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Abstract: Telangiectases and arteriovenous malformations (AVMs) are the characteristic lesions of
Hereditary Hemorrhagic Telangiectasia (HHT). Somatic second-hit loss-of-function variations in
the HHT causative genes, ENG and ACVRL1, have been described in dermal telangiectasias. It is
unclear if somatic second-hit mutations also cause the formation of AVMs and nasal telangiectasias
in HHT. To investigate the genetic mechanism of AVM formation in HHT, we evaluated multiple
affected tissues from fourteen individuals. DNA was extracted from fresh/frozen tissue of 15 nasal
telangiectasia, 4 dermal telangiectasia, and 9 normal control tissue biopsies, from nine unrelated
individuals with HHT. DNA from six formalin-fixed paraffin-embedded (FFPE) AVM tissues (brain,
lung, liver, and gallbladder) from five individuals was evaluated. A 736 vascular malformation and
cancer gene next-generation sequencing (NGS) panel was used to evaluate these tissues down to
1% somatic mosaicism. Somatic second-hit mutations were identified in three in four AVM biopsies
(75%) or half of the FFPE (50%) samples, including the loss of heterozygosity in ENG in one brain
AVM sample, in which the germline mutation occurred in a different allele than a nearby somatic
mutation (both are loss-of-function mutations). Eight of nine (88.9%) patients in whom telangiectasia
tissues were evaluated had a somatic mutation ranging from 0.68 to 1.96% in the same gene with
the germline mutation. Six of fifteen (40%) nasal and two of four (50%) dermal telangiectasia had a
detectable somatic second hit. Additional low-level somatic mutations in other genes were identified
in several telangiectasias. This is the first report that nasal telangiectasias and solid organ AVMs in
HHT are caused by very-low-level somatic biallelic second-hit mutations.

Keywords: hereditary hemorrhagic telangiectasia; somatic; biallelic; tissue; telangiectasia; AVM

1. Introduction

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant inherited
vascular malformation disorder that occurs in 1 in 5000 individuals [1]. HHT is character-
ized by recurrent epistaxis ranging from mild to severe; telangiectasia of the nasal mucosa,
lips, oral cavity, and/or fingertips; arteriovenous malformations (AVMs) in the brain, lungs,
liver, and/or gastrointestinal tract; and/or a family history of HHT. Three or more of these
“Curaçao Criteria” are considered diagnostic of HHT [2]. But, given the variable clinical
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expression and age-related penetrance of clinical manifestations, genetic testing is often
useful in making or confirming the diagnosis of HHT.

Mutations in several transforming growth factor-beta (TGF-β) signaling pathway
genes cause HHT. Endoglin (ENG), activin A receptor type II-like 1 (ACVRL1/ALK1), and
SMAD4 mutations cause HHT1 (OMIM 187300), HHT2 (OMIM 600376), and the combined
Juvenile Polyposis/HHT (JP/HHT) syndrome (OMIM 175050), respectively [3–5]. ENG and
ACVRL1 mutations account for roughly equal percentages of the disorder and are found in
96.1% of cases with HHT when the consensus Curaçao Criteria are strictly applied [6–8].
Analysis of SMAD4 adds an additional detection rate of 1.3% for a total of 97.4% [9].
Mutations in these genes lead to an underproduction of functional proteins, resulting in
excessive abnormal angiogenesis [10].

Patients with HHT harbor these heterozygous germline mutations in every cell of the
body, yet vascular malformations occur in only a small minority of vessels, with predilec-
tion for specific anatomic locations. The severity of epistaxis and number and location
of telangiectases and AVMs vary significantly, even among affected individuals from the
same family who have the same genetic mutation [7]. This heterogeneity suggests that
additional factors beyond the inherited germline mutation are required to induce vascu-
lar malformations. Somatic second-hit mutations play an important role in a number of
diseases including vascular malformations [11–13]. A single previous report has identi-
fied somatic second-hit mutations in dermal telangiectasias in HHT [14]. The mutations
reported previously were all found to be in the same gene as the germline heterozygous
mutation. It is not known if this mechanism is prevalent, or whether it is also present in the
telangiectasia of other clinical locations. It is assumed that such mutations would lead to a
loss of heterozygosity and loss of protein expression, which would require the mutation
to affect the other allele. Unlike other vascular malformation syndromes [12,13], such a
biallelic mechanism has not been proven for the mutations previously observed in HHT.
Other reports have identified an important role for somatic mutations that regulate biologic
processes such as cell growth, differentiation or angiogenesis that could modify telangiec-
tasia growth or stability [15,16]. A high prevalence of PIK3CA-activating mutations has
been identified in the vascular malformations seen in both sporadic and familial forms of
cerebral cavernous malformation [17].

