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Abstract: Telomeres are part of chromatin structures containing repeated DNA sequences, which
function as protective caps at the ends of chromosomes and prevent DNA degradation and recom-
bination, thus ensuring the integrity of the genome. While telomere length (TL) can be genetically
inherited, TL shortening has been associated with ageing and multiple xenobiotics and bioactive
substances. TL has been characterised as a reliable biomarker for the predisposition to developing
chronic pathologies and their progression. This narrative review aims to provide arguments in favour
of including TL measurements in a complex prognostic and diagnostic panel of chronic patholo-
gies and the importance of assessing the effect of different pharmacologically active molecules on
the biology of telomeres. Medicines used in the management of cardiovascular diseases, diabetes,
schizophrenia, hormone replacement therapy at menopause, danazol, melatonin, and probiotics have
been studied for their positive protective effects against TL shortening. All these classes of drugs are
analysed in the present review, with a particular focus on the molecular mechanisms involved.

Keywords: telomere length; ageing; pharmacotherapy; pharmacotherapy on telomeres; anti-senescence
drugs; drugs on telomere length; personalised therapy; novel biomarker

1. Introduction

Telomeres are specialised nucleoprotein structures located at the ends of linear chromo-
somes. Their main function is to inhibit the activation of the response to DNA damage [1].
Telomeres are chromatin structures containing repeated DNA sequences that function as
protective caps at the ends of chromosomes and prevent DNA degradation and recombina-
tion, thus ensuring the integrity of the genome [2].

Telomerase, which functions mainly as a reverse transcriptase capable of maintaining
TL, adds short repeat sequences to the ends of chromosomes, compensating for the inherent
loss of DNA in genome replication. The telomerase RNA component and the telomerase
reverse transcriptase (TERT) protein are the main components of telomerase. Addition-
ally, telomerase activity is regulated by multiple proteins that attach to one of the active
components [3]. As they shorten, telomeres no longer have the ability to attach enough
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telomere-capping proteins. This exposes the final portions of the DNA and triggers the
DNA denaturing response pathways, which, by inducing the cell cycle inhibitors p21 and
p16, block proliferation [4]. Figure 1 illustrates an overview of the factors that contribute to
TL shortening.
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While TL can be genetically inherited, TL maintenance has been associated with
multiple xenobiotics and bioactive substances. This can be attributed both to direct pro-
tection mechanisms against factors that contribute to oxidative stress, inflammation, and
mitochondrial dysfunction and to an effect on telomerase activity [5]. Telomere shorten-
ing is a characteristic feature of the physiological ageing process and is closely related to
other key aspects associated with ageing, including cellular senescence, stem cell deple-
tion, genome instability, disruption of epigenetic control, mitochondrial instability, and
inflammation [6,7].

TL has been characterised as a reliable biomarker for the predisposition to chronic
pathologies and their progression. These include cardiovascular diseases [8], metabolic
diseases [9], osteoporosis and osteoarthritis [10], neurodegenerative diseases [11], psy-
chiatric diseases [12], male or female infertility [13], and cancer [14]. Patients with non-
communicable chronic diseases require effective pharmacotherapy to obtain optimal clinical
results and improve their quality of life. Most of them present multiple comorbidities asso-
ciated with complex therapy regimens [15].

The evaluation of TL as a biomarker included in a complex prognostic and diagnostic
panel of chronic pathologies should be implemented, considering the patients’ medication.
Pharmacologically active substances can have a protective effect against the aberrant short-
ening of TL associated with chronic diseases, while other drugs can have an impact on
accelerating telomere erosion. This narrative review aims to analyse the molecular mecha-
nisms by which certain classes of drugs can inhibit TL shortening. Understanding these
aspects offers promising perspectives for improving the results of the pharmacotherapeutic
regimen and increasing health outcomes.
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2. Molecular Mechanisms of Ageing

Ageing is an inherent biological process characterised by the gradual decline of phys-
ical condition, leading to the impairment of several physiological functions [16]. This
process is both ubiquitous and unavoidable. Specific alterations are harmless, such as the
greying of hair, while others lead to a decrease in the functioning of the senses and the
ability to perform daily activities, as well as a greater vulnerability to sickness, weakness,
and disability [17].

Ageing is a result of the gradual reduction in the TL, programmed cell death, or the
development of cancerous cells in non-reproductive cells, which impacts the overall well-
being and duration of life of an individual. There is a correlation between shorter telomeres
and higher rates of illnesses and worse survival rates [18]. Cellular senescence, which
has significant impacts on the regulation of normal tissue balance and the development
of diseases, is another primary contributing component to the ageing process and the
onset of age-related ailments [19]. Senescence triggers initiate targeted modifications
in intracellular processes in order to establish a durable cessation of the cell cycle. The
initiation of this process occurs at the INK4A-ARF locus, which contains genes that suppress
tumours and is located in the chromosomal region 9p21. The expression of the gene at the
specific location is often suppressed by Polycomb Repressive Complexes 1 and 2 (PRC1
and 2). The breakdown of PRC1/2 leads to the activation of genes and the transcription
of two distinct proteins, including p16INK4A and p14ARF. These abnormalities are linked
to the development of cancer and activate oncogene-induced senescence as a preventive
measure [20].

Recent findings indicate that ageing is strongly linked to altered communication
between cells, damage to DNA, exhaustion of stem cells, depletion of nicotinamide adenine
dinucleotide levels, dysfunction of mitochondria, imbalance of protein levels, impaired
macro-autophagy, inflammation, disrupted nutrient sensing, and an imbalance in the
gut microbiota [21]. Moreover, the process of ageing is propelled at the cellular level
by stochastic molecular harm that gradually builds up over time. While cells do have
processes to repair or eliminate damage, their effectiveness is not perfect and decreases as
they age [22]. Epigenetic changes, including alterations to histone chromatin remodelling
and DNA methylation, gradually occur in the cells of ageing individuals. These changes
are linked to ageing characteristics and the onset of age-related disorders [23]. Given that
genomic mutations are irreversible, whereas epigenetic modifications can be reversed,
targeting the reversal of epigenetic modifications is a viable strategy for treating cells with
the goal of postponing ageing [24].

In contrast to the process of telomere shortening, which initiates cellular ageing, telom-
erase reverses this process by restoring missing DNA sequences throughout cell division,
thereby adding time to the molecular clock and increasing the cell’s lifespan [25]. Never-
theless, the quantity of telomerase decreases following each cell division [26]. Therefore,
modern medicine has been focusing on finding potent telomerase activators in order to
slow down the ageing process [27].

