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Abstract: Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly
found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product
of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through
specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various
health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer
properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting
NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE
pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced
risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal
of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful
adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects
(such as back pain and headaches) reported. This review collates the latest information from Google
Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of
154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.

Keywords: caffeic acid; vegetal sources; metabolism; adjuvant cancer treatment

1. Introduction

Caffeic acid (CA) was first identified by Hlasiwetz in 1867 during the hydrolysis of
caffetannic acid using caustic potash [1]. CA is a naturally occurring polyphenol found
widely in the plant kingdom, particularly in beverages like coffee and yerba mate, which are
consumed worldwide. Polyphenols are characterized by a benzene structure functionalized
with one or more hydroxyl groups. Presently, there are over 8000 known polyphenolic
compounds, categorized into various families, Figure 1, including phenolic acids (such as
hydroxybenzoic acids and hydroxycinnamic acids), flavonoids (encompassing flavones,
flavonols, flavonones, isoflavones, flavononols, anthocyanins, flavan-3-ols, and chalcones),
tannins (both hydrolysable and non-hydrolysable (condensed) tannins), stilbenes, lignans,
quinones (benzoquinone, naphthoquinone, and anthraquinones), and coumarins (sim-
ple coumarins, furanocoumarins, pyranocoumarins, benzocoumarins, coumestans, and
biscoumarins) [2–10].
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CA serves as a primary antioxidant by counteracting harmful reactive oxygen species 
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gating the risk of carcinogenesis. Moreover, CA exhibits secondary antioxidant activity by 

stimulating the intracellular nuclear erythroid 2-related factor 2/antioxidant response ele-

ment (Nrf2/ARE) pathway. The Nrf2 regulates the expression of phase II antioxidant en-

zymes, including glutathione S-transferase (GST), heme oxygenase 1 (HO-1), and NADPH 

Quinone Dehydrogenase 1 (NQO1), which play pivotal roles in preserving cellular redox 

homeostasis [11,12]. Research has shown that CA exhibits hepatoprotective properties in 

HepG2 cells, shielding them from oxidative stress triggered by tert-butyl hydroperoxide 

(t-BHP). This suggests that the activation of Nrf2 and a rise in levels of HO-1 and gluta-

mate-cysteine ligase (GCL) within the cell nuclei occur in response [13]. Furthermore, CA 

has been shown to mitigate cell and tissue damage in the brains of rats exposed to neuro-

toxic compounds such as quinolinic acid (QUIN, 100 μM), ferrous sulfate (FeSO4, 25 μM), 

and 6-hydroxydopamine (6-OHDA, 100 μM). At a concentration of 100 μM, CA reduced 

oxidative damage and improved brain function in rats. Similar findings were observed in 

the worm model C. elegans, where CA directly activated the Nrf2/ARE pathway [14]. Ad-
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Figure 1. Classification of phenolic acids. Chemical structure of principal hydroxybenzoic and
hydroxycinnamic acids, including caffeic acid (CA) in blue (figure created in ChemDraw Ultra
12.0 software).

The properties of CA stem from its distinctive chemical structure. The presence of
phenolic hydroxyl groups in the catechol moiety, coupled with a double bond in the car-
bon chain, imparts both antioxidant and pro-oxidant characteristics to CA. Within cells,
CA serves as a primary antioxidant by counteracting harmful reactive oxygen species
(ROS) that pose threats to deoxyribonucleic acid (DNA), proteins, and lipids, thus miti-
gating the risk of carcinogenesis. Moreover, CA exhibits secondary antioxidant activity
by stimulating the intracellular nuclear erythroid 2-related factor 2/antioxidant response
element (Nrf2/ARE) pathway. The Nrf2 regulates the expression of phase II antioxidant en-
zymes, including glutathione S-transferase (GST), heme oxygenase 1 (HO-1), and NADPH
Quinone Dehydrogenase 1 (NQO1), which play pivotal roles in preserving cellular redox
homeostasis [11,12]. Research has shown that CA exhibits hepatoprotective properties in
HepG2 cells, shielding them from oxidative stress triggered by tert-butyl hydroperoxide
(t-BHP). This suggests that the activation of Nrf2 and a rise in levels of HO-1 and glutamate-
cysteine ligase (GCL) within the cell nuclei occur in response [13]. Furthermore, CA has
been shown to mitigate cell and tissue damage in the brains of rats exposed to neuro-
toxic compounds such as quinolinic acid (QUIN, 100 µM), ferrous sulfate (FeSO4, 25 µM),
and 6-hydroxydopamine (6-OHDA, 100 µM). At a concentration of 100 µM, CA reduced
oxidative damage and improved brain function in rats. Similar findings were observed
in the worm model C. elegans, where CA directly activated the Nrf2/ARE pathway [14].
Additionally, CA has been found to down-regulate inflammatory interleukins, specifically
interleukin-6 (IL-6) and interleukin-1β (IL-1β), as well as nuclear factor kappa B (NF-κB)
in the inflammatory cascade and inhibit signal transducer and activator of transcription
3 (STAT3) and signal-regulated kinase 1/2 (ERK1/2) actions in vitro [15–17]. However,
an antioxidant agent such as CA can become a pro-oxidant due to its ability to chelate
metals such as copper (Cu), inducing lipid peroxidation and causing DNA damage through
oxidation or the formation of covalent adducts with DNA [18].

These actions play a vital role in both cancer prevention and treatment. Furthermore,
evidence indicates that caffeic acid might enhance the susceptibility of cancer cells to cer-
tain drugs frequently employed in chemotherapy, implying its potential as a promising
compound for combating chemoresistance. This review aims to underscore the phytochem-
ical characteristics of CA and its direct involvement in cellular pathways linked to cancer
development and advancement, in contrast to other reviews that demonstrate the general
activity of CA. Here, we provide a strong basis for the use of CA as an adjuvant in cancer
chemotherapy and radiotherapy.

2. Methodology

The literature review was conducted across multiple databases, including Google
Scholar, PubMed, and Springer (Figure 2). Initially, a search was conducted using key-
words such as caffeic acid, chemoresistance, adjuvant, biosynthesis, and metabolism.
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Subsequently, additional terms like inflammation and molecular targets were combined
with caffeic acid for a more comprehensive search. The literature exploration involved
examining the bibliographies of selected publications featuring original research to compile
this review article.
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3. Biosynthesis of Caffeic Acid

CA is synthesized via the phenylpropanoid pathway, which originates from the amino
acids phenylalanine or tyrosine. Tyrosine undergoes a two-step conversion process to
produce p-coumaric acid, initially catalyzed by the enzyme tyrosine ammonia-lyase (TAL).
Subsequently, p-coumaric acid is transformed into CA by 4-coumarate 3-hydroxylase (C3H),
which introduces a hydroxyl group at position 3. Another route involves the conversion
of p-coumaric acid to coumaroyl-CoA by 4-coumarate (i.e., CoA ligase (4CL)), followed
by m-hydroxylation by C3H to yield caffeoyl-CoA. The hydrolysis of caffeoyl-CoA by
CoA thioesters results in the production of caffeic acid and CoA [19]. The enzymes in-
volved in this biosynthetic pathway have been elucidated through knockout mutations
and RNAi-mediated studies in Arabidopsis plants, facilitating the identification and func-
tional characterization of key genes and enzymes [20,21]. Figure 3 shows a schematic
representation of the biosynthetic pathway.
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Figure 3. Biosynthetic pathways for the formation of CA (shown in red) from its precursor amino
acids (in blue). The involved enzymes are abbreviated: PAL = phenylalanine ammonia-lyase;
C4H = cinnamate 4-hydroxylase; 4CL = 4-coumaric acid CoA ligase; TAT = tyrosine aminotransferase;
and C3H = p-coumarate 3-hydroxylase.