Furthermore, AVMs in certain locations, in particular the brain, are typically devel-
opmental and likely to be present at birth, whereas mucocutaneous telangiectasia are
unlikely to be present at birth and tend to develop over time [18]. The age-dependent
nature of telangiectasia fits well with the gradual acquisition of somatic mutations over
time. Whether somatic mutations contribute to developmental lesions in HHT such as
brain [19] or lung AVM [20] that are more likely to be present at birth or early in life and
show more stability over time has not been shown.

In this study, we characterized the somatic mutations identified from vascular malfor-
mations removed from patients with HHT including nasal and dermal telangiectasias as
well as solid organ AVMs. Our technique included a large panel of genes including those
known to cause HHT as well as over 700 additional vascular malformation genes with deep
sequencing to allow us to detect mosaicism down to at least 1%.

2. Results

Tissue specimens from 14 unrelated individuals genetically diagnosed with HHT were
evaluated using a custom 736 gene NGS panel to identify the presence of a somatic second
hit. The analysis was performed in three stages. First, we performed manual analysis and
variant calling of the sequencing data for the genes known to cause HHT (ACVRL1, ENG,
GDF2, SMAD4) or vascular malformation syndromes with similar phenotypes (EPHB4,
RASA1), as well as PIK3CA, which has been shown to modify vascular malformation
phenotypes [17]. All variants with a quality score (QC) ≥ to 100 were analyzed using
Integrated Genome View (IGV). Second, we used an internal variant caller algorithm (see
Section 4). In this analysis, we identified pathogenic or likely pathogenic mutations from a



Int. J. Mol. Sci. 2024, 25, 7682 3 of 12

subset of 70 genes (see Section 4) chosen because of a relationship to vascular malformations
or their involvement in similar genetic pathways at a level of somatic mosaicism down to
1%. Third, we analyzed all 736 genes (Supplementary Table S1), mostly concentrating on
damaging hot spot mutations or known pathogenic mutations.

Patient demographics, biopsied tissue details as well as germline and somatic variants
are listed in Table 1 (telangiectasias) and Table 2 (AVMs). Thus, 3 of the 14 cases carry ENG,
and 11 of the cases carry ACVRL1 germline variants. Further, 15 nasal telangiectasia, 4 der-
mal telangiectasia, and 9 control (7 nasal and 2 dermal) biopsies from 9 cases were obtained.
FFPE tissues from five individuals who had undergone surgical procedures were also
obtained and evaluated. Of five cases, three cases had brain arteriovenous malformation
resection, one case had lung, and one case had liver and gall bladder tissue samples.

2.1. Somatic Mutations Detected in Nasal and Dermal Telangiectasias

We studied a total of 28 biopsies from nine patients that included 15 nasal telangiec-
tasias, 7 nasal control biopsies, 4 dermal telangiectasias, and 2 control dermal biopsies. A
heterozygous germline variant was identified in ENG or ACVRL1 in all tissue specimens
(Table 1). One individual (Case #9) had only a dermal procedure with three biopsies (two
telangiectasia biopsies and one from healthy skin). Two individuals (case 7 and 8) had both
nasal and dermal procedures, each with five biopsy and four biopsy samples available
(two from nasal telangiectasia, one dermal telangiectasia, and one from each control region,
except one dermal control sample for case 7). The other six cases had only nasal procedures.

