
Citation: Wada, A.; Akashi, T.; Shih,

G.; Hagiwara, A.; Nishizawa, M.;

Hayakawa, Y.; Kikuta, J.; Shimoji, K.;

Sano, K.; Kamagata, K.; et al.

Optimizing GPT-4 Turbo Diagnostic

Accuracy in Neuroradiology through

Prompt Engineering and Confidence

Thresholds. Diagnostics 2024, 14, 1541.

https://doi.org/10.3390/

diagnostics14141541

Academic Editor: Jerome A. Barakos

Received: 29 May 2024

Revised: 2 July 2024

Accepted: 10 July 2024

Published: 17 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Optimizing GPT-4 Turbo Diagnostic Accuracy in Neuroradiology
through Prompt Engineering and Confidence Thresholds
Akihiko Wada 1,* , Toshiaki Akashi 1 , George Shih 2, Akifumi Hagiwara 1 , Mitsuo Nishizawa 1 ,
Yayoi Hayakawa 1, Junko Kikuta 1 , Keigo Shimoji 1, Katsuhiro Sano 1, Koji Kamagata 1 , Atsushi Nakanishi 1

and Shigeki Aoki 1

1 Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
2 Clinical Radiology, Weill Cornell Medical College, New York, NY 10065, USA
* Correspondence: a-wada@juntendo.ac.jp

Abstract: Background and Objectives: Integrating large language models (LLMs) such as GPT-4
Turbo into diagnostic imaging faces a significant challenge, with current misdiagnosis rates ranging
from 30–50%. This study evaluates how prompt engineering and confidence thresholds can improve
diagnostic accuracy in neuroradiology. Methods: We analyze 751 neuroradiology cases from the
American Journal of Neuroradiology using GPT-4 Turbo with customized prompts to improve
diagnostic precision. Results: Initially, GPT-4 Turbo achieved a baseline diagnostic accuracy of
55.1%. By reformatting responses to list five diagnostic candidates and applying a 90% confidence
threshold, the highest precision of the diagnosis increased to 72.9%, with the candidate list providing
the correct diagnosis at 85.9%, reducing the misdiagnosis rate to 14.1%. However, this threshold
reduced the number of cases that responded. Conclusions: Strategic prompt engineering and high
confidence thresholds significantly reduce misdiagnoses and improve the precision of the LLM
diagnostic in neuroradiology. More research is needed to optimize these approaches for broader
clinical implementation, balancing accuracy and utility.

Keywords: large language model (LLM); diagnostic imaging; neuroradiology; artificial intelligence
in medicine; prompt engineering; confidence thresholds; GPT-4 Turbo; misdiagnosis reduction; AI
diagnostic tools; clinical decision support

1. Introduction

Large language models (LLMs) have demonstrated significant potential in processing
textual information, often achieving performance levels comparable to human expertise.
These models are increasingly being applied in medicine and offer valuable help in inter-
preting complex medical data. In general internal medicine, Hirosawa et al. reported a
promising 93.3% accuracy for GPT-3 in diagnosing clinical vignettes [1]. Similarly, Chen
et al. found that GPT-3 achieved 78.8% accuracy in symptom checks on a multilabel classifi-
cation task using patient-reported symptoms [2]. In ophthalmology, Antaki et al. found
that GPT-4 achieved 55.8% accuracy on a diagnosis task using fundus images and 42.7%
on a treatment recommendation task [3]. In dermatology, Lallas et al. demonstrated a
51.5% sensitivity to diagnose early-stage skin cancer, and the inverse approach with classic
pattern analysis improved to 83.6% [4]. For medical licensing exams testing broad clinical
knowledge, Yang et al. reported promising results, with GPT-4 achieving 86.2% on the
USMLE, 62.0% on AMBOSS, and 73.1% on the DRQCE exam [5].

