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Abstract: Little resistance to the pea weevil insect pest (Bruchus pisorum) is available in pea (Pisum
sativum) cultivars, highlighting the need to search for sources of resistance in Pisum germplasm
and to decipher the genetic basis of resistance. To address this need, we screened the response
to pea weevil in a Pisum germplasm collection (324 accession, previously genotyped) under field
conditions over four environments. Significant variation for weevil seed infestation (SI) was identified,
with resistance being frequent in P. fulvum, followed by P. sativum ssp. elatius, P. abyssinicum, and
P. sativum ssp. humile. SI tended to be higher in accessions with lighter seed color. SI was also
affected by environmental factors, being favored by high humidity during flowering and hampered
by warm winter temperatures and high evapotranspiration during and after flowering. Merging the
phenotypic and genotypic data allowed genome-wide association studies (GWAS) yielding 73 markers
significantly associated with SI. Through the GWAS models, 23 candidate genes were found associated
with weevil resistance, highlighting the interest of five genes located on chromosome 6. These
included gene 127136761 encoding squalene epoxidase; gene 127091639 encoding a transcription
factor MYB SRM1; gene 127097033 encoding a 60S ribosomal protein L14; gene 127092211, encoding
a BolA-like family protein, which, interestingly, was located within QTL BpLD.I, earlier described
as conferring resistance to weevil in pea; and gene 127096593 encoding a methyltransferase. These
associated genes offer valuable potential for developing pea varieties resistant to Bruchus spp. and
efficient utilization of genomic resources through marker-assisted selection (MAS).

Keywords: Bruchus; GWAS; Pisum; resistance breeding

1. Introduction

Pea (Pisum sativum L.) is one of the most important temperate grain legumes world-
wide. Its use extends from field or dry pea to green or vegetable pea [1]. In addition, pea
offers valuable environmental benefit as a legume crop, being a safe bet for sustainable
agriculture. However, stored pea seeds are highly prone to severe damage by pea weevil
(Bruchus pisorum L., Coleoptera: Bruchidae). Infestation starts earlier in the field, with adults
feeding on pea pollen and laying seeds on young, forming pods. The emerging larvae
penetrate the seeds through pods, and then, they feed on the seed endosperm during
storage, devaluating seed quality and marketability [2]. Adults emerge from infested seeds
in the store, compelling post-harvest fumigations to prevent movement to the fields [3].
Several approaches, including cultural, biological, physical, and chemical control measures,
have been implemented with the aim of managing these pests, but none of them have been
successful across time and space [4,5].

This reinforces the need to develop resistant cultivars in order to achieve a more
economically and environmentally sustainable method of control. Although some efforts
have been made on the development of bruchid-resistant transgenic crops, like the transfer
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of-amylase inhibitor from common bean to pea [6], the cultivars developed so far are yet to
be commercialized worldwide because of various limitations, including raised concerns
due to their potential immunogenicity [7]. Some sources of natural resistance to pea
weevil are also available in germplasm [2,8,9], but these are incomplete and of complex
inheritance [10–12].

A first genetic analysis on an F2 population from an interspecific cross between
P. sativum × P. fulvum under controlled conditions identified a number of QTL associated
with cotyledon resistance and seed coat or pod wall resistance [11]. A later linkage mapping
on a recombinant inbred line (RIL) population derived from another interspecific cross
involving P. sativum × P. sativum ssp. syriacum identified three QTL associated with reduced
B. pisorum seed infestation (SI) under field conditions, with individual contribution to the
total phenotypic variance ranging from 14.8 to 24% [12]. More recently, another genetic
analysis using two F2 populations identified a major QTL controlling seed resistance in
pea against Callosobruchus chinensis and C. maculatus [13]. These QTL techniques have been
useful, although the low allelic variation contained in the bi-parental populations coupled
with the low marker density in these QTL studies hindered the precision and efficiency of
identifying the genetic loci associated with these traits [14]. Advanced high-throughput
technologies and genomic approaches such as genome-wide association studies (GWAS)
serve as a valuable complement to QTL mapping [15,16]. While the QTL confidence interval
often covers large genomic regions that include numerous linked genes, GWAS can identify
individual genes or nucleotides closely associated with the trait, delivering a more precise
information [14,17]. The GWAS strategy aims to capture the collective effect of all loci,
irrespective of their effect size, to explain the complete genetic variation of a quantitative
trait in a diverse population [16,18]. Accordingly, GWAS has emerged as a powerful
approach to dissect the complex genetic architecture underpinning quantitative traits
such as quantitative and partial disease resistance. Coupled to a reduced-representation
genome sequencing (RRGS) approach such as diversity arrays technology sequencing
(DArT-Seq), which delivers a large set of molecular markers spanning the whole genome,
GWAS allows scanning the whole genome for polymorphisms correlated with phenotypic
variance, overcoming the constraints of bi-parental population mapping [19]. In pea,
GWAS successfully aided the identification of novel variant–trait associations for breeding
valuable agronomic, stress resistance, and quality attributes [18,20–27], although resistance
to post-harvest pests such as pea weevil has been poorly explored so far.

The objectives of the present study were to explore the phenotypic variation for
resistance to B. pisorum in a pea core collection across different environments, allowing the
identification of new resistant sources with potential for breeding. In addition, the genetic
architecture of this quantitative trait is dissected through a GWAS approach, allowing its
connection to high-quality Silico-DArT polymorphic markers. Consequently, candidate
genes behind weevil SI resistance in pea are proposed and their implications discussed.

2. Results
2.1. Phenotypic Response and Variance Components

A wide SI variation was observed along the four environments, with values ranging
from 0% to 56% seed infestation across environments. As displayed in Table 1, the most
affected environment was Puente20, with a mean and median for SI of 11.16% and 8.86%,
respectively. By contrast, Agrario19 was the least affected, with a mean SI of 5.60% and a
median of 4.00%. Due to excessive right skewness and a leptokurtic kurtosis in the raw
data, the percentages of SI were arcsine-transformed prior to model fitting to ensure the
value normalization within environments.

