+

aq
adsorbed to a porous, organically modified silica matrix (Ni(II)@ORMOSIL) [113]. The question
of whether the M0-NPs are adsorbed to the surfaces of the pores was not studied. The results
clearly point out that the adsorbed Ni(II) is a better catalyst, and that the heterogeneous catalysis
occurs via different reaction mechanisms compared to the reaction performed in the homogenous
phase with Ni2+

aq as a catalyst. In the latter, no color change indicating the formation of Ni0 was
observed, thus indicating that different catalytic species are formed, therefore demonstrating the
effect of the matrix.
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2.4. The Effect of Porous SiO2 on Catalytic Hydrogen Evolution Processes Induced by M0-NPs

The catalysis of water reduction in the presence of ·C(CH3)2OH radicals obtained by γ ir-
radiation of de-aerated aqueous solutions containing acetone and 2-propanol reactions (7)–(11)
was studied for suspended M0-NPs and for silica-supported M0-NPs, M0-NPs@SiO2 (M = Ag;
Au and Pt) [8,34,114].

n[(CH3)2COH.] + M0-NP → (M0-NP)-{C(OH)(CH3)2}n (7)

(M0-NP)-{C(OH)(CH3)2}n → (M0-NP)-{C(OH)(CH3)2}n-m
m−+ m(CH3)2CO + mH+ (8)

(M0-NP)-{C(OH)(CH3)2}n
−

m
m− + kH+ ⇔ Hk- (M0-NP)-{C(OH)(CH3)2}n-m

(m-k)− (9)

Hk-(M0-NP)-{C(OH)(CH3)2}n-m
(m−k)− → Hk-2-(M0-NP)-{C(OH)(CH3)2}n-m

(m-k)−+H2 (10)

Hk-(M0-NP)-{C(OH)(CH3)2}n-m
(m−k)− → Hk-(M0-NP)-{C(OH)(CH3)2}n-m-2

(m−k)− + (CH3)2CHOH + (CH3)2CO (11)

The ratio [H2]/[(CH3)2CHOH] in the products increases with the negative charge on
the nanoparticle, Hk-(M0-NP)-{C(OH)(CH3)2}n-m

(m-k)−. Silica support of the M0-NPs was
shown to decrease this ratio, i.e., to catalyze reaction (9). This was interpreted as indicating
a negative charge transfer from the silica to the M0-NPs [8,34,114].

In another study, it was shown that silica-supported silver nanoparticles, SiO2-Ag0-NPs,
catalyze the hydrolysis of BH4

− [8]. A comparison of the isotopic composition of the hydro-
gen formed in the hydrolysis of BD4

− points out that the contribution of hydrides via the
Heyrovsky mechanism, rather than that of hydrogen atoms through the Tafel mechanism, to
the hydrogen evolution is considerably larger for the SiO2-Ag0-NPs catalysis process than for
the Ag0-NPs catalysis process. This indicates the partial electron transfer from the SiO2 to the
silver that increases the negative charge on the Ag0-NPs.

These results clearly point out that porous silica is not inert. The partial electron
transfer from the silica to supported M0-NPs, which are not strong oxidizing agents, raises
the question of whether one can oxidize porous silica surfaces.

2.5. Formation of ≡Si-O. Radicals on Porous Silica Surfaces

Recent results point out that ≡Si-O. radicals [115] and probably other radicals, e.g., ≡Si-OO.;
≡Si-OOO.; ≡Si+-O2

.−, are formed when H2O2 is adsorbed on silica surfaces [116,117]. The
question whether the formation of these radicals is initiated by traces of iron present in silica is
still debated [118]. In another recent study, long-lived ≡Si-O. radicals were reported to oxidize
sulfhydryls. OH. and H2O.+ “are previously known to exist at water interfaces [119]”. In another
study, it was proposed that OH. radicals and H2O2 are formed “in aqueous microdroplets or at a
water vapor–silicate interface [120]”.

Recently, a sol–gel matrix was used as an electron exchange matrix (EEM) for the oxi-
dation of para-chloroaniline (PCA), a common pollutant in the pharmaceutical industry [3].
The DFT results pointed out the formation of ≡Si-O. radicals by the reaction of the sol–gel
silica with S2O8

2−. The radicals formed react with the PCA to form radicals on the nitrogen
atoms (reaction (12)). The DFT calculations ruled out the formation of hydroxyl radicals
(reaction (13)).

Si4O12H9O. + PCA → Si4O12H9(N.)C6H4Cl + H2O ∆G◦ = −19.31 kcal/mol (12)

Si4O12H9O. + PCA → Si4O12H9NHC6H4Cl + .OH ∆G◦ = 6.29 kcal/mol (13)

When Cu(II) was entrapped in the sol–gel matrix, its binding to the matrix was strong
(reaction (13)), and the ∆G0 was affected by the pH of the PCA solution; as the pH increased,
the reaction became more exergonic (reaction (14)) [3].

Si4O13H10 + Cu(II)(H2O)6
2+ → Si4O12H9OCu(II)(H2O)4

+ + H3O+ + H2O
∆G◦ (pH 0) = 5.74 kcal/mol, ∆G◦ (pH 2) = 3.01 kcal/mol,

∆G◦ (pH 7) = −3.81 kcal/mol, ∆G◦ (pH 13) = −12.01 kcal/mol
(14)
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The results, which are supported by DFT calculations, show that the silicon skeleton
of the EEM has two important roles, both as a porous matrix that hosts the redox species
and as an oxidant species involved in the advanced oxidation process.

3. Concluding Remarks and Future Perspectives

The sol–gel process enables the preparation of silica-based matrices with tailored
composition and properties that can be used in a variety of applications, including catalysis,
controlled release, sensors, and separation. The inclination towards the sol–gel process is
primarily due to the high purity of the compounds, homogeneity, cost-effectiveness, and
lower processing temperatures as compared to other traditional glass melting or ceramic
powder methods. Clearly, recent results point out that porous silica not only affects the
properties of compounds adsorbed to it but is also involved in the reactions of reactive
oxygen species due to the formation of ≡Si-O. radicals and probably other radicals, i.e., it is
involved in redox processes. Also, it is shown that in hybrid silica matrices prepared by the
sol–gel process, in some cases, the interaction between the host matrix and the encapsulated
species is stronger than van der Waals interactions, and covalent bonds are formed during
the hydrolysis and condensation stages. The interactions of the adsorbed species with
the sol–gel matrices are often not easy to detect due to their low content relative to the
host matrix. Therefore, in any rational design of applicative matrices for catalysis, electron
exchange columns, or adsorbing material for environmental applications, the interaction of
the support with the adsorbed species and its effect on its activity should be considered.
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