Pathogenic or likely pathogenic variants were identified in seven of the nine individ-
uals (77.7%, 7 out of 19 telangiectasia samples, 36.8%), always in the same gene that had
the germline mutation (Table 1). We identified a pathogenic somatic second hit from at
least one telangiectasia sample from every individual with a germline mutation in ACVRL1,
and none of the individuals with a germline mutation in ENG. Three of the seven somatic
variants detected resulted in the formation of a stop codon, leading to complete loss of
function in ACVRL1. Four other variants are missense changes in ACVRL1, classified as
likely pathogenic according to the accepted guidelines [21].

Somatic mosaicism ranged from 0.68 to 1.96%. Each low-level somatic second-hit
variant detected had high-quality variant base pair reads present in both directions, with
an average total read depth of 1586X. One case (case 1) had the somatic synonymous ENG
variant (c.24G>T; p.Leu8Leu). This variant creates a strong acceptor site in the exon with
prediction of a splicing defect. However, based on ACMG Classification Guidelines, it
is classified as likely benign. All other telangiectasia samples and control biopsies tested
negative for a detectable somatic mutation in the seven manually adjudicated genes. None
of the samples had a pathogenic or likely pathogenic mutation in the focused subset of
70 additional genes or the broader panel of 736 genes.

2.2. Somatic Mutations Identified in AVMs

We obtained tissue samples from five individuals that had surgical resection of AVMs
or other tissues. We analyzed three resected brain AVM samples, one lung AVM sample,
and a sample of resected liver with focal nodular hyperplasia and adjacent gall bladder.
Some of the samples were sequenced twice, for a total of 10 independent sequencing results
that were evaluated for somatic variants. A heterozygous germline variant was identified
in ENG or ACVRL1 in all FFPE tissue specimens (Table 2). We identified somatic mutations
in three of the six tissues (50%), including one clearly pathogenic mutation in the same gene
as the germline mutation, one VUS in the same gene as the germline mutation (confirmed
on two separate sequencing reactions), and one likely benign synonymous variant in the
same gene as the germline mutation (Table 2). A liver with focal nodular hyperplasia and
adjacent gall bladder was studied for case 5. The lesion type is probably different from the
other four AVM cases. Somatic mutations specifically for AVM tissues were found in three
of four cases (75%) by excluding case 5.
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Table 1. Clinical and molecular findings of fresh nasal and dermal tissue samples from HHT cohort.

Case # Age, Sex Phenotype Germline Mutation Biopsies Tissue Details Somatic Mutation Somatic VAF (%)
NGS Reads Classification

1 32 M E, T, F
ENG c.1146C>A,

p.Cys382*
4

(3NT, 1NC)

Nasal T (Left septum) ENG
c.24G>T, p.Leu8Leu 1.03% (10/974) LB

Nasal T (Right wall) None detected -
Nasal T (Left septum) None detected -

Nasal C (Left inferior turbinate) None detected -

2 50 M E, T, F, L, H
ENG c.1687G>T,

p.Glu563*;
c.1687-7C > T

2
(1NT, 1NC)

Nasal T (Right lateral nasal floor) None detected -

Nasal C (Right inferior turbinate) None detected -

3 30 M E, T, F
ACVRL1 c.430C>T,

p.Arg144*
2

(1NT, 1NC)
Nasal T (Right hard palate) ACVRL1

c.1411T>C, p.Cys471Arg 1.39% (18/1293) LP

Nasal C (Left hard palate) None detected -

4 68 M E, T, F, H ACVRL1 exon 10 deletion 1
(1NT) Nasal T (Right nasal valve) ACVRL1

c.598C>G, p.Arg200Gly 0.96% (11/1147) LP

5 45 F E, T, F, H, PAH
ACVRL1 c.998G>T,

p.Ser333Ile
3

(2NT, 1NC)

Nasal T (Right septum) ACVRL1
c.1461G>C, p.Lys487Asn 1.46% (17/1167) LP

Nasal T (Left lateral wall) None detected -
Nasal C (Right septum) None detected -

6 43 M E, T, F
ACVRL1 c.1361_1375del,

p.Arg454_Asp458del
4

(3NT, 1NC)

Nasal T (Left inferior turbinate) ACVRL1
c.611T>A, p.Leu204* 1.37% (26/1893) P

Nasal T (Right inferior turbinate) None detected -
Nasal T (Right inferior turbinate) None detected -
Nasal C (Left inferior turbinate) None detected -

7 66 M E, T, F, Possible H
ACVRL1 c.472_473del,

p.Gly158Argfs*10
4

(2NT, 1DT, 1NC)

Nasal T (Right middle turbinate) None detected -

Dermal T (Right forehead) ACVRL1
c.988G>A (p.Asp330Asn) 0.68% (12/1758) LP

Nasal T (Right inferior turbinate) None detected -
Nasal C (left inferior turbinate) None detected -
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Table 1. Cont.

