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Abstract: Anti-IgLON5 (IgLON5-IgG)-associated disease is a newly defined clinical entity. This
literature review aims to evaluate its pathogenesis, which remains a pivotal question. Features
that favour a primary neurodegenerative mechanism include the non-inflammatory tauopathy
neuropathological signature and overrepresentation of microtubule-associated protein tau (MAPT)
H1/H1 genotype as seen in other sporadic tauopathies. In contrast, the cell-surface localisation
of IgLON5, capability of anti-IgLON5 antibodies to exert direct in vitro pathogenicity and disrupt
IgLON5 interactions with its binding partners, human leukocyte antigen (HLA)-DRB1*10:01 and HLA-
DQB1*05:01 allele preponderance with high affinity binding of IgLON5 peptides, and responsiveness
to immunotherapy favour a primary autoimmune process. The presentation and course of anti-
IgLON5-associated disease is heterogenous; hence, we hypothesise that a multitude of immune
mechanisms are likely simultaneously operational in this disease cohort.

Keywords: IgLON5; anti-IgLON5-associated disease; IgLON5-IgG; neurodegeneration; autoim-
mune encephalitis

1. Introduction

Anti-IgLON5 antibodies (IgLON5-IgG) from serum and cerebrospinal fluid (CSF) were
first described clinically in a cohort of patients with sleep apnoea, non-rapid eye movement
(non-REM) and REM parasomnias, and stridor in 2014 [1]. In the years following this semi-
nal study, there has been increasing research into this disease, albeit largely limited to case
reports and case series given its estimated incidence of 1 in 150,000 [2]. The IgLON family
is a group of five cell adhesion molecules (IgLON1-5) each with three immunoglobulin-like
domains, which mediate a multitude of cellular interactions, particularly at the blood–brain
barrier (BBB) [3–6]. An investigation of the molecular evolution of the IgLON family sug-
gests a role in regulating neural growth and complexity by possessing several motifs that
may influence cellular migration and proliferation as well as BBB permeability [7]. While
BBB dysfunction, characterized by an increased albumin quotient (CSF albumin/serum al-
bumin ratio) and total CSF protein, appears to be a feature in approximately half of patients
with IgLON5-IgG disease, the physiologic role of IgLON5 in BBB integrity is incompletely
characterized [8,9]. It is unclear whether IgLON5-IgG is synthesized intrathecally, periph-
erally, or a combination of both [10,11]. The pathogenesis of IgLON5-IgG disease remains a
pivotal question. To date, the literature has focused on whether IgLON5-IgG disease is a pri-
mary neurodegenerative process with a secondary inflammatory response against IgLON5
or a primary autoimmune process driven by pathogenic IgLON5-IgG with subsequent
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neurodegeneration. The aim of this review article is to synthesise the existing literature and
evaluate this question. We hypothesise that a multitude of immune mechanisms are likely
simultaneously operational in IgLON5-IgG disease as evidenced by the heterogeneity of
the patient cohort and, thus, we caution against relying on a dichotomous classification of
the pathogenesis.

2. Evidence for a Primary Neurodegenerative Mechanism

The following evidence favours a primary neurodegenerative mechanism underlying
IgLON5-IgG disease. Firstly, the neuropathological signature of IgLON5-IgG disease as
first described by Sabater et al. and formalised in the recently proposed IgLON5-IgG
disease neuropathological criteria involves three key features: (1) subcortical distribution
of the tau pathology predominantly affecting the hypothalamus, brainstem tegmentum,
and upper spinal cord; (2) tau pathology, nearly exclusively neuronal, with little or no glial
and white matter involvement; and (3) disease-associated tau composed of both 3R and 4R
isoforms, which are defined by the presence of three and four microtubule-binding repeats,
respectively [1,12]. The topographical distribution of the tau pathology is similar to that
seen in another tauopathy, progressive supra-nuclear palsy (PSP); however, the absence
of glial pathology and sparse supratentorial and basal ganglia involvement in IgLON5-
IgG disease is distinct [12,13]. Fearnley et al. examined the spatiotemporal expression
of all IgLON family members in the developing murine nervous system at prenatal and
postnatal stages [14]. IgLON5 expression was detected prenatally in the eye and olfactory
system with subsequent postnatal downregulation at both sites, throughout development
in the cerebral cortex, hippocampus, entorhinal region, habenula, and various nuclei of the
thalamus and postnatally in the cerebellum and spinal cord [14]. This contrasts against
postmortem pathology-mapping, which is largely based on end-stage pathology such as
neuronal loss; partial overlap with the regions of interest identified by murine modelling
of IgLON5 expression is noted and may explain at least part of the regional vulnerability
observed in IgLON5-IgG disease [1,14,15]. The tau filaments seen in IgLON5-IgG disease
are of similar structure to those in Alzheimer’s disease (AD), appearing ultrastructurally as
paired helical filaments, being composed of both 3R and 4R tau isoforms [12,16].