In radiology, LLM has been reported to be indicated in various areas [6–13]. In terms
of diagnostic accuracy performance, it is more modest. Bhayana et al. assessed Chat-
GPT performance on a board-style radiology examination, finding an overall precision of
69% [14]. Ueda et al. compared ChatGPT’s diagnostic performance from patient history
and imaging findings, revealing a 61% diagnostic accuracy that supports its potential as
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a supplementary tool for clinicians [15]. Kottlors et al. explored the 68.8% feasibility of
using ChatGPT for differential diagnosis based on imaging patterns [16]. Horiuchi et al.
investigated the accuracy of ChatGPT-generated diagnoses from patient medical history
and imaging findings in neuroradiology cases with a 50% lower accuracy than radiolo-
gists [17]. Suthar et al. conducted an in-depth evaluation of the accuracy of ChatGPT
with the American Journal of Neuroradiology’s “Case of the Month”, reporting an over-
all diagnostic accuracy of 57.86% [18]. These reports suggest that LLM models achieve
approximately 50–69% accuracy in identifying correct diagnoses from imaging findings.
However, the 30–50% misdiagnosis rate is relatively high, which may be insufficient to
assist healthcare professionals in making accurate clinical decisions. Physicians generally
seek diagnostic tools that minimize the risks of misdiagnosis to ensure patient safety and
effective treatment. The potential and limitations of LLM in medical applications highlight
the need to improve accuracy and reduce misdiagnosis rates in clinical settings [19].

Prompt engineering, a method of giving precise instructions to LLMs, has shown
effectiveness in eliciting desired responses and is reported to improve LLM performance in
various applications [20]. This technique involves carefully crafting prompts that guide the
LLM logically, ensuring that the model generates accurate and relevant outputs. Prompt
engineering can help LLMs better understand complex queries and produce more useful
responses by specifying the context, structure, and format of the response. In this study, we
explore how prompt engineering can improve the diagnostic accuracy of LLM in medical
imaging to reduce misdiagnosis rates.

In this study, we aim to utilize GPT-4 Turbo’s diagnostic abilities in medical imaging
with prompt engineering techniques, particularly focusing on reducing misdiagnosis rates.
By adopting these advanced technologies, we seek to improve the precision of diagnostic
suggestions, using the capabilities of GPT-4 Turbo to address the challenges of accurately
interpreting medical images.

2. Materials and Methods

This study was carried out using the checklist for artificial intelligence in medical
imaging. It was exempted from institutional review board oversight because it used
publicly available data.

2.1. Data Collection

Our methodology examined 751 publicly available neuroradiological cases from 2012
to 2023 from the American Journal of Neuroradiology (AJNR) Case of the Week Archives
(https://www.ajnr.org/cow/by/diagnosis, accessed on 18 March 2024) [21]. The AJNR
Case of the Week site separates clinical information, images, and diagnoses/explanations
into separate tabs. GPT-4 Turbo accessed the indicated URL to retrieve clinical information
and image findings as textual information without knowing the diagnosis name.

2.2. AI Model and Platform

We employed GPT-4 Turbo, an advanced version of the LLM developed by Ope-
nAI [22]. The selection of GPT-4 Turbo for this study was based on its demonstrated
superior performance in recent evaluations compared to other LLMs. According to a
recent study, GPT-4 achieved a higher accuracy rate in medical diagnostics compared
to other LLMs, validating its suitability for our research aimed at improving diagnostic
precision [23]. Furthermore, GPT-4 has been found to generate more coherent and con-
textually relevant responses, which is crucial for accurate medical diagnosis and effective
communication with clinicians. Based on these findings, we introduce GPT-4 Turbo, known
for its enhanced capabilities and a vast 128 k context window, allowing comprehensive
analysis within a single prompt.

To implement this, we employed the MD.ai Reporting/Chat application, which pro-
vides direct URL access to extract relevant clinical and imaging information, omitting
diagnoses to test the diagnostic accuracy of GPT-4 Turbo [24]. MD.ai Chat is a report-
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ing/chat application within the MD.ai platform that leverages LLMs such as GPT-3.5,
GPT-4, and GPT-4 Turbo. One of the key features of MD.ai Chat is its support for natural
language interactions, allowing healthcare professionals to engage in spoken dialogue
with the model. This facilitates efficient and intuitive communication, making it easier to
extract and understand complex clinical information. MD.ai Chat also provides direct URL
access, allowing the retrieval of textual information necessary for clinical and imaging data
analysis. Users can create customizable prompts for report interactions, tailoring the chat
interface to their specific needs. This flexibility allows healthcare professionals to design
the most relevant prompts for their clinical scenarios, enhancing the application’s utility.