Besides telomerase activation, there exists an alternate method for lengthening telom-
eres known as ALT (alternative lengthening of telomeres). However, this process is only
found in aberrant settings, such as in cancer cells, immortalised cell lines, and mouse
cell deletion for the telomerase gene. Normal human lymphocytes are unable to utilise
ALT to preserve their telomeres [26,28]. Basically, ALT tumours maintain their ability to
divide indefinitely by lengthening their telomeres throughout the G2 and M stages of the
cell cycle using a specific break-induced replication pathway. This can clarify the reasons
behind therapeutic failures and resistance to anti-cancer therapy that is based on telomerase
suppression [29].

Degenerative pathologies facilitate the ageing process by inducing a progressive
accumulation of mutations, preventing cell division, and making cells more vulnerable
to apoptosis. Basically, human cells have the ability to divide a finite number of times
until they reach a state called senescence, when division is no longer possible [26]. Cellular
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senescence is triggered by internal and external stressors such as activation of oncogenes,
telomere dysfunction, and long-term DNA damage. The extrinsic mechanisms of senescent
cells, generally characterised by the amplification of the secretory phenotype associated
with senescence, intensify the intrinsic proliferative arrest inside a cell and contribute to
the development of pathologies related to ageing and defective tissue regeneration [30,31].
Elimination of senescent cells may reduce tissue dysfunction associated with ageing, while
senescence, in some cases, may serve as a potent anti-tumour mechanism by inhibiting the
growth of potentially malignant cells [32].

3. Pharmacologically Active Substances Acting on the Cardiovascular System

Cardiovascular diseases (CD) continue to represent a primary factor in premature
death while increasing the costs of health systems. Various factors lead to the burden of
CD, including environmental, lifestyle, cardiometabolic, and social aspects [33,34]. Pharma-
cotherapeutic regimens for CD management target the main risk factors, namely obesity,
diabetes, hypertension, dyslipidaemia, and smoking. Even so, a large number of patients
acquire CD without presenting these risk factors. For this reason, the exact understanding
of the pathological mechanisms involved in the development of CD has been insufficient
until now [35]. Various empirical studies have demonstrated an important correlation
between reduced TL and increased cardiovascular risk [36–38].

Telomere shortening and dysfunction are etiological factors in the development and
aggravation of CD associated with ageing [38]. Excessively shortened telomeres trigger
cell senescence, followed by apoptosis, and have been identified as a biomarker in the
progression of arteriosclerosis and arterial plaque instability [39]. In practice, TL serves as a
credible indicator of the combined impact of oxidative stress and inflammation accumulated
during life. An aberrantly shortened TL has been attributed to increased susceptibility to
CD, a greater chance of developing cardiovascular risk factors, and the possibility of sudden
death from a cardiovascular cause [39,40]. The close causal relationship between a reduction
in TL in different types of cells and the presence of atherosclerosis, ischemic cardiovascular
disease, myocardial infarction, and sudden death from cardiovascular causes suggests that
average TL and telomerase activity are important biomarkers in cellular ageing [41].

Insufficient blood pressure control, determined in the ambulatory over 24 h, was at-
tributed to a low serum concentration of telomerase reverse transcriptase, an unfavourable
metabolic profile of adipose tissue, and an aberrant endothelium function [42]. Moreover,
by analysing the data obtained in the Framingham study, it was concluded that the renin-
angiotensin system (RAS), characterised by a high concentration of the renin-angiotensin
ratio in serum, has an increased prevalence of shortening TL in patients with arterial hy-
pertension [43]. Therefore, it was concluded that therapeutic agents that intervene in the
RAS present therapeutic opportunities for efficiently controlling blood pressure, improving
patient survival rates, and protecting telomeres from the factors involved in their shorten-
ing. A study that included 156 patients with type II hypertension of whom 96 had type
2 diabetes as a comorbidity, hypothesised that patients with double comorbidity have a
much shorter TL. Achieving optimal blood pressure through pharmacotherapy has proven
more effective in preserving TL than efficient blood sugar control [44].

The physiological ageing process is associated with multiple changes in the body’s
functioning, structure, and physiological mechanisms, all of which are very similar to
the changes induced by hypertension [19]. The components of the circulatory system
are subject to multiple changes, such as vascular remodelling, inflammation, increased
stiffness, endothelial dysfunction, and calcification. The molecular mechanisms and cellular
processes that cause vascular alterations both in the case of hypertension and in the case
of the physiological ageing process include oxidative stress, an abnormal transmission
of signals, and the activation of transcription factors that promote inflammation and
fibrosis [45]. Thus, hypertension and the cardiovascular changes caused by it represent a
critical therapeutic target for CD management and for preserving TL. At the same time, the
pharmacologically active drugs used are the main pillars for obtaining optimal results.
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3.1. Statins

Statins are first-line drugs that reduce the risk of cardiovascular events and are con-
sidered the gold standard for the treatment of dyslipidaemia. Hydroxy-methyl-glutaryl
coenzyme A (HMG-CoA) reductase catalyses the transformation of HMG-CoA into meval-
onic acid, a critical step in the production of endogenous cholesterol. Thus, statins reduce
cholesterol synthesis in the liver by competitively inhibiting the HMG-CoA enzyme [46–48].
In addition to their increased potency as lipid-lowering drugs, statins possess a series of
pleiotropic actions independent of their main action. The most studied pleiotropic effects
are antioxidant activity, rebalancing endothelial function, stabilising the atherosclerosis
plaque, anti-inflammatory effects, protective effects in the progression of neurological
disorders, and antithrombotic action [49,50].

Statin treatment has been reported to impact the length of telomere G-tails. Thus,
statins are hypothesised to prevent the aberrant shortening of telomeres at a molecular level
by interacting with the telomere/telomerase system and combating oxidative stress [51].
Statins regulate cellular pathways of oxidation that govern the activity of nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase, endothelial nitric oxide synthase (eNOS),
and myeloperoxidase [52]. This modulation promotes an antioxidant effect that restores
the endogenous redox balance [53]. At the same time, statins influence the signalling of
nuclear factor erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), leading
to cellular defence against reactive oxygen species [53,54]. These molecules substantially
enhance the ability of Nrf2 to bind to DNA and stimulate HO-1 and glutathione peroxidase
activation. Thus, through the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt)
cellular pathway, statins activate Nrf2, an effect that culminates in inhibiting the formation
of reactive oxygen species [55].

Various cells, such as vascular smooth muscle cells, endothelial cells, endothelial
progenitor cells, and chondrocytes, can undergo cellular senescence, while statins effectively
counteract this process [56]. Reducing oxidative stress, promoting increased glutathione
synthesis, inhibiting protein prenylation that induces DNA damage, inhibiting subsequent
signalling from impaired DNA, and accelerating DNA repair are all potential ways statins
protect against DNA damage [57]. Moreover, the telomere-capping protein TRF2, which
helps stabilise the telomeric structure, has its expression upregulated by statins. Increased
TRF2 expression in the endothelium and other relevant cells may be responsible, at least
in part, for the reduction in clinical events in patients with shorter telomeres using statins.
This is mainly due to the fact that telomere dysfunction might be caused by a loss of
TRF2 [56,58]. Figure 2 illustrates some of the molecular mechanisms of statin therapy in
telomere biology.