Secondly, the microtubule-associated protein tau (MAPT) H1/H1 genotype is signif-
icantly overrepresented in patients with IgLON5-IgG disease (81.5%, 22/27) compared
to healthy controls (46.5%, 54/116) (OR 5.05, 95% CI 1.79–14.25, p = 0.0007) [17]. The
MAPT locus is divided into two haplotypes (H1 and H2) by a common inversion polymor-
phism [18–20]. It is well evidenced that H1 homozygosity is associated with an increased
risk for tauopathies like PSP, corticobasal degeneration (CBD), and AD [19,21–26]. The
underlying mechanism linking the H1 haplotype with neurodegeneration is likely related
to altered expression levels, altered splicing, or a combination of both [25]. Indeed, the
H1 haplotype has been associated with an increased expression of MAPT overall, as well
as increased expression of the key exon 10, which, through alternative splicing, generates
six tau isoforms (three 3R isoforms and three 4R isoforms) whose expression ratio tightly
directs microtubule dynamics [25–30]. It is important to note that these findings have not
yet been evaluated in an IgLON5-IgG disease cohort.

Finally, poor response to immunotherapy was initially reported and suggested a
primary neurodegenerative aetiology of IgLON5-IgG disease [1,31]; however, more recent
evidence is discordant with this [2,8,32]. This can likely be attributed to earlier studies
having limited case numbers as well as cohort selection bias given that patients were
recruited based on a narrow clinical phenotype (the originally described sleep disorder).
Subsequent studies have had larger cohorts and selection based on serological screening of
stored samples, thus revealing a more diverse spectrum of clinical phenotypes. Further
studies of treatment efficacy in populous and clinically diverse cohorts are essential to
comprehensively understand IgLON5-IgG disease.
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3. Evidence for a Primary Autoimmune Mechanism

The following key principles favour a primary autoimmune aetiology of IgLON5-IgG
disease. The cell-surface localisation and role of IgLON5 in the dynamic interactions that
occur at the BBB implicate it as a biologically plausible and accessible central nervous
system (CNS) autoantigen [1,33,34]. Furthermore, IgLON5-IgG in patient sera exerts a
directly pathogenic effect on cultured neurons by causing an irreversible decrease in the
cell-surface density of IgLON5 through internalisation, reduction in electrical neuronal
activity, and increased frequency of degenerative changes in neurons, such as axonal
blebbing and fragmentation [34,35]. Purification of IgG subclasses revealed that this effect
was specifically attributable to IgG1 antibodies and not IgG4 antibodies [34]. Interestingly,
however, the IgG4 subclass was predominant in the majority of patients from this study,
accounting for, on average, 64% of total IgLON5-IgG isolated from patient sera compared
to IgG1 antibodies accounting for, on average, 33% of total IgLON5-IgG [34]. It is well
established that IgG1 antibodies engage C1q and FcγR more efficiently compared to the
reduced binding affinity shown by IgG4 antibodies, and thus, IgG1 antibodies are more
potent triggers of pro-inflammatory effector mechanisms; however, IgG4 antibodies are
also capable of exerting a pathogenic effect as exemplified in Myasthenia gravis where
IgG4 antibodies mediate receptor inactivation [36,37]. In keeping with this, Landa, et al.
identified another potential mechanism by which IgLON5-IgG isolated from patient sera
may exert a pathogenic effect [38]. Firstly, they demonstrated that physiologic IgLON5
undergoes spontaneous ectodomain shedding and interacts with other members of the
IgLON family and, secondly, that both IgLON5-IgG1 and IgG4 subclasses disrupt this
interaction [38]. A recent autopsy series published by Berger-Sieczkowski et al. identified
two patients with short disease duration without the typical anti-IgLON5-related tauopathy
who had extensive neuropil deposition of IgLON5-IgG4 in the brainstem tegmentum,
olivary nucleus, and cerebellar cortex [15]. These IgG4 deposits were accompanied by
lesser amounts of IgG1 [15]. We postulate that both IgLON5-IgG1 and IgLON5-IgG4 are
operational through different mechanisms, thus, potentially explaining a degree of the
clinical heterogeneity observed in this disease. There are currently no studies published
that investigate complement activation in IgLON5-IgG disease; however, this would be
useful in further distinguishing the IgG1- and IgG4-mediated processes in this condition.