2.3. Prompt Instruction

In this study, we employed three innovative prompt engineering strategies to improve
the diagnostic precision of GPT-4 Turbo in neuroradiology. Drawing from cutting-edge
engineering guides and research, we implemented role adoption, step-by-step thinking,
and confidence level assessment [20,25]. Box 1 presents the detailed prompt used to guide
the AI model in generating diagnostic suggestions.

2.3.1. Role-Playing

This strategy involved programming GPT-4 Turbo to act as an expert in medical
imaging diagnostics. Adopting the specialist role, the model shifted its processing from
general data analysis to more focused, knowledge-based decision-making. This role-
centered approach allowed LLM to prioritize critical and relevant information for disease
diagnosis from various medical imaging modalities, such as CT, MRI, and X-rays. We
hypothesized that by concentrating the focus of LLM on a specific domain, the quality and
relevance of its diagnostic output would improve significantly, leading to higher precision
in response and better alignment with clinical expectations.

2.3.2. Step-by-Step Thinking

We directed GPT-4 Turbo to adopt a sequential diagnostic process that mirrors the
decision-making steps that human experts typically take. The prompts guided the model in
formulating an initial differential diagnosis based solely on clinical information, integrating
imaging findings, and refining the initial diagnosis accordingly. This structured approach
was designed to promote the gradual integration of data, improve the ability of the LLM to
reason diagnostically, and increase the clarity and reliability of its diagnostic suggestions.

2.3.3. Multiple Diagnostic Suggestions

Previous studies evaluating the accuracy of LLMs in medical imaging diagnostics
typically required the LLM to provide only the most likely diagnosis [6–13]. However, in
this study, we designed the prompts to instruct the LLM to provide the most likely diag-
nosis and four additional possible diagnostic suggestions, making a total of five potential
diagnoses. This approach aims to increase the probability that the correct diagnosis is
included among the suggestions, thereby reducing the likelihood of misdiagnosis. This
strategy ensures that the LLM’s responses offer a broader spectrum of diagnostic pos-
sibilities, supporting the clinician’s decision-making process and enhancing the overall
reliability of the AI system in a clinical setting.

2.3.4. Confidence Assessment

The model was also instructed to perform self-monitoring by evaluating the confidence
level of each diagnostic suggestion. This process involved the LLM evaluating its responses
based on the difficulty of the task, the degree of consistency with the training data, and the
consistency across its outputs. By quantitatively assessing confidence levels, we enabled a
mechanism by which only high-confidence diagnostic suggestions were considered reliable.
This method aimed to reduce misdiagnoses by ensuring that only the most probable and
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well-supported diagnoses were reported, improving the overall reliability of the diagnostic
process.

These prompt engineering strategies were crucial to optimizing GPT-4 Turbo’s perfor-
mance in diagnosing complex neuroradiology cases. The goal was to balance diagnostic
accuracy with practical usability in a clinical setting.

Box 1. Expert diagnostic prompt.

# Role
You are an expert in medical imaging diagnosis with extensive experience interpreting various
medical images, including CT, MRI, and X-rays. Your expertise includes identifying pathologies,
understanding radiology clinical report contexts, and correlating to imaging findings with potential
diagnoses proofread.

# Request
Along with the following Regulation prompt, present a refined list of five differential diagnoses,
including the most probable diagnosis and four alternatives.
Each diagnosis should have a corresponding confidence level based on your comprehensive analysis.

# Regulation
Using the clinical information provided: {# URL of clinical information}, list five initial differential
diagnoses.
Then, review the imaging findings: {# URL of image findings}, and update your diagnoses accord-
ingly. Reflect on how the new data alters your assessment.
For each diagnosis in your updated list, assign a confidence level between 0% and 100%, considering
the task's complexity and the extent to which clinical and imaging data support each diagnosis.