A cross-sectional study that included 3496 participants found that statin therapy di-
rectly correlates with increased telomerase activity [58]. Additionally, according to the
latest clinical studies, statin therapy can decrease the frequency of clinical events [59,60].
Still, this effect is limited to the case where TL drastically endangers the patients’ lives.
This provides solid arguments in favour of using TL as a marker in diagnosing cardiovas-
cular diseases and may serve as a valuable tool for physicians to divide critical patient
categories and appropriate regimens based on TL [61]. In a study conducted by Bennaceur
et al., a 6-fold increase in telomerase activity was seen in human and mouse peripheral
blood mononuclear cells (PBMCs) and CD4 T cells after being treated with atorvastatin
at concentrations ranging from 0.1 to 0.3 µM, which resulted in modest proliferation of T
lymphocytes. Telomerase activity was disabled, and proliferation was entirely reduced by
high doses of atorvastatin (2–5 µM) or LDL cholesterol. The proliferative effects of ator-
vastatin were abolished in the absence of telomerase reverse transcriptase (TERT). During
the initial five months, the percentage of telomerase-positive lymphocytes in transgenic
GFP-mTert reporter mice dropped from 30% to 15%. As a result, the authors concluded
that, throughout the course of typical development and maturation, lymphocyte telom-
erase activity declines in vivo alongside immune cell turnover [62]. After controlling for
chronic inflammation and oxidative stress markers, atorvastatin treatment remained the
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sole independent predictor of telomerase activity changes in a multiple-regression anal-
ysis. Treatment with atorvastatin was linked to normal-range increases in interleukin-6
(IL-6) and a trend towards decreased blood urea. Based on these preliminary findings of a
study conducted by Strazhesko et al., atorvastatin may have a role as a geroprotector and
telomerase activator [63].
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3.2. Calcium Channel Blockers (CCB)

Drugs from the class of calcium channel blockers (CCB) are divided into two categories:
dihydropyridines and non-dihydropyridines. These have multiple pharmacotherapeutic
indications, including arterial hypertension, angina pectoris, hypertrophic cardiomyopathy,
pulmonary hypertension, and supraventricular arrhythmia [64]. By inhibiting calcium entry
into cells, CCB helps lower blood pressure and can be used with other pharmacotherapeutic
regimens. CCBs of the non-dihydropyridine type show more pronounced chronotropic
and inotropic effects than the dihydropyridine ones, especially relevant for patients with
supraventricular arrhythmias [65]. For these reasons, CCBs are recommended as the
first-line option in the treatment of hypertension [66,67].

Regarding the molecular mechanisms on telomeres, CCBs have been identified as
having a protective effect on TL through a mechanism dependent on eNOS, which gives
them an effect against cellular senescence [68]. CCB possesses antioxidant activity at
the level of cellular structures and prevents the inactivation of telomerase, increasing
the activity of eNOS during the vascular endothelial senescence process [69]. A study
by Tand et al. showed that patients using CCB showed significant reductions in DNA-
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methylation and functional biological ages, in contrast to those who did not take these
medications. The conclusion implies that CCBs may have the capacity to decrease biological
ageing, as indicated by the biomarkers analysed in the study [70]. Moreover, some positive
correlations were drawn between TL and the decrease in systolic blood pressure and pulse,
especially in the case of patients under treatment with CCB and ARB [71].

3.3. Agents Acting on the Renin-Angiotensin System (RAS)

RAS is involved in maintaining homeostasis and controlling vasoconstriction. How-
ever, this system is responsible for causing fibrosis, inducing inflammation, and oxidative
stress. The main product of RAS is angiotensin II, which was discovered to be involved
in developing chronic pathologies associated with ageing [72,73]. Angiotensin II binds
to the angiotensin type 1 receptor (AT1R), induces physiopathological changes accompa-
nied by marked oxidative stress, and is linked to mitochondrial dysfunction and telomere
erosion [74].

In this direction, the development of pharmacologically active agents capable of influ-
encing the RAS represented a new therapeutic opportunity. AT1R antagonists (ARB) such
as losartan, candesartan, telmisartan, etc., and angiotensin-converting enzyme inhibitors
(ACEi) such as captopril, lisinopril, enalapril, etc., can restore the functioning of endothelial
progenitor cells by facilitating communication between telomerase enzymes [75]. Figure 3
depicts the RAS’s involvement in TL shortening and the mechanisms by which ARB and
ACEi counteract these effects.
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The protective action of ARB on cognitive decline associated with cerebral vascular
aneurysms and ageing has been demonstrated in clinical studies [76,77]. Several authors
have concluded that blocking the RAS with antagonistic pharmacological agents is an
optimal technique to slow the physiological ageing process [74,78]. In the Framingham
Heart Study, Vasan et al. highlighted that adults with an increased renin-angiotensin
ratio, characteristic of patients with hypertension, have a shorter TL [43]. Another study
determined the TL of pregnant women through natural pregnancy, in vitro fertilisation, and
intracytoplasmic sperm injection. The conclusion emphasised an inversely proportional
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correlation between serum renin concentration in the first trimester and TL, as women
who became pregnant through in vitro fertilisation or intracytoplasmic sperm injection had
shorter TL than those who experienced a naturally occurring pregnancy [79]. Both murine
models of arterial hypertension and in vitro studies have emphasised the negative effect of
RAS on TL and the fact that pharmacological agents that intervene in this system manage
to offer additional protection against telomere erosion [80]. In an in vivo study, the group
treated with a combination of angiotensin II and losartan showed increased TL, decreased
staining of β-galactosidase, and reduced expression of p53 and p21 compared to the group
treated with angiotensin II alone. This study validates the hypothesis that angiotensin II
triggers the reduction in TL, the production of p53 and p21, the halting of the cell cycle,
and the consequent cellular senescence. Furthermore, losartan effectively decreased the
rate at which telomeres shorten and prevented cellular senescence [81]. Fyhrquist et al.
analysed two consecutive DNA samples from 132 patients with type 1 diabetes. This study
concluded that short TL is a predictive biomarker for the development and progression of
type 1 diabetes. In addition, the authors outlined that patients who followed an ARB or
ACEi therapy had longer TL than patients using other classes of anti-hypertensive drugs
such as diuretics, beta-adrenergics, or calcium channel blockers [82].