4. Natural Sources with High Content of CA

CA is abundantly present in a wide range of plant-derived foods, including fruits,
vegetables, and certain beverages. The concentration of CA within a particular plant species
varies depending on factors such as the plant part (e.g., fruits, leaves, stems, and roots),
degree of ripeness, processing techniques, and storage conditions. Natural sources rich in
CA include coffee beans, especially when freshly roasted, which can contain significant
amounts of CA depending on the coffee type and brewing method [22,23]. Fruits such
as apples, pears, cherries, and grapes are known to contain CA [24,25], while vegetables
like bell peppers, broccoli, carrots, and spinach also contribute to CA intake [26,27]. Herbs
and spices like thyme, oregano, sage, rosemary, and basil are recognized as rich sources
of CA [28,29]. Additionally, whole grains like wheat, oats, and rice, particularly their
bran and outer layers, contain this polyphenol [30,31]. Recent research has revealed the
presence of CA in certain mushrooms, including Agaricus bisporus, Coprinus atramentarius,
Morchella elata, and Laetiporus sulphureus [32]. Furthermore, the traditional consumption
of artichoke (Cynara scolymus) has been identified as a significant source of CA, partic-
ularly in its leaves [33,34]. The Phenol-Explorer database (accessed on 12 March 2024)
(http://phenol-explorer.eu/) offers comprehensive information on polyphenol levels in
various foods, comprising over 35,000 data points encompassing 500 distinct polyphenols
across more than 400 food items. Table 1 provides an overview of the major natural sources
of CA.

http://phenol-explorer.eu/
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Table 1. Assessing caffeic acid levels in various plants, including both edible and medicinal plants
and plants consumed as is, as used culinary ingredients, or as infusions.

Edible Vegetables or Fruits Culinary Plants or Herbal Infusion

Scientific Name/
Common Name

Caffeic Acid
mg/kg References Scientific Name/

Common Name
Caffeic Acid

mg/kg References

Allium sativum
(Garlic) 50 [35]

Andrographis
paniculata

(Green chiretta)
450 [35]

Apium graveolens
(Celery) 880–1120 [35] Anethum graveolens

(Dill) 1840 [35]

Averrhoa carambola
(Carambola) 90 [35] Artemisia dracunculus

(Tarragon) 620 [35]

Brassica juncea
(Brown mustard) 830 [35] Artemisia pallens

(Davana) 110 [35]

Capsicum annuum
(Red Pepper) 250–850 [35] Artemisia vulgaris

(Mugwort) 25.4 [28]

Carica papaya
(Papaya) 5080 [35] Camellia sinensis

(Tea plant) 510 [35]

Coriandrum sativum
(Coriander) 240 [35] Centella asiatica

(Indian pennywort) 860 [35]

Eryngium foetidum
(Cilantro) 1600 [35] Chromolaena odorata

(Devil weed) 6210 [35]

Daucus carota
(Carrot) 850 [35] Ilex paraguariensis

(Yerba mate) 63.5 [36,37]

Helianthus annuus
(Sunflower) 30–1100 [35] Clerodendrum indicum

(Bharangi) 110 [35]

Ipomoea aquatica
(Water spinach) 1130 [35] Clerodendrum

thomsoniae 770 [35]

Ipomoea batatas
(Sweet Potato) 125 [38] Coffea canephora

(Coffea) 12,330 [35]

Lactuca sativa
(Lettuce) 2580 [35] Ginkgo biloba

(Ginkgo) 398 [39]

Morus alba
(Mulberry) 250 [35] Cymbopogon citratus

(Lemon grass) 730 [35]

Morinda citrifolia
(Noni) 100 [35] Echinacea purpurea

(Purple coneflower) 115.9 [28]

Persea americana
(Avocado) 80 [35] Euphorbia hirta

(Asthma plant) 210 [35]

Persicaria odorata
(Vietnamese
coriander)

910 [35] Eucommia ulmoides
(Hardy rubber tree) 190 [35]

Spinacia oleracea
(Spinach)

2.4–5.3 *
370 **

[29]
[35]

Gnaphalium polycaulon
(Western cudweed) 2360 [35]

Psidium guajava
(Guava) 220 [35] Hibiscus sabdariffa

(Roselle) 3510 [35]

Punica granatum
(Pomegranate) 3050–3630 [35] Hyptis suaveolens

(Bamburral) 1110 [35]

Raphanus sativus
(Radish) 330 [35] Leonotis nepetifolia

(Klip dagga) 4180 [35]
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Table 1. Cont.

Edible Vegetables or Fruits Culinary Plants or Herbal Infusion

Scientific Name/
Common Name

Caffeic Acid
mg/kg References Scientific Name/

Common Name
Caffeic Acid

mg/kg References

Petroselinum crispum
(Parsley) 480 [35] Leonurus sibiricus

(Motherwort) 120 [35]

Phyllanthus emblica
(Gooseberry) 290 [35] Salvia officinalis

(Sage)
1660 **
74.2 *

[35]
[39]

Physalis angulata
(Poppers) 120 [35] Perilla frutescens

(Purple mint)
1890
870

[35]
[40]

Physalis peruviana
(Goldenberry) 860 [35] Melissa officinalis

(Lemon balm)
26.8
1740

[35]
[28]

Satureja hortensis
(Summer savory) 248 [41] Mentha arvensis

(Pudina) 1080 [35]

Solanum melongena
(Eggplant) 3.8 [42] Mentha cordifolia 1000 [35]

Vaccinium myrtillus
(Blueberry) 59.66 [43] Mentha piperita

(Peppermint) 57.6 [28]

Moringa oleifera
(Moringa) 40–300 [35] Rosmarinus officinalis

(Rosemary)
1460 **
43.6 **

[35]
[28]

Thymus vulgaris
(Thyme)

117 *
1550 **
69.4 **

[39]
[35]
[28]

Origanum majorana
(Marjoram)

104 *
67 **

[39]
[28]

Ocimum basilicum
(Basil)

16.6–41.1 *
54.4 **
3110 **

[29]
[28]
[35]

Origanum vulgare
(Oregano)

4100 **
140 **
41.4 **

[35]
[41]
[28]

* mg/kg of fresh weight. ** mg/kg of dried plant.

5. Absorption, Distribution, and Metabolism of CA

The potential therapeutic use of CA relies heavily on its pharmacokinetic behavior, which
encompasses its stability within the digestive system, including exposure to acidic pH, bile,
and metabolic enzymes, as well as its absorption in the intestines, distribution throughout the
body, and subsequent metabolic processes leading to excretion. Studies have demonstrated
that CA can traverse the blood–brain barrier (BBB) and reach concentrations of 0.02 µM in
the cerebrospinal fluid, thereby exerting beneficial effects on the brain [44]. To investigate the
pharmacokinetics of CA, experiments were conducted in rats using radioactive-labeled CA
. Rats were orally administered 1.52 mg of labeled CA [3-14C] (140 × 106 dpm) via gavage,
and various samples, including organs, tissues, plasma, urine, and feces, were collected
over a duration of up to 72 h. These samples were then analyzed using high-performance
liquid chromatography (HPLC) coupled with online radioactivity detection and tandem mass
spectrometry, allowing for the determination of residual radioactivity in the samples. The
results of these analyses are summarized in Table 2.

Table 2. Distribution of radioactivity (%) in the gastrointestinal tract of rats after ingestion of [3-14C]
CA by baggage.

Sample 1 h 3 h 6 h 12 h 24 h 48 h 72 h

Stomach 62 7.1 0.2 0.4 0.1 0.2 0.1
Duodenum 7.9 8.1 0.2 0.3 0.1 0.1 <0.1

Jejunum/ileum 9.1 16 1.1 1.4 1.1 0.7 <0.1
Cecum <0.1 7.4 6.6 3.9 1.9 0.3 <0.1
Colon <0.1 7.4 6.6 3.9 1.9 0.3 <0.1
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One hour after ingestion, approximately 80% of the radioactivity remained in the
gastrointestinal (GI) tract, while the remaining 20% had already entered the bloodstream
and kidneys. This indicates that the absorption of CA starts in the stomach and is sub-
sequently excreted, primarily through urine, in the form of nine identified radioactive
compounds, including trans-caffeic acid, cis-caffeic acid, caffeic acid 3′-O-sulfate, caffeic
acid-4′-O-sulfate, caffeic acid 3′-O-glucuronide, caffeic acid 4′-O-glucuronide, isoferulic
acid-3′-O-sulfate, ferulic acid-4′-O-sulfate, and ferulic acid-4′-O-glucuronide (refer to struc-
tures in Figure 4), along with four unidentified metabolites. By the 72-h mark, there was
minimal to no accumulation of radioactivity in various body tissues, including the kidney,
brain, testes, lung, heart, muscle, liver, spleen, and red blood cells. Only a small quantity
of an unidentified 14C-labeled metabolite was excreted in feces. The overall recovery of
radioactivity was approximately 80% [45].
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Figure 4. Metabolism of caffeic acid by rats. The involved enzymes are abbreviated: CAI = caffeic
acid isomerase; COMT = catechol-O-methyltransferase; SULT = sulfotransferase; and UGT = uridine-
5′-diphosphate-glucuronosyltransferase [45].