2.4. Evaluation of the Diagnostic Accuracy of GPT-4 Turbo

Two board-certified neuroradiologists with 15 and 28 years of clinical experience
(T.A. and A.W) rigorously evaluated the diagnostic suggestions from GPT-4 Turbo. The
evaluation involved a detailed review of GPT-4 Turbo’s response list, where each response
was classified into one of three categories based on diagnostic accuracy: “Excellent”,
“Good”, and “Insufficient”. This classification was performed post hoc by neuroradiologists
who reviewed each response without prior knowledge of the AI confidence score or the
difficulty level assessment provided by the model.

• Excellent: The top diagnostic suggestion matched the correct diagnosis exactly.
• Good: The correct diagnosis was among the top suggested candidates, indicating a

useful but not precise match.
• Insufficient: The correct diagnosis was not listed among the suggested candidates,

indicating a failure in the diagnostic process.

3. Results
3.1. Case Distribution Analysis

Figure 1 classifies the 751 challenge cases into various disease categories. From
this graph, it is recognized that there is a high frequency of challenges for tumors and
demyelinating and inflammatory diseases, as well as genetic and degenerative diseases.
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Figure 1. Proportion of total cases by disease category. This pie chart shows the distribution of
751 clinical cases in various disease categories.

3.2. Diagnostic Performance Overview

Figure 2 and Table 1 illustrate the baseline diagnostic accuracy of GPT-4 Turbo in an
analysis of 751 neuroradiological cases. The ‘Excellent’ rating, where the predicted top
diagnosis precisely matched the ground truth, was obtained in 55.1% of cases. Furthermore,
the ‘Good’ category, where the correct diagnosis was included among the top five predic-
tions, accounted for 15.5% of cases. The total frequency of GPT-4 Turbo responses that
included the correct diagnosis and helped clinical decision-making was 70.6%. However,
the model produced ‘Insufficient’ responses in 29.4% of cases, where it failed to provide a
useful candidate diagnosis.
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Table 1. Breakdown of GPT-4 Turbo tasks in each disease category in neuroradiological cases.

Disease Category GPT4-Turbo Response Results Proportion of Total
CasesExcellent Good Insufficient

Tumor 0.442 0.191 0.367 0.29 (215)
Demyelinating Disease 0.727 0.000 0.273 0.01 (11)

Infections and Inflammatory Disease 0.535 0.153 0.313 0.19 (144)
Vascular Disease 0.688 0.150 0.163 0.11 (80)

Genetic/Degenerative Disease 0.515 0.134 0.351 0.13 (97)
Trauma 0.667 0.267 0.067 0.02 (15)

Metabolic Disease 0.735 0.088 0.176 0.09 (68)
Malformation 0.563 0.229 0.208 0.06 (48)

Neurological Disease 0.571 0.000 0.429 0.01 (7)
Other 0.576 0.106 0.318 0.09 (66)
Total 0.551 0.154 0.294 1.00 (751)

The ‘Excellent’ category represents cases where the top diagnostic prediction matches
the correct diagnosis. ‘Good’ indicates cases where the correct diagnosis was included
within the top five diagnostic predictions. ‘Insufficient’ marks cases where the correct
diagnosis was not included in the diagnostic predictions.

3.3. Impact of Confidence Thresholds on Diagnostic Accuracy

Table 2 and Figure 3 show the effect of confidence threshold adjustments on diagnostic
accuracy and acceptance rates. At the standard 60% confidence threshold, the ‘Excellent’
diagnoses rate remained steady at 55.1%, and the combined ‘Excellent + Good’ rate was
70.6%. In particular, the misdiagnosis rate was 29.4%. Increasing the confidence threshold
to 90% markedly improved diagnostic precision: the misdiagnosis rate dropped to 14.1%,
effectively halving the rate of diagnostic errors. During the same period, the rate of
‘excellent’ diagnoses increased to 72.9%. However, this rigorous threshold reduced the
scope of the analysis to only 47% of the cases that met the high-confidence criteria.

Stacked bars represent the ‘Excellent’, ‘Good’, and ‘Insufficient’ diagnostic outcomes.
This graph illustrates the diagnostic performance classified by confidence level threshold
from 60 (all cases) to 90. At higher thresholds, the decay of ‘Excellent’ and ‘Good’ out-
comes is slight. In contrast, ‘Insufficient’ decreases with increased thresholds, showcasing
improved diagnostic reliability.
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Table 2. Diagnostic accuracy of GPT-4 Turbo at Varying Confidence Thresholds.