Human leukocyte antigen (HLA) genotyping of patients with IgLON5-IgG disease
highlighted a genetic susceptibility for autoimmune disease. Initial works identified a
robust association with the HLA-DRB1*10:01 and HLA-DQB1*05:01 alleles, reported at a
frequency of 57.1–100% of patients [1,17,32]. In addition, IgLON5 peptides exhibit high
affinity for the HLA-DRB1 molecules (DRB1*01:01, DRB1*10:01, and DRB1*09:01) isolated
from patients [17]. A recent study by Yogeshwar et al. was the largest HLA-association
analysis in IgLON5-IgG disease to date, and their findings strongly supported that HLA-
DQ, and not HLA-DR, is the actual determinant for disease risk [39]. HLA class II molecules
are known to play an integral role in antigen presentation to activate the adaptive immune
response, including B-cells and T-cells [17]. The weighting of these responses, based
on genetic variation such as HLA, seems likely to impact the individual presentation of
IgLON5-IgG disease.

Current evidence supports IgLON5-IgG disease responsiveness to immunotherapy [8,32].
A systematic review by Cabezudo-García et al. reported promising responses and sustained
response rates with azathioprine (AZA) (100% [5/5]) and mycophenolate mofetil (MMF)
(75% [3/4]), albeit always administered in combination with other agents like corticos-
teroids (CS) (CS alone had a response rate of 34.2% [12/35]) [32]. A large 2023 retrospective
cohort study of 53 patients by Grüter et al. reported favourable response of IgLON5-IgG
disease to periodic intravenous immunoglobulin (IVIg) (86.7% [13/15]), AZA (85.7% [6/7]),
repetitive plasma exchange (PLEX) (75% [3/4]), and rituximab (RIX) (72.2% [13/18]).

Finally, a notable mention is made of several patients’ case reports with clinical and
serological evidence of IgLON5-IgG disease without degenerative features like hyperphos-
phorylated tau in brain tissue, which may shed light on the sequence of pathogenesis of



Int. J. Mol. Sci. 2024, 25, 7956 4 of 8

this disease entity, specifically, that tau accumulation occurs later in the disease course and
is a consequence of antibody-mediated neuronal dysfunction [15,40–43].

4. Heterogeneity of the IgLON5-IgG Disease Cohort

The presentation and progress of IgLON5-IgG disease is diverse. Subgroups appear to
diverge in terms of disease time-course and symptomatology [2,8,44]. Grüter et al. reported
28% (15/53) of patients had subacute disease onset (≤4 weeks) while 72% (38/53) had slow
progressive disease onset (>4 weeks) with (32%, 12/38) or without (68%, 26/38) overlapping
relapse-like exacerbations [8]. Interestingly, patients with subacute disease onset were
significantly more likely to manifest psychosis and/or hallucinations as part of their clinical
phenotype, have an inflammatory CSF characterised by pleocytosis (albeit mild), and
exhibit a more pronounced response to immunotherapy [8]. An important confounding
factor is that patients with subacute disease onset, more in keeping with a traditional
autoimmune picture, received significantly earlier diagnosis leading to earlier initiation
of treatment: an independent predictor of a favourable prognostic outcome [8]. Similar
observations were also reported by Gaig et al. who noted that 24% (17/72) of their IgLON5-
IgG disease cohort had subacute disease onset (<4 months) and by Honorat et al. who noted
that 25% (5/20) of their cohort evolved symptoms in a subacute manner (<4 weeks) [2,44].
Neither clinical characteristics nor CSF examination stratified specifically by disease time-
course were available in either of these studies. Furthermore, the IgLON5-IgG disease
cohort may be stratified by HLA-DRB1*10:01 and HLA-DQB1*05:01 positivity. Grüter et al.
identified that HLA-DRB1*10:01- and HLA-DQB1*05:01-positive patients were significantly
younger at disease onset, more frequently exhibited characteristic sleep disorders, and had
a higher IgLON5-IgG titre compared to HLA-DRB1*non-10:01 and HLA-DQB1*non-05:01
patients [8]. Similarly, Gaig et al. reported that HLA-DRB1*10:01-positive patients were
younger (median 64.5 years [range 46–77]) at diagnosis and more frequently presented with
sleep or bulbar clinical phenotypes compared to HLA-DRB1*non-10:01 patients who were
older (median 71 years [range 61–83]) at diagnosis and tended to present with PSP-like or
cognitive impairment phenotypes; all of these findings reached statistical significance [17].
As described earlier, we further postulate that IgG1 or IgG4 subclass antibodies may
influence whether that patient’s disease is more pro-inflammatory and subacute or non-
inflammatory and chronic, respectively. Ultimately, the model we propose is that patients
with IgLON5-IgG disease may exhibit features of either a primarily neurodegenerative
process, a primarily autoimmune process, or a combination of both. For example, a chronic
onset process of neurodegeneration presenting with a specific clinical phenotype may then
be augmented by exposure to an inflammatory insult, such as a virus infection, triggering
an autoimmune process and altering disease course. The heterogeneity of IgLON5-IgG
disease is complex and further observational cohort studies are essential.