Kishida and Matsumoto conducted a study on the metabolism of CA in male Wistar
rats that were administered a dosage of 40 mg/kg. They found that at 48 h after administra-
tion, approximately 61.6% of CA was excreted, with the excretion primarily consisting of
glucuronidated and/or sulfated CA-conjugates. To analyze these conjugates and quantify
the amount of free CA, specific enzymes were utilized to release CA from the conjugates.
Subsequently, CA levels in the urine were measured using HPLC-DAD [46].
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6. Signaling Pathways Affected in Cancer Progression

Despite continuing advances in treatments, cancer remains a major health challenge,
with cardiovascular diseases and cancers being the most common causes of death world-
wide [47]. Understanding the detailed mechanisms of carcinogenesis, which are triggered
by prolonged exposure to various risk factors, is crucial for preventing cancer development
and progression [48]. Hanahan and Weinberg have summarized several cellular processes
that contribute to the emergence of neoplasms and their malignant progression, including
self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of
apoptosis, unlimited replicative potential, tissue invasion and metastasis, and sustained
angiogenesis [49].

Although cancer is a multifactorial disease, a common outcome of exposure to risk
factors is inflammation and uncontrolled production of ROS. ROS and RNS are a group of
radical and non-radical molecules produced by cellular metabolism or induced by external
sources. Excessive ROS formation can damage macromolecules such as DNA, proteins,
and lipids, leading to genomic instability and altered cell growth [50]. ROS can influence
cell cycle progression by affecting the activity of proteins like cyclin-dependent kinase
inhibitor p21 or the serine/threonine mutant ataxia telangiectasia protein kinase (ATM).
ATM is crucial for DNA repair and impacts cell signaling pathways that are important for
proliferation and apoptosis, such as the Akt or p53 pathway [48]. Normally, intracellular
ROS accumulation due to carcinogen exposure is mitigated by antioxidant enzymes like
catalase (CAT), superoxide dismutase (SOD), or the glutathione (GSH) system. However,
when ROS levels exceed the cell’s antioxidant capacity, extensive oxidative damage to
cellular components occurs, increasing the likelihood of mutations in oncogenes or tumor
suppressor genes and leading to the formation of precancerous lesions. Consequently, ROS
are attributed to a tumor-promoting role during carcinogenesis as they can inactivate or
activate proteins involved in cancer-related signaling pathways.

ROS, chronic infections, and inflammation all activate the NF-κB pathway, promoting
the dimerization of the inhibitor of κB kinase (IKK) gamma (IKKγ), also known as the
nuclear factor κB (NF-κB) essential modulator (NEMO). This component of the IKK complex
is crucial for the canonical activation of the NF-κB pathway [51–53]. The dimerization of
IKKγ/NEMO triggers the phosphorylation of inhibitory NF-κB proteins (IκBs), leading
to their degradation by the proteasome. This process induces the phosphorylation of
p50/p65 dimers via the activation of protein kinase-A (PKAc), facilitating the translocation
of NF-κB to the nucleus, where it regulates the transcription of genes associated with
survival, cell proliferation, proinflammatory cytokines, and ROS-related genes [54,55]. The
activation of the NF-κB signaling pathway is linked to various cellular processes, including
inflammation and immune response. The disruption of this pathway has been associated
with inflammatory diseases and the development and progression of cancer. In cancer,
specifically, NF-κB activation is linked to apoptosis resistance as it negatively regulates
anti-apoptotic proteins B-cell leukemia/lymphoma 2 (Bcl-2) and B-cell lymphoma-extra
large (Bcl-XL). It is also linked to increased malignancy by modulating the transcription of
genes related to cell proliferation of cyclin D1 (CCND1) and cellular Myc (c-Myc). It also
influences the expression of genes involved in angiogenesis, such as vascular endothelial
growth factor (VEGF), proinflammatory cytokines related to carcinogenesis, such as IL-1β
and IL-6, genes involved in detoxification and drug resistance, and antioxidant enzymes
such as SOD, CAT, thioredoxin (TRX), HO-1, and glutathione peroxidase (GPX1) [54].

Another pathway activated by ROS is the Nrf2 pathway. Nrf2 is a key regulator of
cellular redox homeostasis, controlling the expression of various antioxidant and cytopro-
tective genes involved in drug detoxification, cell proliferation, metabolism, autophagy,
apoptosis, proteasome function, DNA repair, and antioxidant response, collectively known
as phase II genes. Under normal conditions, Nrf2 associates with the Kelch-like Echas-
sociated protein 1 (Keap1), part of the Cullin 3 (CUL3)-based ubiquitin ligase complex
that regulates Nrf2 stability, and promotes its degradation via the ubiquitin/proteasome
pathway. However, in the presence of electrophilic molecules or oxidative stress, cys-
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teine residues in Keap1 are modified, leading to its inactivation and reducing its binding
to Nrf2 or CUL3, thereby preventing Nrf2 degradation. Stabilized Nrf2 translocates to
the nucleus, where it dimerizes with other leucine zipper proteins of the v-maf avian
musculoaponeurotic fibrosarcoma oncogene homolog (Maf) family to activate AREs on
phase II genes. Additionally, Nrf2 degradation can be mediated by β-transducin repeat-
containing protein (β-TrCP) in the nucleus, which binds to phosphorylated Nrf2 and Cullin
1 (CUL1), inducing Nrf2 ubiquitination. Another mechanism involves Keap1 degradation
mediated by phosphorylated p62/Sequestosome-1 (p62/SQSTM1) [54,56]. Strong cellular
antioxidant, drug-detoxifying, and cytoprotective activities have been linked to cancer
malignancy, with evidence showing that cancer cells often exhibit aberrant Nrf2 activation.
Various mechanisms have been identified, including somatic mutations in Nrf2, Keap1, or
CUL3 genes, epigenetic silencing of Keap1, accumulation of Keap1-interacting proteins
like p62/SQSTM1 or p21, and cysteine modification by oncometabolites such as fumarate,
which affect Keap1 activity [54]. Nrf2 activation has been associated with resistance to
chemotherapy and radiotherapy and poor prognosis in cancers such as head and neck, lung,
ovarian, and breast cancer [57–63]. Importantly, several natural and chemical compounds
are being tested to inhibit Nrf2 signaling in cancer cells with high Nrf2 activity, while Nrf2
inducers are being explored to protect normal cells from carcinogens [64].

Oxygen deprivation in tumors significantly influences cancer development and metas-
tasis. Hypoxia-inducible transcription factors (HIFs) are crucial in promoting the survival,
proliferation, adaptability, and motility of malignant cells. Additionally, hypoxia elevates
Programmed death-ligand 1 (PD-L1) expression, also known as cluster of differentiation
274 (CD274) or B7 homolog 1 (B7-H1), in both malignant and immunoregulatory cells [65].
ROS also play a role by oxidizing prolyl hydroxylase domain (PHDs) proteins, essential for
the binding of von Hippel–Lindau tumor suppressor protein (p-VHL) to HIF-1α, leading
to its ubiquitination and degradation in the proteasome. HIF-1 operates as a heterodimeric
complex composed of an alpha and a beta subunit. HIF-1β is constitutively expressed,
while HIF-1α accumulation is induced under hypoxic conditions. In normoxia, PHDs
hydroxylate two prolyl residues of HIF-1α, marking it for ubiquitination and subsequent
von Hippel–Lindau (VHL) complex-mediated degradation [54]. Conversely, during hy-
poxia, HIF-1α accumulates, and the HIF-1 complex activates the transcription of genes
containing hypoxia response elements (HREs) in the cell nucleus. HIF-1 signaling has been
extensively studied in various cancers, including pancreatic, gastric, and prostate cancers,
due to its regulation of genes involved in angiogenesis, metabolism, glucose transport, and
cell migration [66–70].