The linear mixed model applied allowed the obtention of the variance component
within each environment (Agrario19, Agrario20, Puente19, and Puente20) and across the
four environments (BLUP_MET), as shown in Table 2. Puente19 and Agrario20 displayed
the greatest genetic component for SI, while Agrario19 showed the lowest heritability. In all
cases, the genotypic coefficient of variation (CVg) was higher than the residual coefficient
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of variation (CVr), showing a CVratio > 1. The coefficient of determination of the GEI effect
was high, where 33% of the SI variation was due to GEI effect. The genotype–environment
correlation was also high (rge = 0.51), displaying a similar genetic response across the
four environments.

Table 1. Descriptive statistics of weevil SI for each environment.

ENV av.dev. CV Kurtosis Mean Median min max Range SE Skewness

Agrario19 4.52 122.56 12.72 5.60 4.00 0.00 56.00 56.00 0.22 2.96
Agrario20 7.08 114.99 14.10 8.98 6.00 0.00 88.00 88.00 0.33 2.91
Puente19 7.36 100.59 2.30 9.18 7.00 0.00 68.00 68.00 0.30 1.32
Puente20 8.42 104.38 5.16 11.16 8.86 0.00 70.00 70.00 0.37 1.94

Table 2. Variance components obtained through the mixed model in the four environments, testing
the percentage of weevil SI.

Parameters Agrario19 Agrario20 Puente19 Puente20 BLUP_MET

Gen% 57.8 73.5 74.7 60.6 34.2
rep:block% 1.66 1.44 0 1.73 1.34

Res% 40.5 25.1 25.3 37.7 31.0
Phen_var 0.02 0.03 0.03 0.04 0.03

H2 0.58 0.74 0.75 0.61 0.34
H2mg 0.81 0.89 0.90 0.82 0.76
GEIr2 - - - - 0.33

rge - - - - 0.51
Accuracy 0.90 0.95 0.95 0.91 0.87

CVg 53 58 57.3 51.6 39.6
CVr 44.4 33.9 33.3 40.7 38.2

CVratio 1.19 1.71 1.72 1.27 1.04

This was also evidenced by the correlation for SI between environments (Figure 1),
where the Pearson correlations of the predicted means calculated through the LMM model
were all significant (p-value < 0.001) between environments, ranging from moderate
(0.35–0.55) to high (0.71–0.81) correlations. The highest correlations were observed be-
tween BLUP_MET and the rest of the environments, ranging from 0.71 to 0.81, highlighting
how the MET model is capable of merging the GEI effect into the predicted means. The
highest phenotypic correlation was between Agrario20 and Puente20 (0.55), which share
the same season but have different locations. By contrast, the lowest phenotypic correlation
was obtained between Puente19 and Agrario19 (0.35), which also share the same field
season but differ in location.
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Weevil infestation varied considerably across the diverse pea core collection, influ-
enced by factors such as material type, flower and seed color, and taxonomic grouping, all
of which affect the percentage of SI (Figure 2). Notably, P. fulvum accessions, characterized
by orange flowers and black seeds, represent one of the most resistant groups to weevil SI
within the collection across environments. Apart from the P. fulvum accessions, resistance
was also detected in the remaining wild accessions, including the P. sativum subsp. elatius
accessions and, to a lesser extent, the accessions of P. abyssinicum and P. sativum subsp.
humile. Accordingly, black and brown seeds showed lower SI than green and yellow seeds.
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Figure 2. Boxplot representing the SIr (Seed Infestation relative to the control cv. Messire, established
at 100%) value in each environment categorized by material type, flower color, taxa, and seed color.
Red dashed lines show the average SI value of each environment. The most resistant group in each
category with a p-value < 0.001 is highlighted in teal color.
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2.2. GGE Model and Identification of New Resistant Sources

Genotype plus the genotype–environment interaction (GGE) model has been widely
used for genotype evaluation in MET. The first two PC represented 81.4% of the total SI
variation, where PC1 accounted for 64.5% of the variation and PC2 for 16.9%.

In this GGE biplot, known as which-won-where biplot (Figure 3), a polygon is drawn
by joining the genotypes #43, #187, #253, #244, #305, #190, #103, #96, #278, #154, #239,
#42, and #71, which are located farthest from the biplot origin, so that all other genotypes
are contained in the polygon. To avoid overlapping, the genotypes contained in the
polygon are not represented on the biplot (Figure 3). The vertex genotypes have the longest
vectors to the origin in their respective directions, which is a measure of responsiveness to
environments. Therefore, the vertex genotypes are among the most responsive genotypes.
For instance, genotype #71 was the most affected by weevil in environments Puente20,
Agrario20, and Agrario19, while the genotypes #42 and #239 were those with higher SI
in Puente19. By contrast, genotypes #244, #305, #190, #103, and #96 are less responsive in
their respective directions, showing the lowest SI and highest stability across environments
(i.e., less variability between locations). The genotypes displaying the highest SI resistance
and stability across environments are presented in Table 3. The full table displaying the
324 genotypes is presented in the Supplementary Material (Table S2).

Int. J. Mol. Sci. 2024, 25, 7920 6 of 20 
 

 

 
Figure 3. Genotype plus genotype–environment interaction biplot. 

Regarding environments, the PC1 ranks them based on their SI, with Agrario19 as the 
less affected environment in contrast to Puente20 (Figure 3 and Table 1). The PC2 groups the 
environments into two clusters, with Puente19 being the most divergent environment. This 
discordance was also evident in the relationship between the precocity of pea genotypes and 
SIr, as shown in Figure 4. Notably, the environments that are most distant on PC2 in the GGE 
biplot (Figure 3) exhibit opposing trends in relation to genotype precocity (GDD_F) and SI. 
Specifically, in Puente19, both early and intermediate maturity genotypes suffer more signifi-
cantly from weevil infestation (p < 0.01 and p < 0.001, respectively) compared to late-maturity 
genotypes. Conversely, in Puente20, the pattern of weevil infestation is reversed, with late-
maturity genotypes experiencing higher infection levels than their early and intermediate 
counterparts (p < 0.001 and p < 0.01, respectively), as detailed in Figure 4. 

 

Figure 3. Genotype plus genotype–environment interaction biplot.