Confidence
Threshold Excellent (%) Good (%) Insufficient (%) Adoption Rate

≥60% 55.1 15.5 29.4 100% (751/751)
≥70% 55.3 15.5 29.2 99% (746/751)
≥80% 57.9 15.8 26.3 92% (689/751)
≥90% 72.9 13.0 14.1 47% (354/751)

1 87.5 12.5 0.0 1% (8/751)

4. Discussion

The baseline precision of GPT-4 Turbo at 55.1% is in line with previous findings
in this domain, underscoring the persistent challenge of improving diagnostic precision
in complex medical fields. This study introduces innovative and prompt engineering
strategies that reshape how LLMs process diagnostic data. Our prompt included three
instructions: role-playing, step-by-step thinking, multiple diagnostic suggestions, and
confidence assessment.

Role-playing is one of the fundamental techniques in prompt engineering. Tailored
responses can be obtained by instructing the model to act as a specific entity, such as a
historian or a scientist. For example, directing the model with “As a physician, evaluate
the following treatment plan” can yield responses grounded in medical science.

Step-by-step prompt engineering is a crucial technique for optimizing AI performance.
This approach, known as step-by-step thinking, involves guiding AI through a series of
clear sequential steps to solve complex problems. By breaking down the problem-solving
process, errors can be minimized at each stage, ultimately improving the accuracy of the
final solution. Ye et al. demonstrated that prompt engineering is essential for enhancing
the performance of LLMs [26]. They proposed using step-by-step reasoning templates to
draw out complex inferential capabilities, thereby improving model performance.

Similarly, Sylvester and Reggia emphasized the importance of a step-by-step approach
in high-level problem-solving with AI [27]. They developed a neural network framework
that combines top-down and bottom-up approaches to achieve effective results, especially
for tasks requiring ordered steps, such as card-matching problems. Scandura et al. high-
lighted the significance of step-by-step computational procedures in algorithm learning
and problem-solving across various fields, showing how step-by-step methods contribute
to effective problem resolution [28]. These studies underscore that step-by-step prompt en-
gineering improves AI performance by facilitating structured and accurate problem-solving
processes.

Providing multiple diagnostic suggestions instead of a single diagnosis is a technique
that falls under adaptive prompting techniques. In the context of adaptive prompting,
AI models are developed to adjust their responses based on the user’s input style and
preferences. This personalization approach aims to make AI interactions more natural
and user-friendly. For instance, if a user tends to ask concise questions, the AI adapts to
provide concise answers, and vice versa. This development is particularly promising for
enhancing user experience in AI-driven applications such as virtual assistants and chatbots.
Applying this concept to a medical diagnosis and providing multiple potential answers can
be considered an adaptive prompting technique. By offering several diagnostic suggestions,
the AI adapts to the clinician’s needs, who may need various options for the best possible
diagnosis. This method supports the clinician’s decision-making process and improves
the overall accuracy and reliability of the AI system in a clinical setting. By expanding
from a single diagnostic prediction to a set of five, the probability of including the correct
diagnosis increased to 70%, and the instances of insufficient responses were reduced to 30%.
In medical diagnosis, where LLMs assist doctors, the risk of misdiagnosis can be reduced if
LLMs provide five potential diagnoses rather than just one. Offering multiple diagnostic
suggestions increases the probability of including the correct diagnosis, thus reducing the
chance of misdiagnosis. Zheng et al. found that the accuracy of LLM responses greatly
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depends on the design of the prompts [29]. Using methods like Progressive-Hint Prompting,
LLMs are guided through a series of steps, helping them to get closer to the correct answer.
This approach involves generating multiple potential answers and using these as hints to
refine subsequent responses, ultimately improving the final accuracy. Huang et al. showed
that LLMs can improve their reasoning skills by using high-confidence answers that they
generate themselves. By producing multiple answers and selecting the most reliable
ones, LLMs improve their accuracy and reliability [30]. Savage et al. demonstrated that
providing multiple diagnostic suggestions helps physicians better assess and understand
LLM diagnoses. This approach makes it easier for physicians to review the LLM diagnostic
process, improving diagnostic accuracy and gaining greater trust in the LLM [31].