In neoplastic cells, the ErbB family of proteins and their signaling pathways are
frequently altered. This family consists of four receptor tyrosine kinases related to the
epidermal growth factor receptor (EGFR); the name of the family is derived from the
viral oncogene homologous to erythroblastic leukemia viral oncogene. In humans, this
family includes Human epidermal growth factor receptor 1 or Her 1 (EGFR, ErbB1), Her2
(ErbB2), Her3 (ErbB3), and Her4 (ErbB4) [71]. ErbB signaling influences cell proliferation,
migration, differentiation, apoptosis, and motility via the Phosphoinositide 3-kinase/serine
threonine-protein kinases (PI3K/Akt), the Janus kinase/signal transducer and activator
of transcription (JAK/STAT), and Mitogen-activated protein kinase (MAPK) pathways.
Aberrant signaling of ErbB family members is critical in tumorigenesis and immune evasion
in various malignancies. Excessive ErbB signaling is linked to the development of numerous
solid tumors, and direct alterations in these receptor-dependent pathways are associated
with cancer progression [72].

The PI3K/AKT pathway is pivotal for cell survival, proliferation, and protein biosyn-
thesis. Phosphoinositide 3-kinase (PI3K) is a family of lipid kinase enzymes that phos-
phorylate the 3’-OH group of phosphatidylinositols (PtdIns) in the plasma membrane
(Class I) or intracellular membranes for vesicular trafficking regulation (Classes II and III).
These proteins are biologically significant as their activation influences cellular processes
such as growth, survival, metabolism, inflammation, motility, proliferation, and therapy
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resistance [73]. Class I PI3K and its downstream effector AKT/PKB are activated by extra-
cellular growth factors like epidermal growth factor (EGF), platelet-derived growth factor
(PDGF), or insulin, triggering a phosphorylation cascade that culminates in the activation
of the mammalian target of rapamycin (mTOR) kinase and the Ras/MAPK pathway. Ras
proteins, from the acronym Rat sarcoma virus, are located in the plasma membrane of cells
and act as molecular switches that send signals to activate cell growth. The Ras family
is a protein superfamily of small GTPases. Members of the superfamily are divided into
families and subfamilies based on their structure, sequence, and function. The five main
families are Ras, Ras homologous (Rho), Ras-related nuclear protein (Ran), Ras-related in
brain (Rab), and ADP-ribosylation factor (Arf) GTPases. The activation of the PI3K/AKT
pathway is widely associated with carcinogenesis and is frequently observed in various
human cancers [74–77]. High levels of ROS can oxidize and inactivate the phosphatase
and tensin homolog (PTEN), promoting PI3K/AKT pathway activation [54]. PTEN acts
as a phosphatase to dephosphorylate PtdIns, counteracting PI3Ks by specifically catalyz-
ing the dephosphorylation of the 3phosphate of the inositol ring at phosphatidylinositol
3,4,5-trisphosphate (PIP3) to produce phosphatidylinositol 3,4-bisphosphate (PIP2). This
dephosphorylation is crucial because it inhibits the Akt signaling pathway; thus, sustained
PTEN inactivation leads to excessive PI3K/AKT pathway activation [78]. The PTEN phos-
phatase is encoded by the PTEN tumor suppressor gene, and mutations or deletions of this
gene contribute to constitutive PI3K/AKT signaling, facilitating the development of cancers
such as glioblastoma, lung cancer, breast cancer, and prostate cancer [79–83]. Clinical trials
are currently investigating PI3K/AKT pathway inhibition for treating pancreatic, lung,
ovarian, breast, melanoma, and hematological malignancies [54].

Mitogen-activated protein kinases (MAPKs) are a group of enzymes that phosphory-
late various cellular proteins, including transcription factors, nuclear proteins, membrane
transporters, cytoskeletal elements, and other kinases, upon activation. This phosphoryla-
tion regulates crucial cellular processes, such as proliferation, migration, differentiation,
senescence, and cell death. MAPKs are activated by extracellular signals like growth fac-
tors (EGF, PDGF, insulin), cytokines, and intracellular stressors. Key MAPK subfamilies,
such as ERK1/2, Jun N-terminal kinase (JNK), and p38, respond to different stimuli. The
Ras/Raf/MEK/ERK1/2 pathway is notably relevant in cancer, often altered by excessive
growth factors, hormonal signaling, or oncogenic mutations, leading to abnormal mitogenic
signaling, increased proliferation, and apoptosis resistance. Raf is an acronym for Rapidly
Accelerated Fibrosarcoma and is the best characterized Ras effector and a member of a
family of serine/threonine kinases. Mutations in Ras family genes, found in about 30%
of human cancers, activate proteins like PI3K, Rac, and Rho, which influence cytoskeletal
dynamics and cell invasiveness. Rac-GTPase represents a subfamily of the Rho family.
Specific small molecule inhibitors targeting the Ras/MAPK pathway are under clinical
trials, including those for the KRAS-G12C mutation, with promising clinical outcomes
anticipated. The Ras/MAPK pathway activation is intricately regulated and closely linked
to ROS production. ROS can directly activate MAPKs without external stimuli like EGF,
and antioxidant inhibition has been shown to prevent this activation in various experimen-
tal setups. Ras-mediated transformation involves NADPH oxidase 1 (NOX1) activation
via the Ras-Rac1-NOX1 pathway. Key redox sensors in the MAPK cascade include TRX
and apoptosis signal-regulating kinase 1 (ASK1). TRX inhibits ASK1 when reduced, but
ROS-induced oxidation releases ASK1, activating JNK and p38 signaling, which affects
cell proliferation, differentiation, apoptosis, inflammation, and stress response. Addition-
ally, ROS can activate ERK signaling, potentially through the upstream activation of the
EGF receptor (EGFR). This process involves NOX-mediated H2O2 generation and SHP-2
phosphatase inactivation, sustaining EGFR activation and promoting cell signaling via
the Ras-Raf-MEK-ERK pathway, impacting cell proliferation and differentiation. MAPK
activation is also linked to mitochondrial changes, including increased mitochondrial ROS
production. Mutations in Ras or ERK2 activation can induce mitochondrial fission and



Int. J. Mol. Sci. 2024, 25, 7631 11 of 26

increase mitochondrial mass, affecting ATP production and contributing to cancerous traits
in cells with Ras mutations [54].

The intracellular JAK/STAT pathway and modification of histone marks on nucle-
osomes regulate the expression of proinflammatory mediators, playing a crucial role in
carcinogenesis [84]. The activation of the JAK/STAT pathway occurs in response to various
hormones (prolactin, growth hormone, leptin, and erythropoietin), cytokines, and growth
factors through their respective receptors. This signaling pathway regulates cell prolif-
eration, differentiation, survival, motility, and apoptosis in different tissues [85]. STATs
are latent cytoplasmic transcription factors activated by phosphorylation through Janus
kinase (JAK). The JAK family includes JAK1-3 and tyrosine kinase 2 (TYK2), which interact
non-covalently with membrane receptor domains or intracellular portions of growth factor
receptors. Upon cytokine binding, JAKs phosphorylate tyrosine residues to transmit sig-
nals from membrane-bound receptors. Phosphorylated STAT molecules then dimerize and
translocate to the nucleus, initiating gene transcription that regulates cell cycle progression,
apoptosis initiation, and occurrence. These processes are vital for cellular homeostasis, and
disruptions in this pathway contribute to cancer progression, inflammatory diseases, and
autoimmune disorders. STAT family proteins are implicated in creating and sustaining a
procarcinogenic inflammatory microenvironment, initiating malignant transformation, and
promoting cancer progression. Inflammation plays a critical role in tumor initiation and
progression, both as an initiator of oncogenic transformations and as a promoter through
genetic and epigenetic alterations that foster an inflammatory microenvironment conducive
to tumor growth. Additionally, immune responses and inflammatory mediators mediated
by STAT3, STAT5, and STAT6 suppress antitumor immunity, further contributing to car-
cinogenesis. Given the JAK-STAT pathway’s role in regulating cell cycle and apoptosis
effector molecules, it is evident that this pathway promotes carcinogenesis by enhancing
proliferation and modulating programmed cell death [84].