It is noteworthy that angiotensin-converting enzyme inhibitors have an important
advantage over angiotensin receptor blockers. ACEi offer additional vascular protection
due to their ability to increase the tissue concentration of bradykinin by inhibiting its
degradation, which is particularly important for coronary artery disease [83]. At the level
of endothelial cells, bradykinin activates the antioxidant enzymes catalase, superoxide
dismutase, and glutathione peroxidase [84]. At the same time, by increasing the level of
eNOS, fibroblast growth factor 2, and TERT messenger RNA and possessing antioxidant
properties, ACEi help restore the activity and increase the survival of endothelial cells
caused by a vascular injury [58,85]. De Vries et al. and Akinnibosun et al. emphasised
that early initiation of ACEi therapy positively impacts systolic blood pressure and TL.
Moreover, ACEi are hypothesised to exert epigenetic modifications closely related to the
protection against arterial hypertension [86,87].

4. Pharmacologically Active Substances Used in Diabetes

Diabetes remains one of the most widespread non-communicable diseases worldwide,
with a high prevalence, reaching a number of 2 million deaths in 2019 [88]. Diabetes is
a pathology that affects multiple organs, with the most common chronic complications
being diabetic foot, diabetic retinopathy, osteoporosis, arthropathies, decreased immunity
manifested by an increased incidence of infections, and diabetic neuropathy. Additionally,
acute complications such as diabetic ketoacidosis are life-threatening and require immediate
hospitalisation and support of vital function [89–91].

TL is of particular interest concerning diabetes, which is a condition characterised by
accelerated cellular ageing caused by a complex interplay of genetic and environmental
factors [7,9]. Patients with diabetes present a shorter TL, but the exact mechanisms have
not yet been clearly established. However, this may be influenced either by hyperglycaemia
per se, by the associated oxidative stress, or by the accumulation of metabolic toxins [92].
Moreover, insulin resistance, obesity, and hyperinsulinemia lead to increased oxidative
stress and, implicitly, to the shortening of TL [93,94]. In a meta-analysis conducted on
17 cohorts, including over 5500 patients diagnosed with type 1 and type 2 diabetes, the
authors identified that diabetic patients had a much shorter TL compared to healthy
controls. Moreover, it is noteworthy that TL shortening was pronounced in the case of type
2 diabetes compared to type 1 diabetes and in the case of patients younger than 60 years old
with type 2 diabetes [95]. Additionally, a study conducted by Baltzis et al. on 90 diabetic
patients with diabetic ulcers concluded that among this population, besides having a higher
neuropathy impairment score and markedly larger waist size, the activity of telomerase
was aberrantly reduced [96].
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It is well established that elevated glucose levels increase the generation of reactive
oxygen species and induce dangerous reactions that affect different cellular signalling
pathways [97,98]. All these cause single-chain breaks in DNA and erosion of telomeres,
which in turn cause senescence of β-pancreatic cells and a decrease in the mass of these
cells, insulin production, and glucose tolerance. Consequently, the generated oxidative
stress causes impaired activity of the telomere-telomerase system, thus creating a vicious
circle [94,99]. At the same time, hyperglycaemia increases the generation of reactive
oxygen species at the level of the electron transport chain in the mitochondria through
the formation of complex end products of glycation and the increase in glucose auto-
oxidation. The guanine pairs present in telomeres are even more prone to oxidation,
especially during mitosis, where they exist in solitary cells, making them vulnerable to
oxidation and destruction [94,100,101]. In a study by Monickaraj et al., a causal relationship
was drawn between mitochondrial dysfunction and diabetes. In the case of patients
with type 2 diabetes, a marked increase in lipid peroxidation, a much-shortened TL, and
a decrease in adiponectin levels and mitochondrial DNA content were observed [102].
Another study hypothesised that type 2 diabetes could cause epigenetic changes at the
level of telomeric structures through DNA methylation at the level of long interspersed
element-1 (LINE-1) [103].

However, pharmacotherapeutic regimens used in diabetes management offer promis-
ing perspectives to mitigate the impact of telomere shortening [104]. Hypoglycaemic drugs
such as metformin, sulfonylurea, and dipeptidyl peptidase-4 inhibitors have been proven
to mitigate the changes triggered by oxidative stress on telomeres. However, insulin in
the form of injectable preparations administered in type 1 diabetes or in type 2 diabetes
that is refractory to antihyperglycemic medication has been shown to accelerate telomere
attrition [105,106].

4.1. Biguanides

Metformin is a pharmacologically active agent from the biguanide class used as the
first-line treatment option for type 2 diabetes, having efficacy both as monotherapy and
as a combined regimen with other antihyperglycemic agents. The clinical applications
of metformin have evolved from its first indication as a drug for influenza to the gold
standard in type 2 diabetes and continue to develop until now [107]. Recent studies
have demonstrated the prospective potential of this drug for multiple clinical applications,
including as an anti-ageing agent [108–110]. Figure 4 provides an overview of the pathways
employed by metformin to counteract ageing.

Metformin promotes insulin sensitivity and restores normal IGF-1 levels by stim-
ulating AMPK and inhibiting the signal activity on the mTOR pathway [111]. These
mechanisms have considerable clinical utility since mTOR signalling leads to acceler-
ated ageing, and changes in this pathway are associated with cancer, inflammation, and
neurological diseases [112,113]. Metformin, in low doses, targets the lysosomal AMPK
pathway through presenilin enhancer 2 (PEN2) and hepatic gluconeogenesis, in addition to
other AMPK-independent pathways, such as inhibition of mitochondrial glycerophosphate
dehydrogenase [114,115].

It is hypothesised that the association of metformin with its target glycerol 3-phosphate
dehydrogenase (GPD1) can partly explain its anti-ageing effect. Metformin inhibits mito-
chondrial GPD1, blocks lactate-glucose incorporation, and enhances cytosolic NADH [116].
It has been shown that there is an overexpression of GPD1 in long-living organisms, while
a decrease in GPD1 levels inhibits replicative life cycles. Additionally, overexpression of
GPD1 by metformin underlines the drug’s anticancer activity in vitro [117].

In the same direction, in a recent study by Yang et al., metformin reduced the number
of senescent CD8+ T cells. Metformin decreased the release of IFNγ from senescent CD8+T
cells (through an effect on the senescence-associated secretory phenotype), decreased the
production of proinflammatory cytokines IL-6, increased the synthesis of TNFα in senescent
cells, increased the concentration of telomerase, increased the frequency of undifferentiated
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T cells, enhanced the expression of genes associated with stemness and those associated
with telomerase activity, and decreased the expression of genes associated with DNA
damage [118].
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guanosine triphosphate; P—phosphorylation; p70S6K—p70 S6 kinase; PI3k/Akt—phosphoinositide
3-kinase/protein kinase B; IFNγ—interferon-gamma; IL-6—interleukin 6; TNFα—tumour necrosis
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In a randomised, double-blind study that included 38 diabetic patients, metformin
increased silent information regulator sirtuin 1 (SIRT1) gene expression, SIRT1 chromatin
promoter accessibility, SIRT1 protein synthesis, and decreased p70S6K phosphorylation
while having a positive effect on plasma N-glycans [119]. SIRT1 reduces the production
of inflammatory cytokines by directly inhibiting the transcription of target genes through
the deacetylation of histones in the promoter region of those genes [120]. Thus, metformin
represents a prospective anti-ageing drug that interacts with multiple pathways involved
in longevity and maintaining the integrity of telomeres.