Case # Age, Sex Phenotype Germline Mutation Biopsies Tissue Details Somatic Mutation Somatic VAF (%)
NGS Reads Classification

8 57 M E, T, F
ACVRL1 c.1232G>A,

p.Arg411Gln

5
(2NT, 1DT, 1NC,

1DC)

Nasal T (Right inferior turbinate) None detected -
Dermal T (Right index finger)

HHT21T4 None detected -

Nasal T (Left anterior septum)
ACVRL1

c.274_275del;
p.(Ser92Profs*76)

0.84% (16/1900) P

Nasal C (Right inferior turbinate) None detected -
Dermal C (Right index finger) None detected -

9 39 M E, T, F, H
ACVRL1 c.1232G > A,

p.Arg411Gln
3

(2DT,1DC)

Dermal T (developed after
radiation therapy in treated region)

ACVRL1 c.429_430delinsTT,
p.Arg144* 1.96% (38/1941) P

Dermal T None detected -
Dermal C None detected -

C (Control); DC (Dermal biopsy from control region); DT (Dermal Telangiectasia); E (Epistaxis); F (Family History); H (Hepatic AVM); L (Lung AVM); LB (Likely Benign); LP (Likely
Pathogenic); NC (Nasal biopsy from control region); NT (Nasal Telangiectasia); PAH (Pulmonary arterial hypertension); T (Telangiectasia); VAF (Variant Allele Frequency); P (Pathogenic).
Reference sequences NM_000020.2 and NM_001114753.1 were used to annotate ACVRL1 and ENG, respectively.

Table 2. Clinical and molecular findings of FFPE samples from HHT cohort.

# Germline Mutation Tissue Sequencing Data Point Somatic Tissue Classification Somatic VAF (%)
NGS Reads

1 * ENG
c.574_580del; p.Arg192Serfs*28 Brain One block One seq ENG; c.584_585del;

p.Glu195Valfs*138 P 1.95% 74/3783

2 ENG
c.816+2T>C Brain One block One seq ENG; c.507C>T;

p.Leu169= LB 0.84% 10/1185

3 ENG
c.640_644del; p.(Gly214Glnfs*118) Brain One block Duplicate seq None - -

4 ACVRL1
c.914C>T; p.Ser305Phe Lung One block Duplicate seq ACVRL1; c.1220A>T;

p.Glu407Val ** VUS 1.17% 43/3688 and 1.82%
44/2422

5
ACVRL1

c.998G>T; p.Ser333Ile
Liver Two blocks None - -

Gall bladder Two blocks None - -

*: Somatic second-hit is identified on the opposite allele of the germline mutation. ** Although this variant is missense change, based on prediction programs this variant has possible
splice defect. LB: Likely Benign. VUS: Variant of Uncertain Significance. P: Pathogenic.
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Case 1 had removal of an asymptomatic cerebellar AVM. The sample had a pathogenic
germline variant in ENG. The brain AVM tissue showed 1.96% frequency of a pathogenic
variant (c.584_585del, p.Glu195Valfs*138) in the ENG gene. This deletion creates a prema-
ture stop codon, leading to a predicted loss of function of the protein. Since both germline
and somatic second-hit pathogenic variants were in close proximity on the sequence, we
could identify the chromosomal positions of these mutations. All 74 reads with the somatic
mutation were located on the opposite allele from the germline mutation (Figure 1).
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Figure 1. NGS data of the somatic second-hit variant in telangiectasia tissue. Viewing the ENG
sequence region by Integrated Genomics View (IGV) for case 1. Bottom panel shows reference
sequences of the region where both variants were located. Gray bar shows the reads match with
reference sequences. Line indicates the deletion. On the left, red arrow shows the representation of
3 reads out of 74 reads for the 2 bp somatic deletion. On the right, blue arrow shows the representation
of 23 reads out of 1415 reads for 7 bp germline deletion. Both deletions are not in phase with
each other.