Regarding environments, the PC1 ranks them based on their SI, with Agrario19 as the
less affected environment in contrast to Puente20 (Figure 3 and Table 1). The PC2 groups the
environments into two clusters, with Puente19 being the most divergent environment. This
discordance was also evident in the relationship between the precocity of pea genotypes
and SIr, as shown in Figure 4. Notably, the environments that are most distant on PC2 in the
GGE biplot (Figure 3) exhibit opposing trends in relation to genotype precocity (GDD_F)
and SI. Specifically, in Puente19, both early and intermediate maturity genotypes suffer
more significantly from weevil infestation (p < 0.01 and p < 0.001, respectively) compared
to late-maturity genotypes. Conversely, in Puente20, the pattern of weevil infestation is
reversed, with late-maturity genotypes experiencing higher infection levels than their early
and intermediate counterparts (p < 0.001 and p < 0.01, respectively), as detailed in Figure 4.
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Table 3. Characteristics of the most resistant accessions within IAS pea core collection. Estimated SIr
means (i.e., BLUP values) are presented in each location column. SIr = relative to the susceptible cv.
Messire, established at 100%.

# Bank
Code Taxa Origen Material Flower

Color
Seed
Color

SIr (%)
Agrario19

SIr (%)
Agrario20

SIr (%)
Puente19

SIr (%)
Puente20

311 IFPI3261 P. fulvum Syria Wild Orange Black 22 8 6 18
249 PI344006 P. s. ssp. elatius Greece Wild Purple Brown 16 11 6 19
103 JI262 P. s. ssp. elatius Turkey Wild Purple Brown 16 15 6 15
309 IFFPI3257 P. fulvum Syria Wild Orange Black 21 15 6 14
248 PI344005 P. s. ssp. elatius Greece Wild Purple Brown 21 12 6 17
110 JI196 P. s. ssp. humile Georgia Land. Purple Brown 20 10 6 18
97 PI595933 P. fulvum Australia Wild Orange Brown 16 14 6 18

305 IFPI3232 P. fulvum Syria Wild Orange Black 20 12 6 19
269 JI524 P. s. ssp. elatius Ethiopia Wild Purple Brown 18 15 6 17

246 PI273209 P. s. ssp. elatius Russia Land. Purple Orange
brown 21 12 6 17

197 PI357289 P. s. ssp. sativum N. Maced. Cult. White Green 22 12 6 19
244 PI173055 P. s. ssp. elatius Turkey Land. Lilac Brown 22 10 6 22

250 PI343976 P. s. ssp. elatius Turkey Wild Purple Orange
brown 18 16 6 22

190 PI273207 P. s. ssp. elatius Bulgaria Land. Purple Orange
brown 19 13 6 23

308 IFPI3253 P. fulvum Syria Wild Orange Black 21 15 6 22
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Figure 4. Boxplot representing the influence of maturity stage on seed infestation (SIr). Red dashed
lines represent the average SIr by environment.

2.3. Correlations between Climatic Variables and SI

The influence of environmental factors on weevil SI was calculated through a non-
metric multi-dimensional scaling ordination (NMDS) analysis (Figure 5). Biplots gave
a SI stress value of 0.023, indicating an excellent fit [28], which allowed the separation
of environments with a clear gradation fitting level for SI. Figure 5 shows the influence
of climatic variables on SI. To avoid multicollinearity, only significant climatic variables
with a p-value < 0.05 are depicted on Figure 5. Environments at the bottom (coordinate
NMDS 2) of the biplot are those with the lowest SI prevalence. The length and direction of
the vectors indicate their influence on SI. The longer the vector, the greater its influence on
SI, and this is negative when pointing down and positive when pointing up. Accordingly,
the biplot reveals that weevil SI is enhanced by high humidity values during flowering
(higher Flow_Hmax and Flow_Have) but, on the contrary, is hampered by warm winter
temperatures (Pre_Tmax), excessive evapotranspiration during flowering (Flow_Eto), and
post flowering (Post_Eto).
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Figure 5. NMDS analysis. The biplot shows the climatic variables that participate in the SI variation
by environment with a p < 0.05. These climatic variables are grouped in two clusters: (i) at the left,
maximum temperature at pre-flowering (Pre_Tmax), accumulated evapotranspiration until flowering
(Flow_Eto), and accumulated evapotranspiration post flowering (Post_Eto) and (ii) average humidity
and maximum humidity until flowering (Flow_Have and Flow_Hmax, respectively).

2.4. Positive Signals in GWAS Output

To identify genetic variants contributing to resistance against SI, we conducted a
genome-wide association study (GWAS) employing MLM and BLINK model approaches.
To account for population structure, we incorporated the Astle kinship matrix. The Bayesian
information criterion (BIC) suggested that no additional covariables were required to ac-
count for the population structure of the pea collection. Inspection of the quantile–quantile
(Q-Q) plots indicated appropriate model calibration, as demonstrated by the close align-
ment between expected and observed p-values, confirming the absence of genomic inflation
or deflation (Figure 6a).
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three genomic regions where combination of same MTAs in different environments occurred.

Using two models that applied the false-discovery rate (FDR) method (LOD = 4.65),
our GWAS identified 73 markers significantly associated with SI, as detailed in Table S3. Of
these, 65 markers were successfully mapped onto the P. sativum accession ZW6 genome
and 62 onto the P. sativum cv. Cameor genome. Under the more stringent Bonferroni correc-
tion, with a LOD threshold of 5.72, only 43 markers were deemed significant. The spatial
distribution of these markers across all seven chromosomes is depicted in a Manhattan
plot for each study environment (Figure 6b). Significant marker–trait associations (MTAs)
were identified on all chromosomes. Chromosomes 3 and 4 each harbored only one signifi-
cant MTA, with the associated marker linked to Agrario20 SI. By contrast, the remaining
chromosomes featured multiple MTAs, with three genomic regions—two on chromosome
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6 and one on chromosome 1—emerging as hotspots due to their consistent associations
with SI resistance across different environments. This consistency suggests these regions
as promising candidates for marker-assisted selection in pea breeding programs aimed at
enhancing weevil resistance.