4.2. Dipeptidyl Peptidase-4 Inhibitors (DPP-4i)

DPP-4i elicits a significant decrease in serum glucose levels, which is relevant in the
clinical context of type 2 diabetes, especially as it presents a low risk of hypoglycaemia and
does not cause weight gain. At the same time, DPP-4i has beneficial effects independent
of the hypoglycaemic action, such as lowering systolic blood pressure, reducing total
cholesterol and triglycerides, and increasing the activity of β-pancreatic cells [121,122].

Therefore, the pharmacodynamic effects of this class represent a pertinent approach
for repurposing them as agents that could contribute to protecting telomeres from erosion.
Dudinskaya et al. conducted a clinical study to determine whether vildagliptin-metformin
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combined therapy could provide superior benefits in inhibiting telomere attrition com-
pared to metformin monotherapy. Both therapies proved effective for optimal glycemic
control. In contrast, patients who received the combined therapy experienced a statistically
significant increase in telomerase activity, thus concluding that the metformin-vildagliptin
combination could have a new pleiotropic effect by modifying telomerase activity [123].

5. Pharmacologically Active Substances Acting on the Central Nervous System
5.1. Antipsychotics

Schizophrenia (SCZ) is a complex neurological disorder, presenting multiple dys-
functional brain regions and few efficient management methods [124]. First-generation
antipsychotic medications are defined by their ability to block dopamine D2 receptors.
Second-generation antipsychotic medications, in contrast, act as serotonin and dopaminer-
gic receptor agonists. Although this class varies greatly in terms of adverse reactions, in
terms of therapeutic benefit, there are insignificant variations [125].

In SH-SY5Y cells, aripiprazole has shown neuroprotective benefits by raising brain-
derived neurotrophic factor transcripts and proteins, phosphorylation, and GSK-3β, and
lowering synaptosome presynaptic-like glutamate release [126]. Brain-derived neurotrophic
factor presents a protective effect against oxidative damage in neurons, as it increases the
expression levels of manganese superoxide dismutase, which in turn enhances the antiox-
idant capacity of the cell [127]. Aripiprazole stands out among antipsychotics due to its
specific ability to partially agonist both dopamine D2 and serotonin 5-HT1A receptors [126].
When compared to traditional antipsychotics, atypical antipsychotics have a reduced inci-
dence of certain causes of death and extrapyramidal symptoms [128]. Stroke and metabolic
syndrome, both of which can cause metabolic changes, are more common in patients
taking atypical antipsychotics compared to those taking conventional antipsychotics [129].
Second-generation antipsychotics, especially clozapine, have been reported to have a strong
antioxidant effect, counteracting oxidative stress caused by aberrant activation of microglia.
This marked reduction in free radicals provides a neuroprotective effect against oxidative
stress induced by activated microglia [130,131].

Various environmental and genetic factors contribute to the development and progres-
sion of SCZ, which has led to the hypothesis that this pathology is a condition characterised
by accelerated ageing, associated with physiopathological changes also present in the case
of physiological ageing. Due to the marked oxidative stress in the case of SCZ, telom-
ere erosion can be accelerated, which has been demonstrated in many instances of SCZ
patients [124,132]. Table 1 summarises some of the most recent studies regarding the
correlation between SCZ and TL.

Table 1. Antipsychotic therapy and TL in empirical studies.

Methods Study Groups Drug Studied Conclusion Reference

TL by qPCR

G1: 170 Hispanic patients with
SCZ (with antipsychotic therapy)
G2: 126 Hispanic healthy
controls

Low-risk
antipsychotics; atypical
antipsychotics
(clozapine; olanzapine)

Compared to G2 and G1, using
medium and low-risk
antipsychotics, G1, with
atypical antipsychotics, which
cause metabolic syndrome,
had severe TL erosion.
Olanzapine promotes TL
shortening significantly than
clozapine.

[133]

Southern blot
analysis of mean
length of terminal
restriction fragment

G1: 34 patients with SCZ that
responded well to treatment
G2: 35 patients with SCZ that
did not respond well to
treatment
G3: 76 healthy controls

Antipsychotics
(analysis conducted
regarding treatment
adherence)

The subsequent cellular
malfunction could contribute
to the gradual decline in
treatment-resistant SCZ.
TL shortening in G2.

[134]



Int. J. Mol. Sci. 2024, 25, 7694 12 of 27

Table 1. Cont.

Methods Study Groups Drug Studied Conclusion Reference

Telomere DNA and
PP

G1: antipsychotic
treatment-naive SCZ patients
G2: control subjects

Antipsychotics
(analysis conducted
regarding protective
effects of drugs after
treatment initiation)

Prior to antipsychotic
treatment, patients with
psychosis had a reduction in
telomere DNA content and an
elevation in PP.

[135]

TL and mtDNA copy
number

G1: 89 patients with 8 weeks on
antipsychotic terapy (divided
into G1(a)-responders and
G1(b)-non-responders)
G2: 144 controls

Risperidone

Before risperidone initiation,
the TL in G1 was average, but
mtDNA was lower than in G2.
After risperidone initiation,
G1(a), compared to G1(B), had
longer TL and lower mtDNA
TL and mtDNA could predict
response to antipsychotic
treatment.

[136]

TL by qPCR

G1: 30 SCZ patients with
long-acting injectable
antipsychotics
G2: 30 SCZ patients with oral
atypical antipsychotics

Long-acting injectable
antipsychotics; oral
atypical antipsychotics

TL might be able to predict
how antipsychotic drugs
function in SCZ patients.

[137]
Negative SCZ symptoms are
predicted by shorter TL.

TL by qPCR 1241 SCZ patients Antipsychotics Antipsychotic medication had
no effect on TL

[138]1042 controls

TL by multiplex
qPCR

81 antipsychotic naïve patients
173 SCZ patients
173 healthy controls

Antipsychotics

SCZ patients had longer TL
than healthy individuals
Patients with non-remitted
SCZ exhibited a longer TL than
those with remitted SCZ.
No effect of antipsychotic
medication on TL.

[139]

leukocytes subjected
to H2O2; treated for 7
days with
antipsychotics; TL by
RT-PCR

Healthy individuals Aripiprazole;
haloperidol; clozapine

Aripiprazole and haloperidol
treatment increased TL by 23%
and 20% after hydrogen
peroxide stimulation

[126]

qPCR for TL and
hTERT gene
expression, brain
neurotrophic factor
by ELISA

20 male SCZ patients
20 healthy controls Antipsychotics

SCZ patients had shorter TL
than controls.
SCZ patients’ TL increased
after antipsychotic treatment.
Late-stage patients exhibited a
shorter TL than early-stage
patients and controls.
hTERT gene expression was
upregulated during mania and
remission.