Case 4 had extensive right lower lobe lung AVM with chronic hypoxia and clubbing
and had a partial lobectomy. This sample had a pathogenic germline variant in ACVRL1
c.914C>T, p.Ser305Phe. We obtained duplicate sequencing results from the same block
for this sample. Both sequencing reactions showed the same missense variant, c.1220A>T,
p.Glu407Val, in the ACVRL1 gene, with 1.17% and 1.82% frequency. Based on ACMG
guidelines, this variant has been classified as VUS. However, prediction programs show
that this rare variant may affect the splicing efficiency of the exon. Further investigation
would be required to reclassify the variant as pathogenic.
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One brain AVM (case 2) with a germline ENG c.816+2T>C mutation had a synony-
mous somatic mutation in ENG c.507C>T, p.Leu169Leu that is classified as likely be-
nign. An additional brain AVM (case 3) with a germline mutation in ENG (c.640_644del,
p.Gly214Glnfs*118 had no identifiable somatic mutations).

Case 5 had right upper quadrant pain and an abnormal Hepatobiliary Iminodiacetic
Acid (HIDA) scan, without evidence of cholelithiasis but with an adjacent focal nodular
hyperplasia lesion in the liver. The gallbladder and adjacent liver segment were resected
laparoscopically. A germline ACVRL1 c.998G>T, p.Ser333Ile mutation was present in both
tissues. No variant was identified in two sequencing reactions from the liver sample, with
no somatic mutations identified in the gallbladder tissue.

All AVM tissues tested negative for any other detectable somatic mutations in the seven
manually adjudicated genes. None of the samples had a pathogenic or likely pathogenic
mutation in the focused subset of 70 additional genes, or the broader panel of 736 genes.
All samples were analyzed specifically for PIK3CA variants, and no variant was identified
in any of the samples.

3. Discussion

A previous report identified somatic mutations in dermal telangiectasias from patients
with HHT [14]. In this study, we confirm that somatic mutations can be identified from
dermal telangiectasia in patients with HHT and, for the first time, document somatic
mutations from nasal telangiectasias and solid organ AVMs in patients with HHT. We also
confirm that somatic second-hit mutations occur in a biallelic manner.

The mechanism behind AVM and telangiectasia formation is not completely under-
stood, and it is possible that divergent mechanisms contribute to mucocutaneous telangiec-
tasia, as opposed to brain or lung AVM. Telangiectasias are generally not present at birth
and form over time, with incidence increasing with age (a pattern reflected by dermal telang-
iectasia, epistaxis, and liver telangiectasia, leading to high-output heart failure) [22,23].
This disease pattern is consistent with the acquisition of somatic mutations over time that
could account for the increasing incidence. In contrast, brain AVM is generally present at
birth, and reports of de novo brain AVM formation after birth are extremely rare [19]. This
striking difference in the natural history of these HHT-related vascular malformations has
led to the hypothesis that AVM and telangiectasia have different underlying mechanisms,
calling into question the need for somatic second-hit mutations in the etiology of brain
AVM. Here, for the first time, we identify a pathogenic somatic second-hit mutation from
a brain AVM of a patient with HHT, suggesting that the underlying mechanism for both
brain AVM occurring during development and telangiectasia that develop with aging is
shared, and that the loss of heterozygosity for the HHT genes is a common and important
disease mechanism.