2.5. Candidate Genes Involved in SI Resistance Pathways

Through the GWAS models, 23 candidate genes associated with weevil resistance
(reduced SI) were identified (Table 4). The most remarkable genes are those that include
more than one allelic variant that (i) explain a high portion of the phenotypic variance
(i.e., high PVE), (ii) provide a strong positive signal far from the limit of detection threshold
(i.e., high LOD), and (iii) are uncovered in more than one environment.

Table 4. Candidate genes from GWAS-significant DArT markers. Gene ID displays the gene number
in NCBI database as well as its name description in the second column. Chromosome number and
physical position in pb is presented in the DArT position column. PVE represents the percentage
of phenotypic variance explained by each marker in the model. The model with each environment
configuration is in the model column, and the LOD threshold is displayed in the last column.

Gene ID Gene Description DArT Position DArT ID PVE Model
Configuration LOD

127120182 Uncharacterized
LOC127120182

Chr1_110,246,659 4656306 7.1 BLINK_Puente20 10.2
Chr1_110,246,659 4656306 7.1 MLM_Puente20 4.9

127084996
Glycine-rich RNA-binding

protein RZ1A
Chr1_458,055,252 3542530 4.1 BLINK_Puente20 7.8
Chr1_458,055,252 3542530 4.1 MLM_Puente20 6.1

127083848 Uncharacterized
LOC127083848

Chr1_453,262,700 3567504 1.2 BLINK_Puente20 11.1
Chr1_453,262,700 3567504 1.9 MLM_BLUP_MET 4.8
Chr1_453,262,700 3567504 1.2 MLM_Puente20 4.9
Chr1_453,262,700 3567504 7.2 BLINK_Puente19 8.8
Chr1_453,262,700 3567504 7.2 MLM_Puente19 4.5

127120989 Uncharacterized
LOC127120989

Chr2_2,267,172 5938000 0.4 MLM_Agrario19 5.6
Chr2_2,267,292 5939473 1.1 MLM_Agrario19 5.6

127117519 Uncharacterized
LOC127117519

Chr2_4,167,178 3546634 2.2 MLM_Puente19 6.2
Chr2_4,167,181 5937650 2.6 MLM_Puente19 6.3

127118040
Centromere/kinetochore

protein zw10

Chr2_50,182,638 3556456 0.11 BLINK_Puente19 5.3
Chr2_50,184,923 3558874 0.17 BLINK_Puente19 5.3
Chr2_50,185,115 3558119 0.08 BLINK_Puente19 5.3

127119769 Heat-shock factor protein
HSF8

Chr2_408,028,665 3547098 12.8 MLM_Puente19 6.2
Chr2_408,028,667 3542446 14.3 BLINK_Puente19 6.8
Chr2_408,028,667 3542446 14.3 MLM_Puente19 4.5
Chr2_408,041,733 3558655 5.1 MLM_Puente19 6.2

127119921 ABC transporter G family
member 14

Chr2_426,964,234 26138253 2.5 MLM_Puente19 6.8
Chr2_426,964,229 5930625 2.6 MLM_Puente19 6.5

127120878 Ribonuclease MRP protein
subunit POP4

Chr2_489,920,805 5940469 5.8 BLINK_Puente20 8.8
Chr2_489,920,805 5940468 8.6 MLM_Puente20 6.0

127073915
Serine/threonine/tyrosine-

protein kinase HT1
Chr4_119,335,846 3547803 10.7 BLINK_BLUP_MET 5.4
Chr4_119,335,846 3547803 8.0 MLM_Agrario20 6.1

127083294
Low-affinity inorganic
phosphate transporter

Chr5_234,162,185 3559664 0.52 BLINK_BLUP_MET 6.3
Chr5_234,162,185 3559664 0.52 MLM_BLUP_MET 5.9

127084927 Uncharacterized protein
LOC127084927

Chr5_380,528,488 3539562 2.6 MLM_Puente19 6.8
Chr5_380,540,916 26137620 6.2 BLINK_Puente19 5.2

127136761 Squalene epoxidase

Chr6_241,397,688 3548086 13.6 BLINK_Puente19 4.8
Chr6_241,397,688 3548086 13.6 MLM_Puente19 5.3
Chr6_241,397,688 3548086 12.3 BLINK_BLUP_MET 6.8
Chr6_241,399,701 5888303 4.3 BLINK_Puente19 6.7
Chr6_241,399,704 5955249 5.7 MLM_Puente20 5.8
Chr6_241,399,704 5955249 2.7 MLM_Puente19 7.1

127092211
BolA4,

chloroplast/mitochondria
Chr6_265,236,008 3542707 23.6 MLM_BLUP_MET 5.7
Chr6_265,236,008 5911996 18.1 BLINK_Puente19 6.8
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Table 4. Cont.

Gene ID Gene Description DArT Position DArT ID PVE Model
Configuration LOD

127097033 60S ribosomal protein L14
Chr6_300,875,627 3550101 17.5 BLINK_Agrario19 5.6
Chr6_300,875,627 3550101 19.4 BLINK_Puente20 6.1
Chr6_300,875,630 3550101 30.8 BLINK_BLUP_MET 5.7

127091639 Transcription factor MYB
SRM1

Chr6_241,700,843 5906703 6.1 BLINK _Agrario20 6.7

Chr6_241,700,843 5906703 8.5 BLINK
_BLUP_MET 5.7

Chr6_241,700,843 5906703 5.4 MLM_Puente19 7.1
Chr6_241,700,843 5906703 7.1 MLM_Puente20 6.1
Chr6_241,700,840 5906695 6.0 MLM_Agrario20 6.7
Chr6_241,700,840 5906695 8.0 MLM_BLUP_MET 5.5
Chr6_241,700,840 5906695 4.8 BLINK _Puente19 6.8
Chr6_241,700,840 5906695 7.1 MLM_Puente20 6.1

127097188 Endoglucanase 12-like Chr6_259,693,325 41129807 1.0 MLM_Puente19 6.4
Chr6_259,693,328 19759901 0.7 MLM_Puente19 6.4