[140]

TL by qPCR

SCZ patients with early duration
of illness (≤5 years)
SCZ patients with chronic
duration of illness (≥5 years)
healthy individuals

Chlorpromazine

Patients with early and chronic
psychosis exhibited a
considerably prolonged TL in
comparison to healthy control
subjects.
Insignificant correlation
between
chlorpromazine-equivalent
dosages and TL.

[141]

Legend: TL—telomere length; SCZ—schizophrenia; PP—pulse pressure; mtDNA—mitochondrial DNA; qPCR—
quantitative polymerase chain reaction; hTERT—human telomerase reverse transcriptase; ELISA—enzyme-linked
immunosorbent assay.
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Studies show contradictory conclusions regarding a positive correlation between TL
and the presence of schizophrenia. Interestingly, in most studies, it was concluded that
patients who received treatment with antipsychotic drugs had a longer TL than those
naïve to antipsychotic therapy [126,135,136,140]. At the same time, two studies have
concluded that antipsychotic drugs have no effect on TL [138,139]. An interesting finding
is represented by the protection offered by antipsychotic medication in vitro following
a chemical exposure to oxidative stress [126]. This underlines the antioxidant effect of
antipsychotic medication discussed in the literature.

5.2. Melatonin

The pineal gland produces a single hormone, secreted in the absence of daylight.
Melatonin is synthesised from serotonin, derived from the amino acid tryptophan, through
a series of enzymatic processes in which, in the last two stages, the enzymes arylalkylamine
N acetyltransferase and hydroxyl-indole-O-methyltransferase are involved. From the
postganglionic fibres, the gland receives stimuli that increase the synthesis of cyclic AMP
and trigger the release of noradrenaline, which activates the enzyme arylalkylamine N
acetyltransferase. After the endogenous synthesis, this neurohormone is released into the
blood and reaches all tissues [142–144].

The inversely proportional relationship between endogenous melatonin concentration
and sleep quality is accentuated with physiological ageing, and for this reason, it has been
hypothesised that melatonin deficiency contributes to the development and progression
of sleep disorders [145,146]. Melatonin reduces the interval of falling asleep, increases
sleep duration, and significantly decreases the number of nocturnal awakenings. There-
fore, melatonin in the form of food supplements is often administered for incipient sleep
disorders [147–149].

Melatonin exerts its actions through receptors coupled to protein G located at the level
of cell membranes. MT1, MT2, and MT3 are found in almost all human body tissues. The
MT1 receptor is coded by chromosome 4 and has 351 amino acids; the MT2 receptor is
coded by chromosome 11 and continues with 363 amino acids; and MT3 shows a very
high structural similarity with human quinone reductase 2, the enzyme involved in the
detoxification process. Thus, MT3 inhibits leukocyte adhesion mediated by leukotriene B4
and reduces intraocular pressure [150,151].

Melatonin has anti-inflammatory and antioxidant actions due to its metabolites, N1-
acetyl-N2-formyl-5-methoxykynuramine and N1-acetyl-5-methoxykynuramine. Conse-
quently, melatonin helps maintain cellular integrity by neutralising free radicals that lead
to lipid peroxidation and contributing to the transcription of genes that encode glutathione
peroxidase, as well as other enzymes with antioxidant actions [152]. Moreover, it has
anti-ageing action at the level of blood vessels, attributed to the direct detoxification of free
radicals and the maintenance of oxygen metabolism in the mitochondria [153]. In the same
direction, melatonin stimulates the production of antibodies and modulates immune func-
tions, including the function of defence against tumours, acting as an immunomodulatory
agent [152].

A suboptimal sleep quality, characterised by a low melatonin concentration, was
associated with an aberrant secretion of cortisol and cytokines [154]. This evidence is
the basis of the hypothesis that a marked decrease in melatonin synthesis could cause
increased oxidative stress that culminates with telomere erosion. For this reason, exogenous
supplementation with melatonin could have a protective effect on TL and mitigate oxidative
stress [155,156].

In a murine model of atherosclerosis in which mature animals presented vascular
endothelial lesions, an increase in the concentration of proinflammatory cytokines, re-
active oxygen species, superoxide dismutase, and malondialdehyde was observed. The
administration of exogenous melatonin led to a decrease in these markers. Also, melatonin
counteracted the effects caused by H2O2 and reduced vascular endothelial damage by
modulating telomerase activity [157]. In an in vitro study, Liu et al. demonstrated that
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melatonin contributes to improving the DNA’s self-repair capacity by influencing several
genes that are involved in the pathways responsible for DNA denaturation [158].

6. Pharmacologically Active Substances Acting as Modulators of the Genital System
6.1. Hormone Replacement Therapy

Oestrogen receptors belong to the nuclear hormone receptor superfamily and function
as ligand-dependent transcription factors. Oestrogens exert their actions by interacting
with the ligand-dependent receptors ER-α and ER-β, which are essential in tissue growth
and differentiation [159,160]. It is interesting to note that although the withdrawal of
oestrogens leads to atrophic changes, continuous exposure in large quantities leads to
tumour development at the breast and ovarian levels [161,162].

Many lines of evidence support the fact that oestrogen has direct and indirect con-
trol over telomerase in tissues that are sensitive to these hormones, thus maintaining the
integrity of telomeres [161,163]. Lin et al. found that extended exposure to endogenous
oestrogen was linked to increased TL and decreased telomerase activity. Moreover, the du-
ration of reproductive years was adversely related to the combination of a short TL and high
telomerase activity. Therefore, the authors concluded that endogenous oestrogens could
potentially slow down the process of cellular ageing [164]. Schuermans et al. demonstrated
that an earlier onset of menopause is linked to a lower TL, particularly in women who have
natural menopause. The accelerated shortening of TL during premature menopause may
be attributed to an increased CD risk. Researchers Park et al. found that estrogen treatment
of mice reverses the ageing-associated reduction in beige adipogenesis. The researchers
discovered that nicotinamide phosphoribosyl transferase (NAMPT) is necessary for the
production of E2-induced beige adipocytes, which in turn prevents the development of
age-associated stress within the endoplasmic reticulum. Also, by increasing the number of
perivascular adipocyte progenitor cells, NAMPT signalling can be achieved through genetic
or pharmacological means, allowing for the restoration of beige adipocyte production [165].
On the other hand, progesterone and growth factors such as TGF-β inhibit telomerase
activity and hTERT gene production [161].