The second-hit mutations identified in this and previous reports [14] are all in the
same gene as the germline-inherited mutation. It has been assumed that these somatic
mutations are biallelic—derived from the opposite allele to the germline allele—but current
techniques have not been able to confirm this hypothesis. For the first time, we document
the biallelic nature of the somatic mutation. We identified a mutation in ENG that occurred
in close sequence proximity to the germline allele in a patient with brain AVM. Sequence
data were able to clearly show that the somatic and germline mutations are on separate
alleles (Figure 1). The biallelic loss of ENG in this case would lead to a loss of protein
expression, and we hypothesize that a loss of heterozygosity in endothelial cells is a central
mechanism, leading to vascular malformations in HHT. These somatic mutations are likely
random and relatively common, and in order to result in a vascular malformation, they
likely occur in the correct (endothelial) cell that is in a vulnerable state. The temporal and
tissue specificity of vascular malformations in HHT likely reflects the factors that lead to
vulnerable endothelial cells, such as active angiogenesis or inflammation that call upon
the BMP9-ACVRL1/ENG-SMAD4 pathway to regulate vascular patterning. The apparent
developmental nature of brain AVM is likely to be explained by the temporal specificity of
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these activating factors, rather than an alternate mechanism that does not require somatic
mutations, leading to a loss of HHT gene protein.

Others have reported a high frequency of somatic activating mutations in KRAS and
BRAF in sporadic brain AVM [24] and activating mutations in MAP2K1 in extracranial
AVM [25,26]. We evaluated each brain AVM sample for mutations in KRAS, BRAF, and
MAP2K1 as well as over 700 additional candidate genes. We looked specifically for the
previously described BRAF V600E and Q636X mutations, and the KRAS G12D and G12V
mutations [27] in our samples. We did not identify any activating KRAS, BRAF, or MAP2K1
mutations or any other somatic mutations apart from a loss of heterozygosity for the same
HHT gene as the germline allele. Our data suggest a divergent mechanism for brain AVM
formation in patients with HHT in comparison to sporadic brain AVM. There is evidence
that brain AVM in HHT is clinically different than sporadic brain AVM, with greater
likelihood of multiple lesions [28], diverse vascular malformation phenotypes in HHT [29],
and a different risk of hemorrhage [30]. The genotype differences observed in our series of
brain AVM samples in comparison to studies of somatic mutations in sporadic AVM are
likely to be an important determinant of the phenotype differences. This suggests that the
pathways involved in brain AVM formation and the potential therapeutic approaches are
likely different.

This is also the first report of somatic second-hit mutations in nasal telangiectasias.
Previous reports have used dermal telangiectasias from patients [14]. Such biopsies are
obtained for research purposes, as there is little clinical indication to remove dermal
telangiectasia. In contrast, nasal telangiectasias are highly likely to be symptomatic and
have long been the subject of a number of ablative therapies to improve symptoms [31]. We
have been able to develop a research protocol that can be deployed by our providers during
nasal ablative surgery to first obtain research biopsies from the affected mucosa before
completing thorough telangiectasia destruction for clinical benefit. This report documents
a significant success rate in identifying somatic second-hit mutations from these samples
and points to the untapped potential of research using nasal telangiectasia, the single most
symptomatic and unwanted lesion encountered by patients with HHT [32].

The presence of somatic second hits in these lesions may explain the extreme variabil-
ity in the HHT phenotype among individuals in the same family. The observed age-related
development of telangiectasia and worsening of nosebleeds related to nasal telangiec-
tases over the lifespan could be influenced by a tertiary mechanism of inflammation or
repeated wounding that can lead to the overuse of genetic repair mechanisms, which, over
time, could lead to the development of the somatic second hit (similar to cancer) [33,34].
Telangiectasia and AVMs likely only develop under certain specific conditions and are
predisposed to occur in certain body locations in those with HHT. For example, case 9
developed 100s of telangiectasias on his arm after undergoing radiation therapy for cancer.
This suggests that a somatic mutation may form a vascular lesion if it (1) occurs in an
endothelial cell within a specific surrounding cellular environment that is (2) driven in
response to an environmental (telangiectasia) or developmental (AVM) trigger.

In the HHT patients in whom a somatic second hit was not found in a telangiectasia
or AVM using our NGS method, it is possible that they had a somatic mutation that was
not detected because the mosaicism was less than 1%. Snellings et al. identified several
telangiectasias with somatic mutations <1%, with the lowest being a 0.46% mutation [14].
Our use of the higher cutoff of 1% somatic mutation and our ability to detect the mutant base
in multiple reads in both directions of the NGS data (Figure 1) ensured the confidence that
the somatic variants were real. In our analysis, high specificity with the lowest detection
limit is 1%. Alternatively, we could be missing certain types of variations that our current
NGS exon-specific panel would miss, such as mutations due to a loss of heterozygosity
(LOH), deep noncoding splicing aberrations, or promotor variants that would lead to a loss
of expression. LOH, a common mechanism of tumor formation in cancer, can occur from
large deletions, large chromosomal abnormalities, or mitotic recombination events, all of
which cannot be detected using our NGS exon capture technique. It is also possible that
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non-genetic mechanisms such as a loss of expression due to epigenetic silencing contribute
to biallelic loss of function in these lesions.