In human cancer, the TP53 tumor suppressor gene, situated on chromosome 17, is the
most frequently mutated. It encodes p53, a transcription factor binding to specific DNA
sequences within the genome, activating adjacent genes and those controlled by enhancers
with p53 binding sites. Additionally, p53 can repress the transcription of numerous genes,
typically through indirect mechanisms [86]. The primary biological role of p53 is well-
understood: it induces cell cycle arrest, senescence, or apoptosis in response to DNA
damage, thereby preventing the accumulation of oncogenic mutations, earning it the
nickname “guardian of the genome”. Moreover, p53 participates in other cellular processes
like autophagy, metabolism, and cellular plasticity [87]. It enhances glutamine catabolism,
supports antioxidant activity, reduces lipid synthesis, promotes fatty acid oxidation, and
stimulates gluconeogenesis. Under normal conditions in unstressed cells, p53 levels remain
low due to continuous proteasomal degradation mediated by the Mouse double minute
2 homolog (MDM2), an E3 ubiquitin ligase, and the principal inhibitor of p53, along
with COP1 and p53-induced RING-H2 protein (Pirh2). Additionally, transformed mouse
3T3 cell double minute 4 (MDM4), formally named MDMX, restricts p53’s biochemical
activity as a transcription factor, serving as a physiological inhibitor [86]. At basal levels,
p53 maintains the transcription of several antioxidant genes (SESN1/2, GPX1, and AIF).
However, during stress conditions, p53 accumulates in the cytoplasm and induces the
expression of NQO1 and proline oxidase (POX), enzymes that generate ROS, alongside
Bcl2-associated X, apoptosis regulator (Bax), and p53-upregulated modulator of apoptosis
(PUMA), which promote mitochondrial uncoupling and ROS production, culminating
in oxidative stress and apoptosis. Bax and Bcl-2 homologous antagonist/killer (Bak) are
members of the Bcl-2 family and core regulators of the intrinsic pathway of apoptosis.
Upon apoptotic stimuli, they are activated and oligomerized at the mitochondrial outer
membrane (MOM) to mediate its permeabilization, which is considered a key step in
apoptosis. PUMA is a proapoptotic homolog domain-3-only member of the Bcl-2 protein
family, which has been demonstrated to be critical for some cells’ apoptosis induced by
ER stress. A crucial target of p53 involved in ROS metabolism and regulation is the TP-
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53-induced regulator of apoptosis and glycolysis (TIGAR), which inhibits glycolysis and
enhances glucose flux into the pentose phosphate pathway, a major source of NADPH
utilized in reducing GSH. Conversely, p53 mutations in cancer cells impair mitochondrial
respiration and elevate glycolysis [54].

In summary, multiple pathways and factors contribute to the emergence and progres-
sion of various cancers. Investigating the dysregulation of intracellular pathways in cancer
and exploring molecules capable of restoring these pathways are crucial endeavors.

7. Anti-Inflammatory Activity of Caffeic Acid against Cancer

As mentioned in the previous section, chronic inflammation has been linked to the
initiation and progression of cancer [88–90]. ROS and RNS, generated during inflammation,
can inflict DNA damage, potentially leading to mutations that contribute to the maintenance
of tumors [91,92]. Chronic inflammation often triggers cellular proliferation as part of tissue
repair mechanisms, inadvertently creating conditions favorable for the expansion of cells
with damaged DNA or mutations, thus heightening cancer risk. Moreover, inflammation
has been implicated in cancer progression by promoting the production of inflammatory
cytokines that support cell proliferation, inhibit apoptosis, stimulate tumor angiogenesis
and vascularization, and facilitate tumor invasion and metastasis.

NF-κB is a crucial protein complex responsible for controlling DNA transcription,
cytokine synthesis, and cell viability. The dysregulation of NF-κB is associated with
immune response irregularities and cancer advancement, making it a significant factor in
tumor biology. It influences pathways like JNK/p38 MAPK and positively regulates c-Myc,
thus playing a role in various reported neoplasms. Consequently, the inhibition of NF-κB
holds promise as a target for cancer therapy development [93]. In this context, CA has
shown the capability to regulate this pathway, thereby disrupting cancer cell proliferation,
viability, and invasion in endothelial cells, triggered by lipopolysaccharide (LPS), as well as
in mammary epithelial cells [94,95]. Consequently, CA modulation of cytokines may affect
the production and function of various inflammatory cytokines, including tumor necrosis
factor-alpha (TNF-α) [96] and interleukins IL-1β, IL-6, and IL-8 [97–100].

CA has been discovered to impede Cyclooxygenase-2 (COX-2), an enzyme pivotal
in the inflammatory cascade. Elevated COX-2 expression is evident during prolonged
inflammation, where it can foster the onset and progression of chronic ailments, such as
cancer. Studies suggest that CA, at concentrations ranging from 50 to 10 µM, effectively
suppresses COX-2 and its byproduct, prostaglandin E2 (PGE2), in human colon myofi-
broblast cells (CCD-18Co) [99]. Consequently, CA also hampers the enzyme Nitric Oxide
Synthase (iNOS), curtailing nitric oxide (NO) production, which may aid in inhibiting
tumor angiogenesis [101].

Inflammation induces the secretion of molecules like VEGF, which stimulates the
development of new blood vessels that are crucial for supplying oxygen and nutrients to
tumors. The activity of VEGF is amplified by HIF-1α and STAT3. In a Caki-I carcinoma
animal model, CA was observed to suppress STAT3 phosphorylation, thus diminishing its
function and consequently impeding HIF-1α, resulting in reduced tumor vascularization
and VEGF gene expression [16]. In retinal endothelial cells, CA demonstrated potent anti-
angiogenic effects, mitigating vaso-proliferative retinopathies associated with ROS-induced
VEGF [102]. In hepatocellular carcinoma cells (HCC), CA curbed VEGF and vascularization
induced by CoCl2, accomplishing this through the stabilization of STAT3/JNK1/HIF-
1α [103]. Guo et al. discovered that CA serves as a potent inhibitor of prolyl hydroxylase-2
(PHD2), an enzyme responsible for HIF hydroxylation and degradation. In neuronal cells
such as PC12 and SH-SY5Y, CA attenuated cell apoptosis induced by hypoxia. Furthermore,
in mice, CA administration decreased injury markers such as lactate dehydrogenase,
malondialdehyde, and lactic acid [104].

Another process associated with inflammation in cancer is the production of enzymes
such as metalloproteinases (MMPs), which play a role in breaking down the extracellular
matrix of cells. MMP-2 and MMP-9 can degrade these barriers, facilitating the invasion of
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cancer cells into nearby tissues and their spread to distant areas. Through computational
studies, CA has been identified as an inhibitor of MMP-9 and dipeptidyl peptidase-4
(DPP-4) enzymes, with respective IC50 values of 158.19 and 88.99 µM [105]. Chung et al.
explored the enzymatic inhibitory effects of CA extracted from Euonymus alatus and its
synthetic derivative caffeic acid phenethyl ester (CAPE) in animal experiments using rats.
The animals were administered CA and CAPE at doses of 5 mg/kg subcutaneously or
20 mg/kg orally. Both compounds exhibited the inhibition of MMP-2 and -9, with no effect
on MMP-1, -3, and -7. Moreover, in xenograft models, CA and CAPE hindered the growth
of HepG2 tumors and liver metastasis by suppressing MMP-9 activity and decreasing
NF-κB expression [106]. These multifaceted mechanisms orchestrated by CA in cancer
progression are depicted in Figure 5.
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8. Caffeic Acid Properties against Cancer

Apoptosis, a regulated cell death mechanism, serves to eliminate damaged or un-
necessary cells. CA has demonstrated the ability to trigger apoptosis in cancer cells by
influencing the mitochondrial pathway. This is accomplished by the inhibition of the Bcl-2
family of proteins, leading to an increase in pro-apoptotic members (such as Bax and Bak)
and a decrease in anti-apoptotic ones (such as Bcl-2 and Bcl-xL) [107]. This action can result
in the release of cytochrome c from the mitochondria into the cytosol, initiating the activa-
tion of caspases—protease enzymes crucial for programmed cell death [108]. Specifically,
CA at a concentration of 10 µg/mL can activate both initiator caspases (like caspase-9)
and executioner caspases (such as caspase-3 and caspase-7), leading to the breakdown of
cellular components necessary for apoptosis (Figure 4) [109]. Furthermore, CA has been
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found to induce the expression of p53, a tumor suppressor protein pivotal in preventing
cancer development [110]. The activation of p53 can result in cell cycle arrest and apoptosis.