127096593 Methyltransferase METTL6
Chr6_311,453,191 3552572 29.2 BLINK_BLUP_MET 9.0
Chr6_311,453,191 3552572 22.9 MLM_Puente19 6.3
Chr6_311,453,191 3552572 15.8 MLM_Puente20 6.1

127097503
Heavy metal-associated

isoprenylated plant protein
Chr6_427,158,133 4662095 4.7 BLINK_Agrario19 5.6
Chr6_427,158,135 4660398 4.8 BLINK_Agrario19 5.6

127105338 Protein MAIN-LIKE 1
Chr7_288,124,543 3566185 5.3 BLINK_Agrario20 5.8
Chr7_288,124,543 3566185 8.1 BLINK_BLUP_MET 5.5

127107464 Serine carboxypeptidase Chr7_320,302,456 3549353 8.5 BLINK_BLUP_MET 6.9
Chr7_320,302,459 3568172 4.4 BLINK_BLUP_MET 5.8

127105952 Uncharacterized protein
LOC127105952

Chr7_506,057,986 4657153 17.3 BLINK_Agrario19 5.3
Chr7_506,057,986 4657153 17.3 MLM_Agrario19 5.6

127101072
Non-specific lipid-transfer

protein 3
Chr7_512,206,490 5923023 1.1 MLM_Puente20 6.1
Chr7_512,206,488 5880896 2.0 MLM_Puente20 6.1

Following these criteria, five proposed genes located on chromosome 6 are of high
interest. For instance, three DArT markers were linked to gene 127136761. These markers
were positively associated with Puente19, Puente20, and BLUP_MET and explained from
2.7 to 13.6% of phenotypic variance (Table 4). This gene encodes a squalene epoxidase, an
enzyme that is vital for the biosynthesis of cyclic triterpenoids, which are important for
embryo and seed development [29,30].

At 303 kb downstream from the 127136761 gene, two positive markers were associ-
ated with all environments except Agrario19 explaining from 4.8 to 8% of the phenotypic
variance (Table 4). They were linked with the gene 127091639, which encodes the transcrip-
tion factor MYB SRM1, known to modulate ABA response during seed germination and
seedling development under salt stress [31]. The DArT marker with the highest PVE (30.8%)
was located within gene 127097033. This gene produces the 60S ribosomal protein L14 and
contains another positive marker in the Agrario19 and Puente20 environments, which also
explains the notable SI variation in these environments (PVE = 17.5% and PVE = 19.4%,
respectively).

Interestingly, an additional marker located on chromosome 6, which explained an SI
variation of 23.6% and 18.1% in BLUP_MET and Puente19, respectively co-localize within
the confidence interval of QTL BpLD.I previously described by Aznar-Fernández et al.
(2018) [9]. This DArT marker is located within an intron of gene 127092211, encoding a BolA-
like family protein (Figure 7), which plays a repressive role in the tolerance against excess
iron and paraquat-induced oxidative stress in plants [32]. For all the tested environments,
the allelic variation with the major frequency was correlated with lower SI% in comparison
to the allelic variation with the minor frequency (Figure 7). The mean SIr differences, with
a p-value < 0.001, between the major and minor allele variant by environment were 30, 33,
33, and 53% in Puente19, Puente20, Agrario19, and Agrario20, respectively (Figure 7).
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allelic variant at 0.05 and 0.01 respectively.

Lastly, the allelic variation of the DArT marker 3552572 also explained a high portion of
the SI variance, with a PVE of 29.2, 22.9, and 15.8% in BLUP_MET, Puente19, and Puente20,
respectively. This marker mapped within the candidate gene 127096593, which encodes a
methyltransferase METTL6 in pea.

Several candidate genes harboring markers with individual-environment relevance
were also identified. For example, DArT markers 3547098, 3542446, and 3558655 are located
within gene 127119769, which encodes the heat-shock factor protein HSF8 in pea. This
suggests a potential role in thermal stress responses. Furthermore, marker 4657153, which
accounts for 17.3% of the PVE for SI in Agrario20, was found within gene 127105952. The
function of this gene in pea remains undefined (Table 4). Additionally, two DArT markers
were identified within gene 127097188, which encodes an endoglucanase 12-like protein.
These markers are situated within the confidence interval of the previously identified
BpSI_III QTL [9] (Table 4).

3. Discussion

Pea weevil is a major post-harvest pest of pea. Control of this pest is difficult, requiring
periodic pesticide treatment, which is costly and poses important environmental issues.
To circumvent these problems, the use of resistant accessions is of importance. Accord-
ingly, some sources of incomplete resistance to bruchid infestations have been reported in
pea [9,33], providing some levels of control, although complete control was not achieved.
Therefore, there is a continuous need to identify and characterize new sources of resistance
and identify molecular markers closely associated with weevil SI resistance to facilitate
its introgression to elite pea cultivars. To this aim, we assessed the seed infestation by
pea weevil of a pea germplasm collection under field conditions over several seasons and
performed a genome-wide association study (GWAS). This allowed the identification of
several novel sources of partial weevil SI resistance.

Our results show notable consistencies with previous research on the same plant
material. Specifically, of the 52 wild pea accessions evaluated by Aznar-Fernández et al.
(2018) [9], 42 were included in the core collection assessed in this study. Among these,
the five most resistant accessions are identical in both studies, namely genotypes #267
(SIr = 48%), #306 (SIr = 54%), #313 (SIr = 63%), #251 (SIr = 69%), and #315 (SIr = 77%). These
accessions belong to P. abyssinicum, P. sativum subsp. jomardii and P. sativum subsp. elatius,
respectively (Table S2). This reinforces the findings of previous studies and highlights the
value of wild crop relatives as reservoirs for disease and pest resistance traits [9,34,35]. Ad-
ditionally, this study identified accessions exhibiting higher levels of resistance (i.e., lower
SI and SIr) in comparison to [9], particularly among wild species. This increased resistance
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was predominantly found in P. fulvum (accessions #311, #309, #97, #305, and #308) and
P. sativum subsp. elatius (accessions #249, #103, #248, #269, #246, #244, #250, and #190) and
to a lesser extent in P. sativum subsp. humile (accession #110). In addition, a promising
level of partial resistance was also observed in the P. sativum subsp. sativum accession
#197, indicating that some domesticated pea cultivars also harbor weevil-resistance traits.
These novel sources of resistance add to the limited sources of resistance available so far,
facilitating resistance breeding programs (Table 4).