In most countries worldwide, the life expectancy of women is higher than that of
men, which can be explained by the differences in TL. Although there is no significant
difference between TL at birth in men and women, as the body matures, men show a
much more considerable TL shortening than women. A possible mechanism to explain
this is represented by the presence of oestrogen hormones in females, which leads to lower
oxidative stress in this population and a higher activity of telomerase [166,167].

Menopausal replacement therapy is frequently prescribed to alleviate symptoms
associated with menopause. Treatment options can be estrogen-progesterone combined
therapy or estrogen-only therapy. Oestrogen can be administered in various pharmaceutical
forms, such as oral, transdermal, percutaneous, intramuscular, intranasal, subcutaneous,
and vaginal, while the dose is customised depending on the patient [168,169]. Table 2
represents an overview of empirical data assessing the impact of antipsychotics on TL.

Table 2. Empirical evidence of the influence of hormone replacement therapy on TL.

Methods Study Groups Studied Molecule Mechanism and Conclusions Reference

TL by qPCR

G1: 65 women on HT
for >5 years
G2: 65 women matched
in age HT-naive

Oestrogen and
progesterone

G1 exhibited greater TL compared to G2.
Long-term HT inhibit TL shortening. [170]
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Table 2. Cont.

Methods Study Groups Studied Molecule Mechanism and Conclusions Reference

TL by qFISH Mice Oestrogen-replacement
therapy (ORT)

ORT resulted in elevated levels of TERT
gene expression, enhanced telomerase
activity, elongated TL, and stimulated
ovarian tissue growth.
Oestrogen insufficiency or excessive
activity can lead to the ageing of ovarian
tissue or the development of tumours,
respectively, via influencing the
remodelling of telomeres through
oestrogen control.

[171]

TL by qPCR 1048 women in Sister
Study

Oestrogen and
progesterone

No association between HT and TL.
Reproductive histories that indicate
higher levels of naturally occurring
oestrogen were linked to shorter TL.

[172]

TL by qPCR

100 newborns from
expecting mothers
recruited in early
pregnancy (tracked
prospectively from
intrauterine life to early
childhood)

Endogenous E3

An elevation in maternal E3
concentration during the initial stages of
pregnancy was linked to a 14.42% rise in
child TL.

[173]

TRAP for telomerase
activity; qPCR for
TERT gene expression

G1: female rats
G2: female rats with a
placebo

21-day release
oestrogen formulation

Without oestrogen, the TERT gene’s
expression and telomerase activity were
decreased.
Oestrogen insufficiency leads to a
notable reduction in the TL in the
adrenal cortex.
Oestrogen for 3 weeks restores TERT
gene expression, telomerase activity,
and cell proliferation.

[174]

TL by qPCR

G1: 333 breast cancer
sister-sets
G2: 409 unaffected
sisters

HT

Shortened TL in unaffected sisters
showed a statistically significant
correlation with HT-naïve sisters.
An inverse relationship was detected
between the duration of HT and the TL.

[175]

TL by qPCR

G1: 415 females with
IPF
G2: 718 males with IPF
G3: 204,321 healthy
females
G4: 174,254 healthy
males

Endogenous sex
hormones (analysis for
the prospective role of
HT in telomere
maintenance)

Females who experienced early
menopause and premature ovarian
failure had a greater likelihood of
developing IPF.
The prevalence of IPF in males was
correlated with the levels of bioavailable
testosterone in the blood and the stages
of the disease.
Both males and females showed a
correlation between lower levels of sex
hormones and shorter TL.
Elevated levels of sex hormones provide
a protective effect against the
development and advancement of IPF,
potentially by decelerating the process
of TL shortening.
Hormonal supplements can potentially
delay or prevent the start of diseases in
those at risk of telomere-associated IPF
and enhance the prognosis of the
disease.

[176]
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Table 2. Cont.

Methods Study Groups Studied Molecule Mechanism and Conclusions Reference

telomerase activity by
TRAP; TERT by qPCR

G1: healthy subjects
G2: subjects with TERT
mutations

androgens; E2

Both drugs increased telomerase activity
in G1 in a dose-dependent manner,
which was associated with higher
amounts of TERT mRNA.
Sex hormones activate the expression of
TERT by binding to the oestrogen
receptor, which can then interact with
certain regions in the promoter region of
the TERT gene.

[177]

Legend: TL—telomere length; HT—hormone replacement therapy; qPCR—quantitative polymerase chain reaction;
TERT—telomerase reverse transcriptase; TRAP—telomerase repeated amplification protocol; E2—estradiol; E3—
estriol; IPF—idiopathic pulmonary fibrosis.

6.2. Antigonadotropins (Danazol)

Endometriosis is a condition that affects over 190 million women of reproductive age
and is characterised by persistent and debilitating pain, pelvic distress, nausea, and exhaus-
tion and can lead to depression, anxiety, and infertility. From a physiopathological point of
view, endometriosis is characterised by the proliferation of endometrial cells on extraneous
tissues such as the ovaries or fallopian tubes [178]. Although drugs are administered to
reduce symptoms, there is no conventional treatment for endometriosis [179].

Danazol is a pharmacological agent frequently used in pharmacotherapeutic regi-
mens to alleviate the symptoms of endometriosis while having indications in other chronic
pathologies such as fibrocystic disease, chronic or persistent refractory immune throm-
bocytopenia that has not responded to treatment with corticosteroids, or hereditary an-
gioedema [180].

Although used for the abovementioned indications, danazol offers promising results
as an anti-ageing agent, maintaining telomeres’ integrity. In a prospective study, daily
administration of 800 mg of danazol for 24 months increased TL [181]. In the case of a
42-year-old woman with finger clubbing, a family history of early hair greying led to a
TL measure lower than the first centile, thus explaining multiorgan involvement. After
18 months of danazol treatment, the TL was reverted to normal [182]. Córdova-Oriz et al.
conducted a double-blind study for three months in which patients with low ovarian
function were enrolled. The average TL remained consistent during the three months in
the case of patients treated with danazol [183].

7. Probiotics

Ageing is an inherent biological process characterised by the gradual decline of the
physical condition, leading to the impairment of several physiological functions. All these
changes were associated with an accumulation of somatic mutations, oxidative stress,
chronic inflammation, mitochondria dysfunction, and denaturation of protein structures,
closely related to both the TL and the changes in the intestinal microbiota [184–186]. It is
well known that a varied range of chronic pathologies are capable of generating changes in
the intestinal microbiota, inducing oxidative stress and inflammation, and finally leading
to the erosion of telomeres [187]. Therefore, it is pertinent to conclude that there is a robust
bidirectional link between the integrity of the intestinal microbiota and TL.