In general, it has been shown that CA is a potent modulator of apoptosis and au-
tophagy in cancer cells, thus affecting their proliferation and survival, including in car-
cinoma cells in the head and neck [111] and MCF-7 [112], multiple myeloma (MM.1R,
RPMI8226, and U266) [113], leukemia (K562) [114], and osteosarcoma cells (MG-63) [115].
In human melanoma SK-Mel-28 cells, the administration of CA (0–200 µM) induces apop-
tosis and cell cycle arrest by increasing the expression profile of caspase 1 and caspase
3 [116]. Moreover, CA (200–800 µM) has been shown to promote Ca2+ accumulation in
cells in a concentration-dependent manner, an effect that is closely related to apoptosis. CA
releases Ca2+ from the endoplasmic reticulum by inducing protein phospholipase C and
then induces apoptosis in SCM1 gastric cancer cells [117]. In vivo, the effect of novel caffeic
acids conjugated with silver nanoparticles with and without gamma radiation exposure
has been found to be effective against experimentally induced Ehrlich tumors, resulting in
growth inhibition in solid tumor cells, whose underlying mechanism involves an apoptotic
effect [118].

The impact of CA on mitochondria has been explored, particularly in breast cancer
cells like MCF-7 and MDA-MB-468 cell lines. Treatment with CA at a concentration of
20 µM disrupts mitochondrial function, which leads to several effects: increased Caspase-9 ac-
tivity, elevated levels of ROS, and a decrease in membrane potential (∆ψm) [119]. Additionally,
it has been suggested that CA may specifically influence protein kinase C delta (PKCδ), a pro-
tein that is involved in apoptosis and affects mitochondria by reducing ∆Ψm. Consequently,
CA promotes apoptosis in MG-63 osteosarcoma cells by inducing the translocation of PKCδ
to mitochondria and reducing ∆Ψm, resulting in mitochondrial membrane potential (MMP)
alterations [115]. Additionally, an antioxidant derived from CA, known as AntiOxCIN6, has
been developed. This compound is formed by linking the antioxidant core to the lipophilic
TPP+ via a 10-carbon aliphatic chain. Interestingly, AntiOxCIN6 has demonstrated the po-
tential to indirectly induce apoptosis. Despite increasing the antioxidant defense system, this
complex is inefficient in eliminating ROS. Consequently, it affects mitochondrial function by
impairing its ATP production capacity. Although this impairment does not directly affect cell
viability, it sensitizes A549 adenocarcinoma cells to apoptotic death induced by cisplatin [120].
A summary of both the anti-inflammatory and proapoptotic anticancer activity of CA can be
seen in the flowchart in Figure 6. Here, it is observed that CA affects signaling pathways that
result in cell death, decreased proliferation, and migration of cancer cells, as well as a decrease
in angiogenesis processes.

Regarding the modulation of CA in oncogenic signaling pathways in cancer, it has
been reported that the administration of CA (100 µM) alone or in combination with met-
formin (10 mM) is efficient in stimulating the AMPK signaling pathway, which acts by
preventing de novo synthesis of unsaturated fatty acids, consequently reducing cancer
cell survival [121]. AMP-activated protein kinase (AMPK) is a vital enzyme in regulating
cellular metabolism and maintaining energy balance. It also plays a significant role in tumor
progression by influencing the expression of genes associated with invasion, metastasis,
and angiogenesis. Consequently, activators of AMPK hold promise for exerting antitumor
effects by augmenting sensitivity to chemotherapy and radiotherapy while mitigating
metastasis [122]. CA has also been found to disrupt the PI3K/Akt signaling pathway, both
in laboratory studies and in living organisms. This interference shows promise in inhibiting
the proliferation and self-renewal ability of cancer stem cells (CSCs). Such effects have
been investigated in CSC populations derived from the human colon adenocarcinoma
cell line HCT116 [121,123]. In melanoma, TGFβ is one of the key signaling pathways in
progression because, in some circumstances, it can provide the ideal microenvironment for
tumor development. In this sense, a study showed that CA (1 mmol/L), together with a
moderately potent SMF (0.7 T), decreased the expression of TGFβ, which could support
anticancer therapy [124]. Conversely, tissue transglutaminase type 2 (TG2) is an enzyme
involved in apoptosis, wherein its activity, among other roles, stimulates caspase activation,
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a process often induced by oxidative stress. In this context, a study conducted by Feriotto
et al. revealed that CA effectively stimulates the activation pathways of TG2. This was
shown by the antiproliferative impact observed in the K562 cell line (chronic myeloid
leukemia), which correlated with TG2 activity. Such activation of TG2 contributed to the
elevation of ROS levels, consequently leading to cell death [114].
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In hepatocellular carcinoma (HCC), CA inhibits the activity of GRP75 (75 KDa Glucose-
Regulated Protein) induced by low doses of the carcinogen Benzo(a)pyrene (B[a]P) through
both transcriptional and post-transcriptional modifications. This inhibition is closely linked
to CA’s role as an inhibitor of NF-κB, which serves as an upstream transcriptional regulator
of GRP75. Additionally, CA induces the cleavage of the GRP75–p53 complex, leading to the
nuclear translocation and activation of p53. This promotes the induction or maintenance of
anti-apoptotic capacity and multidrug resistance (MDR) characteristics in HCC. Given its
pivotal role, GRP75 is implicated in the onset and progression of cancer [125].

9. Caffeic Acid as an Adjuvant for Chemotherapy

Drug resistance represents a significant obstacle to the success of chemotherapy in
treating many types of human tumors, and the extent of its effect varies depending on
factors such as the cancer type, the specific drug used, and patient-related factors [126].
One mechanism through which cancer cells develop resistance to chemotherapy involves
the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp), which diminishes
the intracellular concentration of chemotherapeutic drugs. CA has demonstrated the ability
to regulate the activity of these pumps, potentially mitigating drug efflux and enhancing
the retention of chemotherapeutic agents within cells, thus improving the effectiveness
of cancer treatments. Research conducted by Teng et al. investigated the impact of CA
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on P-gp both in vitro and in silico. Their findings revealed that the combination of CA
with chemotherapeutic agents like doxorubicin reduced the activity of P-gp, as indicated
by lower IC50 values in resistant cancer cells. Additionally, CA inhibited the efflux of
rhodamine 123. In silico analysis suggested that CA binds to P-gp through polar interactions
with specific residues, including Glu74 and Tyr117 [127]. A search and compilation of
studies where CA was tested as a coadjuvant for the treatment of various types of cancer
are presented below, divided into in vitro trials, in vivo trials, and clinical trials.

9.1. In Vitro and In Vivo Trials

CA exhibits adjuvant effects, enhancing the apoptotic response when combined with
cisplatin in various cancer cell lines such as Lacks’ cervical cancer cells (HeLa), cervi-
cal cancer (CaSki), non-small cell lung cancer cell (A549), and hepatoblastoma cell line
(HEPG2) [128,129]. Additionally, Sirota et al. demonstrated that the combined treat-
ment with cisplatin (5 µM) and CA (10 µM) restored the chemo-sensitizing effect against
cisplatin-resistant ovarian endometrioid adenocarcinoma cells (A2780). This combined
treatment resulted in a reduction of cell viability comparable to that achieved in sensitive
cells treated solely with cisplatin at the same concentration. However, it was noted that pre-
incubation with CA before cisplatin treatment could induce resistance by activating Nrf2.
This highlights the importance of cautious examination when using CA as an adjuvant
to cisplatin [130]. On another note, the cocrystallization of CA with 5-fluorouracil (5-FU)
has been found to enhance the physicochemical properties of 5-FU, such as solubility and
tissue permeability. This synergistic interaction leads to an improved anticancer activity of
5-FU, as indicated by a combination index (CI) of less than 1 [131]. Table 3 summarizes the
results of in vitro and in vivo co-treatments using CA against cancer cells.