The resistance mechanisms harbored by these novel resistance sources are currently
unknown. It is likely the result of a combination of escape, antixenosis (non-preference),
and antibiosis mechanisms, resulting in reduced seed infestation and retarded larval devel-
opment [9,33]. Escape by sowing date and plant phenology can affect bruchid infestation by
the asynchrony between the appearance of the insect and the appropriate stage of the plant
to be infested. The weevil SI escape mechanism is therefore strongly influenced by climatic
condition, as we observed (Table 2 and Figure 5). This agrees with earlier reports that
showed the impact of weather conditions on the survival and spread of B. pisorum, with
adverse temperatures and high radiation reducing infection, as these might disturb oviposi-
tion and reduce egg viability [36]. Accordingly, higher B. pisorum or B. rufimanus infestation
has been reported on early flowering pea and faba bean accessions, respectively [37–39].
While we observed such correlation in some of the environments (i.e., Puente19), it was not
detected in Puente20, where the tendency was the opposite, with the late-maturity acces-
sions being more infested (Table 2). This points to the establishment of a more favorable
condition for infestation later in the season in this environment, as shown by the NMDS
(Figure 5) confirming climatic condition as a main driver of weevil SI.

Antixenoxis resistance mechanisms are mediated by secreted secondary metabolites.
For instance, some pea volatiles released at different phenological stages have been reported
to affect the behavior of the pea weevil [36,40]. Similarly, volatiles emitted by flowers of
common bean accessions resistant to Mexican weevil (Zabrotes subfasciatus) have been
shown to have a repellent effect, resulting in adult antixenosis and reduced oviposition on
seeds [41]. Pod morphological traits such as wax layers and pod thickness have also been
documented to affect B. pisorum preference for oviposition [42,43]. Additionally, neoplasm
formation has been suggested to contribute to weevil resistance [5,43]. We observed
neoplasms in a few accessions in some of the environments but not all, finding neoplasm
formation to be highly affected by environmental factors [44] and to have little correlation
with seed infestation in the field, in agreement with Sari et al. (2020) [45]. We also observed
a graduation in the level of SI according to the color of the seed coat. Accessions with
lighter seed color presented higher SI (Figure 2), which agrees with reported associations of
resistance with compounds in the seed coat (tannins, flavonoids, total phenolic content, and
antioxidant activity) [46–50]. Resistance has also been associated with components of the
cotyledons that can retard insect growth and development when ingested (lectins, arcelins,
phyto-hemagglutinins, α-amylase inhibitors, and protease inhibitors [4,51,52]. This was not
covered in our study but might be of great interest to elucidate the antibiosis component
of the resistance in the identified resistant accessions. In this regard, resistance in pea was
obtained by the transgenesis of the α-amylase inhibitor gene from common bean [6], as
achieved in other legumes. However, these resistant materials were not adopted due to
various limitations, including concerns about their potential immunogenicity [7] and the
rigid legislation in some countries concerning genetically modified organisms (GMOs),
coupled with low public acceptance [35].

To circumvent this limitation, resistance is being transferred to elite cultivars by
conventional breeding. Marker-assisted breeding involving the identification of DNA-
based markers linked to host resistance against bruchids has shown some success in the
quest for the development of bruchid-resistant cultivar(s) of various legume crops. Most
genetic studies on resistance to bruchids in different legumes have shown complex inheri-
tance [35]. Various QTLs have been identified associated with resistance to cowpea weevil
(Callosobruchus maculans) in cowpea (Vigna unguiculata) and chickpea (Cicer arietinum), to
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common bean weevil (Acanthoscelides obtectus) in common bean (Phaseolus vulgaris) [52–55],
to C. chinensis and C. maculatus in mung bean (V. radiata) [56–58] and Zombi bean (Vigna
vexillata) [59]. Several QTLs have also been described in pea for resistance to B. pisorum,
C. chinensis, and C. maculatus [11–13]. Interestingly, a single major QTL, qPsBr2.1, was
identified for C. chinensis and C. maculatus resistance. Further map-based cloning and ge-
nomic approaches on qPsBr2.1 identified the gene Psat2g026280 (designated as PsXI), which
encodes a xylanase inhibitor as the underlying gene responsible for bruchid resistance [13]
in this mapping population. By contrast, Aznar-Fernández et al. (2020) [12] described three
QTLs associated to reduced SI and an additional one for reduced larval development in
response to B. pisorum. However, the large confidence interval of these QTLs spanning sev-
eral Megabase pairs impeded the identification of candidate genes. Our GWAS approach
detected 73 markers associated with SI variation in at least one environment. Several of
them were detected from more than one model and environment, supporting their contri-
bution to the trait. Notably, several of these common markers were detected in regions of
chromosome 1 and 6, highlighting different association hotspots that contribute to a high
portion of SI variance. Interestingly, one of these hotspots in chromosome 6 covers the
region of the QTLs BpSI.III and BpLD.I, supporting their involvement in the genetic control
of SI resistance in the field [12]. Specifically, the DArT marker 3542707 that localized on
chromosome 6 at position 265,236,008 and explained the 23.6% of SI variation, is pinpointed
between the flanked DArT markers 3545955 and 3542026 of the QTL BpSI.III. In this case,
the QTL associated with lower SI explained a PVE of 11.5% [12]. The same DArT marker is
also included in the QTL BpLD.I; here, the QTL associated with a lower larval development
explained 16.5% of the variation. Although MTAs contributing to weevil SI resistance
were identified on all pea chromosomes, none of the other MTAs overlap with previously
detected bruchid-resistance QTL. Accordingly, our study uncovered additional genomic
regions that participate in resistance, which would be useful for breeding.