At the same time, broad-spectrum antibiotics reduce the variety of intestinal micro-
biota; in addition to eliminating the target pathogen, they also destroy beneficial microor-
ganisms, causing harmful effects on the host [188,189]. These changes can lead to a decrease
in the variety of microorganisms present, alterations in the functional characteristics, and
the development of antibiotic-resistant strains. As a result, the host becomes more vulnera-
ble to infections such as those caused by Clostridium difficile [190]. This is one of the reasons
that led to the attempts of this century to develop new therapeutic options for treating
infections, in addition to the increasing bacterial resistance [191].
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Nutritional habits and microbiota profoundly impact TL, supporting the hypothesis
of a bidirectional microbiota-TL relationship [192,193]. Probiotics have gained a lot of
popularity as food supplements due to their advantages for health, such as restoring
the habitat of the gastrointestinal microbiota, competing with harmful pathogens, and
improving immune functions [194]. Figure 5 illustrates the main mechanisms supporting
the hypothesis of a bidirectional relationship between microbiota and TL and the effects of
probiotics on TL maintenance.

Probiotics generate different substances with an antioxidant effect, such as glutathione,
butyrate, and folate. Bifidobacterium species are studied for their ability to synthesise folate,
an essential vitamin for efficient DNA replication, repair, and methylation [195]. At the
same time, multiple strains of Lactobacillus and Bifidobacterium have been shown to exert
anti-inflammatory activities by increasing IL-10 levels and decreasing Th1 cytokines. Kwon
et al. discovered a combination of probiotics that increases the expression of CD4+forkhead
box P3 (FoxP3)+ T-regulatory cells. Therefore, the probiotic combination decreased the
sensitivity of both T and B cells and reduced the production of Th1, Th2, and Th17 cytokines
without causing apoptosis [196,197]. Furthermore, probiotics have been studied for their
potential to reduce cortisol, the body’s main stress hormone [187,198,199]. Table 3 presents
some recent studies validating probiotics’ potential to reduce the effects associated with
ageing.
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Probiotics represent a prospective and easily accessible therapeutic approach to coun-
teracting the effects associated with ageing. However, more studies are required to properly
establish the bidirectional relationship between the microbiome and TL.
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Table 3. Recent empirical evidence on TL maintenance by probiotics.

Methods Study Groups Studied Molecule Mechanism and Conclusion Reference

TL and mtDNA by
qPCR

G1: hisex brown hens
(experimental group)
G: hisex brown hens
(control group)

0.1% probiotic
supplementation
(Bacillus subtilis)

No significant effect on TL
A DNA-protective activity, an inhibition
in mtDNA damage by oxidative stress
reduction

[200]

TL by qFISH

G1: 16 healthy
individuals
(experimental group)
G2: 31 individuals
(control group)

Nutraceutical
supplementation (a
mixture of various
probiotics and
vitamins)

The TL measures in G1 were 844 and
953 bases greater than those in G2.
Positive impacts on TL by decreasing
oxidative stress and inflammation.

[201]

TL by qPCR; AMPK
expression Rats

D-galactose to induce
ageing symptoms +
groups treated with a
statin, L. reuteri, L.
fermentum, L. plantarum

Statin, L. plantarum, L. fermentum, and L.
reuteri substantially decreased TL
shortening and elevated AMPK
subunit-α1 expression.
Statin and L. fermentum treatment
significantly reduced plasma lipid
peroxidation compared to control.
Rats given L. plantarum showed higher
levels of AMPK subunit-α2 compared to
control.
Lactobacillus probiotics were shown to
have strain-dependent efficacy in
alleviating age-related impairment.

[202]

TL by RT-PCR 7 groups with 8 mice
per group

Milk, yoghurt, S.
thermophilus
metabolites and L.
rhamnosus metabolites

The yoghurt and S. thermophilus group
had much longer TL in leucocytes and
liver.
When t-BHP-challenged HepG2 cells
were exposed to digested yoghurt and S.
thermophilus, the senescence index was
reduced, and the TL was increased
compared to the control.
The yoghurt and metabolites of S.
thermophilus exhibited antioxidative
properties, but the milk and metabolites
of L. rhamnosus had minimal impact on
TL and oxidative stress.

[203]

DNA microarrays for
ageing gene
expression; HPLC,
ELISA, PCR for
inflammation
markers

G1: mice (experimental
group)
G2: mice (control
group)

B. lactis (LKM512)

G1 presented a decrease in the
expression of genes linked with ageing
and inflammation.
Gene expression levels in G1 were
similar to those in 10-month-old mice
that were not treated (considered
younger).
G1 had a longer lifespan due to reduced
chronic, low-level inflammation in the
colon.

[204]

Oxidative stress
parameters Mice

Fermented milk (L.
bulgaricus, L. casei, S.
thermophillus)

The administration of fermented milk
enriched with probiotics for a duration
of two weeks resulted in enhanced
behaviour, including increased
muscular strength, exploratory activity,
and reduced anxiety-like behaviour, in
addition to better redox status and
functionality of peritoneal immune cells
in elderly mice.

[205]

Legend: TL—telomere length; mtDNA—mitochondrial DNA; qPCR—quantitative polymerase chain reaction;
RT-PCR—real-time polymerase chain reaction; qFISH—quantitative fluorescent in situ hybridisation; AMPK—
adenosine monophosphate kinase; HPLC—high-performance liquid chromatography; ELISA—enzyme-linked
immunosorbent assay; t-BHP—tert butyl hydroperoxide.
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8. Conclusions

Future research directions in this field should focus on large-scale clinical trials to
accurately understand the mechanisms involved in hindering telomere erosion mediated by
pharmacologically active substances. Moreover, one direction of interest is to investigate the
potential of active substances in poly-therapeutic regimens since combining two or more
drugs with different mechanisms for inhibition of telomere attrition could bring additional
benefits. At the same time, the interactions between the drugs commonly involved in
therapy, food, and lifestyle factors should be investigated to obtain more information to
guide clinicians in choosing a personalised pharmacotherapeutic regimen.

Additionally, integrating TL measurements into personalised medicine procedures
could help to significantly individualise the treatment plan. Thus, physicians and pharma-
cists could be able to select drugs to treat different pathologies, opting for active substances
that maintain genomic stability. However, this can only be achieved with laboratory tests
specifically developed to understand telomere dynamics at every single cellular level, not
just those measurements that determine the average TL in a cell population. Thus, early
identification of patients prone to aberrant shortening of TL at an early stage of the dis-
ease may help implement early preventive measures to stop the worsening of the chronic
pathology, optimise treatment outcomes, and improve the patient’s long-term quality of
life.

In conclusion, this narrative review highlights the prospective role of TL measurements
as a reliable biomarker in the treatment of non-communicable diseases. We focused on
understanding the molecular mechanisms of those drugs that help inhibit telomere attrition.
Investigating the influence of widely used medications on TL offers promising perspectives
for developing individualised therapeutic strategies for each patient while offering multiple
clinical applications, leading to the efficient management of pathologies and improving
health outcomes.
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