In a recent study examining the impact of caffeic acid on lung cancer cells, it was
observed that CA effectively inhibits proliferation, migration, and apoptosis by targeting
the TMEM16A protein, which is a calcium-activated chloride channel. The inhibitory
concentration (IC50) of CA for TMEM16A was determined to be 29.47 ± 3.19 µM. Further
animal studies corroborated these findings, demonstrating a significant reduction in tumor
size. Notably, when combined with 5.4 mg/kg caffeic acid and hydroxydaunorubicin
(DOX) at a dosage of 4.1 mg/kg, the treatment resulted in an 85.6% reduction in tumor size
and minimized adverse effects. In conclusion, the combined therapy of caffeic acid and
DOX proved more effective in inhibiting lung cancer cell growth compared to either drug
administered alone, even at higher doses [132].

In addition to the re-sensitization of cancer cells, a protective effect of CA towards
other organs has also been seen during the use of chemotherapeutics. For example, the
effect of CA encapsulated in a nanoemulsion on the reduction of nephrotoxicity towards
non-cancerous cells of the HEK 293 renal line was evaluated, showing an improvement in
cell viability in renal cells from 33% to more than 95% during treatment with cisplatin [129].
This finding and similar results are also summarized in Table 3.

Table 3. Synergetic effect of CA in cancer cells.

Aim Cancer Type: Model Treatment Conditions Finding Reference

To assess the efficacy of
cisplatin + CA
treatment in human cervical
cancer

• In vitro:
human cervical cancer cell
lines: HeLa, SiHa, CaSki
(HPV-positive), and C33A
(HPV-
negative) cells.

CA (300 µM) and
cisplatin (11 µM) for
24 h

The combination of cisplatin and CA
significantly inhibited cell growth of HeLa
and CaSki cell lines, with a combination
index < 1, indicating a synergistic effect.
The combination significantly increased
the expression of caspases 3, 7, and 9,
demonstrating apoptosis.

[128]

To assess the efficacy of the
combined treatment with
cisplatin + CA against ovarian
carcinoma

• In vitro:
ovarian carcinoma cells A2780
and ovarian carcinoma-
resistant A2780cisR cells.

CA (10 µM) and
cisplatin (5 µM) for
24 h

The combined therapy restores the
sensitivity of resistant cells to
cisplatin, achieving a similar level of cell
viability as that observed in sensitive cells
(60% viability). When the cisplatin/caffeic
acid ratio was increased to 1:10 (5:50 µM),
the caspase activity rose significantly by
4.3-fold.

[130]
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Table 3. Cont.

Aim Cancer Type: Model Treatment Conditions Finding Reference

To evaluate the effects of
metformin (Met) and CA on
metastatic human cervical
cancer

• In vitro:
metastatic human
cervical HTB-34 cell line.

CA (100 µM) and Met
(10 mM) for 24 h

CA (100 µM) and Met (10 mM)
activated AMPK. CA increased
oxidative stress, affecting
bioenergetics pathways and
making HTB-34 cells more sensitive to
Met. CA and Met suppressed
HTB-34 cells by different
mechanisms.

[133]

To determine the
efficacy and underlying
mechanisms of CA in
combination with paclitaxel
for the
treatment in human non-small
cell lung carcinoma (NSCLC)

• In vitro:
human non-small cell lung
carcinoma H1299 cells.
• In vivo:
mouse xenograft model by
subcutaneous
injections of H1299 cells.

In vitro: 100 µM CA + 10 µM
of paclitaxel for 24 h
In vivo: 20 mg/kg CA and
10 mg/kg
paclitaxelad
ministered
concomitantly for three weeks.

In vitro, combination treatment decreased
the proliferation of NSCLC H1299 cells by
the MAPK pathway. CA induced sub-G1
cell cycle arrest in H1299 cells.
In vivo, the combined treatment with CA
and paclitaxel exerted a more effective
suppressive effect on tumor growth in
H1299 xenografts without causing
significant adverse effects.

[134]

To evaluate the
synergistic antitumor activity
and the
physicochemical and
pharmacokinetic
properties of caffeic
acid/5-FU-cocrystal in vitro
and in vivo.

• In vitro:
human colon cancer HCT-116,
breast cancer
MDA-MB-231, and lung
cancer A549 cell lines
• In vivo:
Sprague Dawley rats

In vitro: HCT-116;
MDA-MB-231 (15.19 µM); and
A549 (11.57 µM) of caffeic
acid/5-FU cocrystal for 48 h.
In vivo: oral dose of
50 mg kg−1.

In vitro: Cocrystallization of CA + 5-FU
optimized the physicochemical properties
of 5-FU and exerted a
synergistic antitumor effect (CI < 1), thus
enhancing the anticancer
activity of 5-FU.
In vivo: The aqueous solubility and
permeability of 5-FU in the
cocrystal increased by 1.92 and
4.22-fold, respectively, compared to the
original drug 5-FU.

[131]

To evaluate the effects of CA
and imatinib (IM) and their
synergistic
effects on chronic
myeloid leukemia model

• In vitro:
human myelogenous
leukemia cell line K562 and
(IM)-resistant cells.

Synergistic effects of CA (up
to 38 µM) and IM (up to
0.15 µM) on K562 cells.

CA induced apoptosis in IM-resistant cells
and reduced their proliferation.
Combination treatment with CA and IM
showed synergistic effects, increasing the
antiproliferative activity.

[114]

To assess the activity of
Pancreatic Ductal
Adenocarcinoma (PDAC) by
treatment with CA,
gemcitabine (Gem), and
doxorubicin (DOX)

• In vitro:
Human epithelioid carcinoma
attached cell lines Panc-1 and
Mia-PaCa-2. Both have
increased potential of
migration and
invasion, as well as Gem
resistance

Cytotoxic analysis of CA was
measured at 24 and 48 h in
combination with Gem and
DOX.

CA showed cytotoxic concentrations (IC50)
of 37.37 µM and 15.06 µM against Panc-1
and Mia-PaCa-2,
respectively. Cotreatment with a
combination of CA and Gem or DOX did
not show synergic activity; in contrast, it
showed antagonism, suggesting that CA
could display interactions with Gem or
DOX.

[135]

To study the effect of CA and
DOX on lung cancer

• In vitro:
mouse pulmonary
system
adenocarcinoma LA795 cell
line
• In vivo:
Balb/c mice and
Sprague Dawley (SD) rats

In vitro: Not specified
In vivo: CA (5.4 mg/kg bw) +
DOX (4.1 mg/kg bw)

In vitro: CA inhibited TMEM16A with an
IC50 of 29.47 ± 3.19 µM.
CA regulated the proliferation,
migration, and apoptosis of lung cancer
cells targeting TMEM16A (binding sites:
D439, E448, and R753).
CA regulated the growth of lung cancer
through the MAPK
pathway.
CA + DOX inhibited lung cancer cell
growth more than a double dose of either
one.
In vivo: CA + DOX achieved a
tumor suppression rate of 85.6% and
compensated for side effects.

[132]

To evaluate the effects of
tocotrienols and CA
encapsulated in a
nanoemulsion with cisplatin
on lung and liver cancer

• In vivo:
human lung cancer cell A549
and liver HEP G2 cancer cells.

Not specified

TRF, CA, and CIS synergistically enhanced
late-phase apoptosis and improved cell
cycle arrest in the G0/G1 phase.
ROS generation was enhanced
using TRF:CA:CIS by 16.9% and 30.2% for
A549 and HEP G2,
respectively.

[129]

To evaluate the
oxidative stress
induced by multi-walled
carbon
nanotube (MWCNT)
treatment on islets and
β-cells.

• In vivo:
islets and β-cells

CA significantly reduced ROS
production after MWCNT
treatment and increased insulin
secretion together with the
enzymes SOD, GSH-Px, CAT, and GSH,
but it decreased the level of MDA.

[136]
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Table 3. Cont.