Implementing systems that consider confidence thresholds is a key aspect of adaptive
modeling techniques. Confidence thresholds involve evaluating the model’s confidence
in its predictions and using this information to make decisions about resource allocation
and response handling. By focusing on predictions with high confidence and addressing
those with low confidence differently, models can enhance their accuracy and efficiency.
Research highlights the application of confidence thresholds in various contexts, such as
uncertainty-aware in-context learning, which filters out responses with high uncertainty
to improve reliability [32]. Generating confidence scores based on agreement between
different prompts creates more accurate predictions, which is essential for decision-making
processes [33]. Self-improvement techniques, where models use high-confidence answers
for further learning, enhance reasoning abilities without needing labeled data [30]. Addi-
tionally, Pareto’s optimal self-supervision aids in calibrating model responses by providing
risk scores for each answer, boosting accuracy in critical fields such as biomedicine [34]. By
integrating confidence thresholds into adaptive modeling techniques, LLMs deliver more
accurate and reliable results, making them more effective for various applications [35].

In our study, a novel approach was introduced that uses confidence thresholds to filter
LLM responses. This added an analytical layer that effectively halved the frequency of
incorrect diagnoses from 29.4% to 14.1%, highlighting the potential of this approach to
improve the clinical utility of LLMs. Implementing these thresholds led to a substantial
decrease in insufficient responses, from 221 to 50, in a dataset of 751 cases. However, this
method required greater human intervention in 53% of cases where the LLM did not meet
the high-confidence criteria, revealing a significant trade-off between accuracy and practical
usability. The model automatically recognizes uncertainty in scenarios where responses are
not obtained and filters out high-uncertainty responses, enhancing reliability.

The success of diagnostic efforts depends on human expertise and the quality of data
supplied to the LLM. High confidence thresholds significantly reduce the risk of incorrect
diagnoses and restrict the number of cases the LLM can effectively address. Requiring
medical professionals to evaluate multiple diagnostic proposals introduces additional
cognitive load, affecting clinical workflows and decision-making processes. It is important
to note that pursuing excessively high confidence thresholds does not yield beneficial
results. Although setting the confidence threshold at 100% ensures perfect accuracy, it
covers only 8 out of 751 cases, representing a mere 1% reduction in radiologists’ workload.
This outcome demonstrates that current AI technology cannot replace the capabilities of
radiologists.

This study focused on precision in scenarios where sufficient information was provided
for diagnosis, indicating the need for further research on LLM performance with real-
world data, which may be incomplete or atypical, and in domains beyond neuroradiology.
Future research should enhance LLM accuracy by expanding learning data, especially for
tasks with low confidence levels, and implementing few-shot learning as part of prompt
engineering to refine LLM reasoning processes by providing examples of human thought
processes. Optimizing these methods to increase the proportion of high-confidence cases is
crucial for future research.

To address the concerns raised about the composition of the AJNR Case of the Week
Archive, we acknowledge that the cases included in our study are more specialized com-
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pared to those typically encountered in routine clinical practice. The AJNR Case of the
Week Archive is curated by editors who select cases that are educational and designed to
improve diagnostic skills by presenting unique and challenging scenarios. Consequently,
the frequency and types of disease in the archive do not represent the actual distribution
seen in everyday clinical settings. This selection bias is a limitation of our study, and we
have taken it into account in our analysis. For example, when comparing the cases targeted
in this study with those encountered in routine clinical practice, particularly in the context
of trauma, there are several notable differences. The number of trauma cases in our dataset
is relatively low. Additionally, the ability to detect abnormalities, which is crucial in trauma
imaging, was not evaluated in this study. These factors should be considered limitations.

5. Conclusions

Prompt engineering strategies, including the appropriate setting of confidence thresh-
olds, improve its diagnostic assistance capabilities. Currently, the simple diagnostic ac-
curacy of GPT-4 Turbo in neuroradiology is not ideal, but AI-assisted image diagnosis
and clinical decision-making with increased reliability are a promising path to improving
medical outcomes. Our research results will encourage the continued development and
refinement of these strategies to maximize the potential of AI in improving healthcare
outcomes.
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