4. Materials and Methods
4.1. Subjects

This study was approved by the University of Utah (IRB # 00020480). Subjects were
individuals seen at the University of Utah HHT Center of Excellence who met Curacao
clinical diagnostic criteria for HHT, had a pathogenic variant in ENG or ACVRL1, and had
a clinical indication for removal or treatment of telangiectasis and/or AVMs. Biopsies of
nasal telangiectasia, as well as nearby normal nasal mucosa as control samples from same
individual (approximately 3 mm), were collected from 9 unrelated individuals and frozen
immediately. These patients were having ENT operations under anesthesia due to epistaxis.
A total of 28 biopsies were evaluated. Of them, 15 were from nasal telangiectasia, 4 from
dermal telangiectasia, 7 from nasal control region, 2 dermal control biopsies. Age, sex, and
HHT clinical findings for each patient are listed in Table 1.

FFPE brain, lung, gall bladder, and liver AVM tissues resected during surgical proce-
dures were obtained on 5 additional patients (brain samples from 3 patients, lung from
1 patient and liver and gall bladder samples from 1 patient). Three of the five patients had
ENG; two of them had ACVRL1 germline mutation (Table 2).

4.2. Next-Generation Sequencing and Data Analysis

Genomic DNA was extracted from fresh/frozen tissue using a Puregene kit (Qiagen,
Valencia, CA, USA). Genomic DNA (1 µg) was sheared to 300 bp fragments on a Covaris
LE220 sonicator (Covaris, Inc., Woburn, MA, USA), and custom adapters for the Illumina
platform were added using the KAPA Hyper Prep Kit (Roche, Branchburg, NJ, USA).
Genomic libraries were enriched for exons and exon/intron boundaries of 736 genes
implicated in cancer and vascular malformations (including ENG, ACVRL1, SMAD4, GDF2,
RASA1 and EPHB4) using xGen Lockdown probes and the xGen Hybridization and Wash
kit (Integrated DNA Technologies, Inc., Coralville, IA, USA). The 736 genes included in the
panel are listed in Supplementary Table S1. Final libraries were sequenced on the NovaSeq
6000 instrument with 2 × 150 base paired end reads (Illumina, San Diego, CA, USA).

Sequences were aligned to the human genome reference (hg19) sequence using the
Burrows–Wheeler Alignment tool (BWA mem 0.7.17) with default parameters [35]. PCR
duplicates were removed based on positional information and a 6 bp UMI sequence in the
adapter using an in-house UMI Aware Mark Duplicates tool from the Genome Analysis
Tool Kit (GATK) [36]. The Duplicate Removed Bam was realigned using GATK Indel
Realigner [36]. Variants were then called by a combination of LOFREQ [37] (SNVs only),
and SCALPEL [38] (small Indels), MANTA [39] (large Indels) and PINDEL [40] for FLT3-
specifc insertions/duplications/deletions. Variants were annotated for gene position and
various external database information (such as dbSNP, Gnomad, Cosmic) using software
from GenomOncology version 23Q3. Variants were stored in a MongoDB database and
visualized using an in-house User Interface called NGS.Web. To be able to detect 1%
sensitivity, samples were deeply sequenced. Coverage of NGS reads was around 1500 reads
(900 reads, 3688).

5. Conclusions

We confirm that somatic mutations are prevalent in the vascular malformations of
HHT including nasal and dermal telangiectasia as well as AVMs. Our data suggest that the
biallelic loss of ENG and ACVRL1 is required for the development of both congenital AVMs
and acquired telangiectasia vascular malformation lesions observed in HHT. This is the
first report of somatic mutations driving lesion formation in AVMs and nasal telangiectasia
in HHT patients.
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