Aim Cancer Type: Model Treatment Conditions Finding Reference

To evaluate the effect of CA
encapsulated in a
nanoemulsion on the
reduction of
nephrotoxicity effects

• In vitro:
non-cancer cells of the HEK
293 kidney line

CA (0.08–1.75 µM) + CIS
0.03 µM

Improved cell viability in kidney cells
from 33% to over 95%. [129]

To evaluate delivery systems
with CA for the treatment of
breast cancer, loaded on
oxidant carbon
nanotube (OCNT) and/or
chitosan (CS).

• In vitro:
human breast cancer
MDA-MB-231 cell line

CA (100 µg/mL);
oxidant carbon
nanotube (OCNT)/CA
(80 µg/mL); and chitosan
(CS)/OCNT/CA (30 µg/mL)

The delivery system based on
CS/OCNT/CA showed a higher cytotoxic
effect on MDA-MB-231 compared to
OCNT/CA and CA alone through
apoptosis.

[137]

9.2. Clinical Trials

To assess the efficacy of CA in cancer therapy, we searched the clinical trial database
clinicaltrials.gov using the keyword “caffeic acid”. One trial with the code NCT02050334,
titled “CC100: Safety and Tolerability of Single Doses”, involved 18 participants aged 18 to
65. They were administered CA at a maximum concentration of 24 mg/kg. The findings
indicated that CA did not lead to severe adverse effects; the main reported adverse effects
were back pain and headache. However, the trial outcomes have not been published.

The effectiveness and safety of CA were assessed in 103 patients with primary immune
thrombocytopenia (ITP), with a median age of 48 years. They received an oral regimen of
CA tablets at a dose of 300 mg three times per day for 12 weeks. The results demonstrated
that CA treatment was effective, with minimal adverse effects, including mild nausea in
one case and elevated liver enzymes in another [138]. Furthermore, a meta-analysis involv-
ing 2533 patients indicated that CA is statistically effective in treating ITP, leading to an
increase in platelet counts (standardized mean difference [SMD] = 1.50, 95% CI [1.09, 1.91],
p < 0.00001), with few adverse effects (relative risk ratio [RR] = 1.24, 95% CI [1.17, 1.31],
p < 0.00001) [139]. However, other clinical trials, such as NCT04648917 (GASC1 Inhibitor
Caffeic Acid for Squamous Esophageal Cell Cancer [ESCC]), NCT03070262 (The Efficacy
and Safety of Caffeic Acid for Esophageal Cancer), and NCT02351622 (Caffeic Acid Tablets
as a Second-line Therapy for ITP), have not published their results yet.

10. Radioprotective Potential of Caffeic Acid in Chemotherapy

Radiotherapy, a potent cytotoxic treatment, is widely utilized for localized solid tu-
mors, either alone or in conjunction with chemotherapy [140,141]. However, despite its
efficacy, it also damages normal cells due to the minimal distinction between cancerous
and healthy cells, particularly affecting skin cells, leading to adverse effects such as der-
matological conditions and potential cancer development [142]. Notably, nearly 95% of
patients undergoing radiotherapy experience symptoms like pain, redness, or ulcers [143];
for instance, pelvic cancer treatment often results in damage to testicular tissue or neu-
ropathy [144,145]. Advanced techniques like intensity-modulated radiotherapy aim to
mitigate these toxicities [141]. Nonetheless, akin to chemotherapy, radiotherapy poses
significant side effects that can substantially impact the quality of life of patients and
treatment adherence [146,147]. Table 4 outlines the protective effects of CA in conjunction
with radiotherapy.

clinicaltrials.gov
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Table 4. Protective activity of CA in radiotherapy treatment.

Aim Model Treatment Conditions Finding Reference

To investigate the
radioprotective
potential of CA against γ
radiation-induced cellular
changes

In vitro:
human peripheral blood
lymphocytes

CA 66 µM for 30 min
before γ radiation (1, 2, 3 y,
and 4 Gy)

Pre-treatment with CA before γ
radiation treatment showed
significant cell protection (around
80–85%). Overall, CA protects
lymphocytes by decreasing (p < 0.01)
DNA damage in micronucleus
frequencies (MNs) by comet assay,
decreasing the level of lipid
peroxidation index by TBARS, and
improving the antioxidant activity by
increasing GSH, SOD, CAT, and GPx
levels.

[148]

To investigate the
protective role of CA in
human epidermal
keratinocytes and
carcinogenesis
induced by cancer
treatments with
ionizing radiation (γ or
X-rays)

In vitro:
human epidermal
keratinocyte line HaCaT
cells

0.1 µg/mL of CA for
24 h prior to γ radiation at
4 Gy (1 Gy/min) for
10 min.

Pre-treatment with CA increased the
cell survival significantly (p < 0.05)
by about 40% at 8 Gy level and
reduced ROS production by 38%
(p < 0.05), which was induced
radiation.
CA pre-treatment considerably
reduced the number of foci of DNA
strand breaks
at each time point
compared to the control.

[149]

To assess the activity of
zinc oxide–caffeic acid
nanoparticles (ZnO-CA
NPs) against cancer cell
lines and evaluated on
Ehrlich carcinoma treated
with γ radiation.

In vitro:
human breast cancer
MCF-7 cell line and
human liver cancer cell
line HepG2
In vivo:
Ehrlich
carcinoma
bearing mice (EC mice)

In vitro: Not specified.
In vivo: Animals were
treated with γ
radiation at a dose rate of
0.45 Gy/min in a
treatment of
2 Gy/week for
3 successive doses.
Animals were injected IP
with ZnO-CA NPs
(5 mg/100 g) in different
experiments.

In vitro: ZnO-CA NPs showed
antiproliferative activity against
cancer cell lines. The IC50 values of
ZnO-CA NPs were 9.22 and
11.53 µg/mL for MCF7 and HepG2,
respectively.
In vivo: ZnO-CA NPs increased the
antitumor activity in mice treated
with γ radiation. The LD50 for
ZnO-CA NPs was determined in
50.0 mg/100 g bw.
The tumor weight decreased from
56.1% (ZnO-CA NPs) to 71.9% in
the combination treatment with γ
radiation after 4 weeks compared to
untreated solid EC tumor.

[150]

11. Conclusions

Further research is necessary to comprehensively ascertain the viability of CA as an
anticancer treatment. However, preliminary clinical evidence suggests promising bene-
fits. Studies conducted on cells and animals indicate that CA enhances the efficacy of
chemotherapy and radiotherapy, potentially mitigating their adverse effects and improving
patient outcomes with minimal side effects. This study has some limitations, including a
lack of evidence for certain cancer types and omissions in many studies regarding whether
the models are drug-resistant or simply aim to potentiate the action in non-resistant cancer
cells. Additionally, in vivo testing is limited by small sample sizes, which may restrict the
generalizability of the results. Cancer heterogeneity presents another significant limitation.
Within a single tumor, cancer cells can vary significantly in differentiation, proliferation rate,
metastatic capacity, and therapy susceptibility. This diversity can lead to subpopulations of
cells responding differently to specific treatments [151]. Consequently, in vitro models with
a single cell type or minimal heterogeneity make it difficult to predict how a tumor with
cells in varying degrees of neoplasia will behave. This variability implies that the adjuvant
action of CA may differ considerably from patient to patient, even within the same cancer
type. While a study may focus on a specific type, the results may not apply to other cases
of the same cancer due to biological and molecular differences.

Another interesting property to continue studying is the dual capacity of CA to act as
an antioxidant during carcinogenesis and as a pro-oxidant against cancer cells, promoting
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their apoptosis or sensitizing them to chemotherapeutic drugs. Future challenges include
exploring different administration methods for CA as an adjuvant in therapies to treat
different neoplasms. Some authors mention that CA’s chemical instability and limited
bioavailability restrict its therapeutic potential in vivo. Currently, new formulations are
being developed for CA administration in different pathologies, such as transferrin (Tf)-
modified nanoparticles (NPs) loaded with CA for Alzheimer’s disease (AD) [152], topical
cream with nanostructured lipid carriers (NLCs) loaded with CA for anti-inflammatory
action [153], and poloxamer 407 designed to improve the stability of caffeic acid in the
stomach [154]. Nonetheless, the utilization of CA in cancer therapy requires more extensive
investigation through clinical trials.
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