Examination of the location of the associated markers allow identifying putative
candidate genes that might contribute to resistance. Previous studies on the molecular basis
of weevil resistance in Vigna spp. identified two tandemly duplicated polygalacturonase-
inhibitor protein (PGIP) family genes, VrPGIP1 and VrPGIP2, responsible for resistance that
was successfully transferred to mung bean [60–62]. Here, we identified 23 genes in the near
vicinity or containing the markers significantly associated with weevil SI resistance. Several
of these genes contained more than one associated marker, supporting the contribution of
these regions to the trait and the involvement of these genes in the resistance (Table 5). Two
of these genes encoding a BolA-like family protein and an endoglucanase-12 like protein
were mapped within the confidence interval region of BrSI.III (Table 5) [12], the former also
co-localizing within BrLD.I confidence interval. In other species, BolA-like proteins were
found to play a repressive role in the tolerance against excess iron and paraquat-induced
oxidative stress in plants [32]. In addition, several of the candidate genes play an important
role in pollen and seed development, including the genes 127136761, 127091639, 127120182,
and 127118040 (Table 5). The first two genes, located 300 kb apart on chromosome 6 and
tagged by three and two associated markers, respectively, encode a squalene epoxidase
and an MYB-like transcription factor, which are important for embryo, seed, and seedling
development [29–31]. In addition, gene 127120182, located on chromosome 1, is an ortholog
of the M. truncatula ZntB proteins, implicated in Zn2+ uptake—a critical micronutrient for
flowering and pollen formation [63]. The other candidate genes were shown to encode
for homologs of genes that have been related to ion transport and stress response in
other species, including genes 127083294 and 127119921 encoding an ABC transporter
G family-like protein and a low-affinity inorganic phosphate transporter [64,65] and the
genes 127117519, 127119769, 127120878, 127084927, and 127107464 encoding two heat-shock
proteins, a ribonuclease, a dipeptidyl aminopeptidase, and a serine carboxypeptidase-like
protein, respectively (Table 5) [23,66–68]. These results open great opportunity to improve
our understanding of the genetic basis of weevil resistance in pea.
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Table 5. Description of the environments tested in the multi-environment trials during the pea cycle
from December to May.

ENV. Season
Site (Decimal

Degrees
Coordinates)

Soil Type Soil pH
Organic
Matter

(g/100 g)

Available
Phosphorus

(mg/kg)

Average
Tmax (◦C)

Average
Tmin (◦C)

Rain
(mm)

Agrario19 2018–2019 37.856833,
−4.802690 Cambisol 7.5 1.2 15.1 22.2 6.3 206

Agrario20 2019–2020 37.860775,
−4.799413 Cambisol - - - 20.1 6.6 363

Puente19 2018–2019 37.864470,
−4.789733 Vertisol 7.8 0.7 9.9 21.1 5.8 127

Puente20 2019–2020 37.866372,
−4.787661 Vertisol - - - 21.0 8.6 382

Altogether, we identified several novel resistance sources that should contribute
to improve the resistance level to weevil in the field. More importantly, we identified
a set of 73 molecular markers along with 23 candidate genes that should facilitate the
implementation of marker-assisted breeding to quicken the introgression of resistance into
an elite cultivar in the near future.

4. Materials and Methods
4.1. Plant Material, Experimental Design, and Assessments

Plant material consisted of a diverse core collection of 324 Pisum spp. accessions from
worldwide origins, previously assembled to capture a broad range of phenotypic and
genetic characteristics [69]. It includes accessions previously studied for their potential
resistance to various pea pests, including the pea weevil B. pisorum (e.g., accessions IFPI3250,
IFPI3280, IFPI3330, IFPI2354, IFPI2348, PI268480, JI227, and PI505059) [9].

The pea core collection was tested under field conditions at Córdoba, Spain, in four en-
vironments, consisting of two sites during two growing seasons (2018–2019 and 2019–2020),
known for significant weevil prevalence (Table 5). This site represents the hot/dry summer
Mediterranean environment, a common form of the Mediterranean climate characterized
by hot, dry summers and mild, wet winters, according to the Köppen–Geiger classification
system [70]. Each growing environment was defined by the specific year and location. We
utilized a 19 × 19 alpha lattice design for experiments, including check controls with three
replications at each site. Each experimental unit comprised a single row of 1 m in length
containing 10 seeds, with rows spaced 0.7 m apart. Sowing occurred from November to
December each year, aligned with local agricultural practices, though sowing dates varied
slightly between locations and seasons. Weed control was managed using pre-emergence
application of aclonifen (60%) in all seasons, supplemented by post-emergence treatments
of bentazon (48%), imazamox (2.24%), and cycloxydim (10%) in 2019. In 2020, weed control
was achieved solely through manual weeding.

Days from sowing till 50% flowering and 50% podding was estimated by continuous
observations on the plots and referred to accumulated temperature terms, following the
growing degree days (GDD) formula:

GDD =
Tmax − Tmin

2
− Tbase (1)

Tmax is the daily maximum temperature, Tmin is the daily minimum temperature, and
Tbase is the base temperature, which can vary depending on the crop (commonly 5 ◦C for
pea). For each genotype, GDD_F is the accumulated GDD until days to flowering and
GDD_P the accumulated GDD until days to podding, allowing categorization into early
(1st quartile), intermediate (2nd and 3rd quartile), and late (4th quartile) maturity groups.

Upon reaching maturity, plants were harvested manually and threshed. This happened
from late May to early June each season, depending on environmental conditions. To
prevent bias in seed infestation evaluations, all accessions were processed, treated, and
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stored at 4 ◦C post harvest. SI was assessed by inspecting 100 randomly selected seeds
per accession, with replication to detect weevil presence at the adult stage. Therefore, SI
(%) was calculated as the ratio of infested seeds to the total number of evaluated seeds.
To facilitate graphic comparisons among environments, SI values were expressed as SIr,
referring to the average values of the susceptible cv. Messire within environment, which
were established as 100% at each one [9].

4.2. Statistical Analysis
4.2.1. Variance Analysis

To analyze the variance components within each environment for seed infestation (SI),
we employed a linear mixed model. This model treated the genotype and the incomplete
block nested within the replicate as random effects, while each complete replicate within
an environment was considered a fixed effect. Broad-sense heritability (H2) was estimated
using the formula from Toker et al. (2004) [71], defined as the ratio of genotypic variance to
phenotypic variance. This approach also facilitated the calculation of the predicted means
for each genotype, termed best linear unbiased predictors (BLUPs), which were used in
subsequent analyses.

Additionally, a second linear mixed model was applied using a multi-environment
trial (MET) framework. In this model, both the genotype and genotype–environment inter-
action (GEI) were treated as random effects, with all other sources of variance modelled as
fixed effects. This model enabled the estimation of BLUPs for SI across the four environ-
ments, representing the GEI-independent component. Heritability in the MET model was
calculated as the genotypic variance divided by the sum of the genotypic variance, GEI
variance, and residual variance.

Both models and their respective formulas were implemented using R version 4.2.2 [72]
with the metan package [73].

4.2.2. Genotype Plus Genotype–Environment Interaction (GGE) Model

To analyze the combined effects of genotype (G) and genotype–environment inter-
action (GEI), we utilized a GGE biplot analysis, following the methodology proposed by
Yan and Holland (2010) [74]. This model creates a biplot based on the first two principal
components (PC1 and PC2), which are obtained through symmetric scaling and singular-
value decomposition (SVD) of MET data centered around environmental means. The
resulting GGE biplot allows for the simultaneous visualization of genotype performance
and environmental interaction, facilitating the identification of superior genotypes and
the classification of mega-environments [75]. GGE biplots are particularly valuable for
comparing multiple genotypes across varied environments, aiding in the visualization of
genotype stability and adaptability [76,77]. In our analysis, the ideal genotype displays low
seed infestation (SI) values and consistent performance across all environments, indicative
of minimal GEI. The proximity of environment scores to the origin in the biplot indicates
smaller genotype differentials due to environmental variation.

The GGE model was estimated using the metan package in R. According to Yan and
Kang (2002) [78], the model accommodates multiple data centering, scaling, and singular-
value partitioning methods. Our GGE model configuration opted for an environment-
centered approach without data scaling to preserve the relative magnitude of G and GEI
effects. The which-won-where biplot generated identifies “vertex genotypes”, which
are highly responsive to specific environments, as indicated by their vector lengths. A
genotype at the origin would exhibit uniform performance across environments, showing
no responsiveness to any environmental conditions.

4.2.3. Non-Metric Multi-Dimensional Scaling Ordination (NMDS)

To evaluate the impact of environmental factors on SI, we conducted an NMDS,
as described by Kruskal (1964) [28]. This analysis included 27 climate variables, which
are detailed in Table S1. These variables were sourced from the Junta de Andalucía’s
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agroclimatic information network (https://www.juntadeandalucia.es/agriculturaypesca/
ifapa/riaweb/web, accessed on 25 March 2024) and encompassed average, minimum, and
maximum temperatures; average, minimum, and maximum humidity levels; accumulated
radiation; evapotranspiration; and accumulated rainfall for three distinct growth stages:
pre-flowering, flowering, and post flowering.

We performed 100 iterations of the NMDS to ensure the stability of the results and
avoid the risk of capturing a local minimum stress, thereby increasing the likelihood of
identifying the global minimum. Each iteration began with a different random starting
configuration. From these iterations, we selected the two-dimensional solution that exhib-
ited the lowest stress level, indicating the best representation of data structure in reduced
dimensions. This analysis was performed using the vegan package in R Version 2.6-4 [79].

4.2.4. Genotyping and Genome-Wide Analysis

The process of DNA extraction, DArT-Seq sequencing, and marker assembly, clean-
ing, and mapping were detailed in Rispail et al. (2023) [69]. Briefly, the genotyping of
the pea core collection was conducted using the DArT-Seq method described by Barilli
et al. (2018) [80]. DNA was extracted from pooled leaves of 20 seedlings per accession
and analyzed using the high-density pea DArT-Seq 1.0 array. Subsequent data cleaning
involved removing markers of low quality or without polymorphism, adhering to proto-
cols recommended by Pavan et al. (2020) [81]. This process yielded 26,045 polymorphic
Silico-DArT markers, which were mapped onto the two available Pisum reference genome
sequences [82,83].

A genome-wide association study (GWAS) utilized these markers across 324 acces-
sions, employing the BLUPs calculated for each environment and over the four tested
environments (i.e., GEI-independent part). We performed the GWAS using single-trait
analyses in both a single-locus mixed linear model (MLM) and a multi-locus Bayesian
information and linkage disequilibrium iteratively nested keyway (BLINK) model [84].
These analyses conducted using GAPIT 3.0 [85] aimed to capture both major and minor ge-
netic effects influencing SI variation. Population structure was controlled using a Bayesian
information criterion (BIC)-based model selection procedure to determine the optimal
number of principal components (PCs), following recommendations by Osuna-Caballero
et al. (2024) [27]. Relatedness among individuals was accounted for using the Astle kinship
matrix [86]. Marker significance was determined using a Bonferroni-corrected LOD thresh-
old (− log10(0.05/number of markers)) and a variable LOD based on the false-discovery
rate (FDR) method to detect markers that might be overlooked by the stringent Bonferroni
threshold. This variable FDR threshold was estimated with the Qvalue R package and
adjusted to ensure < 1 false positive Version 2.30.0 [87,88]. Linked DArT-Seq markers were
identified as those within 2.5 kb and having a linkage disequilibrium (r2) of ≥0.5. Genomic
inflation or deflation was assessed through the lambda (λ) statistic using the QQperm R
package Version 1.0.1 [89]. Models showing a lambda value outside the range of 0.8 to
1.2 were excluded. Manhattan and Q-Q plots were generated using the CMplot R package
4.5.1 [90] to facilitate the visualization of the GWAS results.

Candidate genes were identified based on their proximity to significant markers or
linkage disequilibrium with them (r2 > 0.5) within a 20 kb radius. These genes were located
using the pea ZW6 reference genome browser [82]. Nucleic sequences of associated markers
were submitted to the BLASTx algorithm to find homolog proteins in related species such as
peanut (Arachis hypogea), common bean (Phaseolis vulgaris), soybean (Glycine max), Medicago
truncatula, and the model species Arabidopsis thaliana. The functions of these candidate
genes were inferred from annotations, the literature, and in silico analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25147920/s1.
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