5. An Atypical Case and Future Directions

Finally, we revisit a previously published atypical case assessed at our centre, initially
reported in 2018 [42]. A 49-year-old man presented with a two-year history of cold intol-
erance followed by the development of involuntary jerking movements, impaired sleep,
gait ataxia, dysarthria, and cognitive decline. He was systemically well throughout this
chronic course and had no significant past medical history. He was investigated extensively.
Prior to the result of his serum and CSF positivity for IgLON5-IgG becoming available, he
underwent a stereotactic brain biopsy. This demonstrated cuffing of the white matter blood
vessels with CD3+ T lymphocytes as well as mild leptomeningeal chronic inflammation
with cortical and white matter gliosis and microglial activation (Figure 1) [42]. Neurode-
generative stains (tau, α-synuclein, β-amyloid, phosphorylated-TDP43, and P62) were
all negative; however, it is worth noting that the superficial areas biopsied (cortex and
cerebellum) usually do not demonstrate tauopathy in this disease.
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Figure 1. Histopathology findings from the stereotactic brain biopsy of a patient with IgLON5-IgG
disease, which was previously published as a case report [42]. Biopsy of the right frontal cortex stained
with (A) Hematoxylin and Eosin (H&E) stain shows leptomeningeal oedema; (B) Glial fibrillary
acidic protein (GFAP) shows gliosis; (C) CD163 shows increased histiocytes in the leptomeninges and
very mild increase in the underlying cortex; (D) H&E stain shows subtle perivascular lymphocytic
infiltrate; and (E) CD3 immunohistochemistry shows CD3+ T lymphocyte cuffing of blood vessels.
(F) Biopsy of the left cerebellum stained with H&E shows a reduction in Purkinje cells. Magnification
×100 for all.

The initial treatment regimen consisted of RIX, alemtuzumab (ALEM), PLEX, IVIg,
and CS in close succession. In addition to the course of ALEM and RIX, he received two
separate courses of intravenous cyclophosphamide (CP) (each course consisting of 500 mg
fortnightly for six doses) as per the EuroLupus protocol [45]. He remains on monthly PLEX
and IVIg as well as MMF. ALEM was selected based on the presence of CD3+ T lymphocytes
on brain biopsy (Figure 1), and to the best of our knowledge, this is the only report of its
use to treat IgLON5-IgG disease [42]. ALEM, a monoclonal antibody that targets the CD52
antigen abundantly expressed on T-lymphocytes, has proven useful in the treatment of
T-cell-driven pathologies like haematologic malignancies [46]. It was previously thought
that T lymphocytes do not have a role in the pathogenesis of IgLON5-IgG disease [17].
However, the usefulness of alemtuzumab in this case and similar reports of perivascular and
parenchymal CD3+ and CD8+ T lymphocytes in IgLON5-IgG disease autopsy specimens
may contradict this view and support the consideration of a more personalised approach
to diagnosis and treatment of rare diseases such as IgLON5-IgG disease [15,42].

Careful phenotyping of the individual patient’s likely underlying pathogenesis, as
demonstrated in this atypical case, is essential to instituting the most appropriate treatment
regimen. A crucial future direction of this field will be further phenotyping of the IgLON5-IgG
disease cohort, in particular, further characterisation of the subsets of patients who present
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with a more traditional autoimmune picture and those with a more gradual onset of disease,
perhaps more in keeping with a neurodegenerative phenotype. The former is indicated
by evidence of inflammation and a more acute to subacute presentation with a propensity
for the characteristic sleep disorder phenotype. The subset of patients in keeping with a
neurodegenerative picture generally present in a more non-inflammatory and chronic manner
with a propensity for the PSP-like and cognitive impairment phenotypes [8,17]. While this
carries a clear clinical implication for accurate and timely diagnosis, at this stage, the treatment
pathway remains equivalent between the subgroups. Immunotherapy is the cornerstone for
addressing the inflammatory component of IgLON5-IgG disease as there are currently no
effective treatments for the neurodegenerative component though putative therapeutic targets
have been identified in the context of other tauopathies [47,48]. Interestingly, these have a
role in inflammation as well, indicating that future diagnostic approaches such as sequenc-
ing/proteomics may help stratify patient therapy [47,48]. Treatments targeting pathological
tau are predominantly in the discovery and preclinical stages [48].

6. Conclusions

In conclusion, IgLON5-IgG disease is a relatively newly defined clinical entity. The
non-inflammatory tauopathy neuropathological signature and overrepresentation of MAPT
H1/H1 genotype as seen in other sporadic tauopathies is consistent with a primary neurode-
generative process. In these cases, it is conceivable that neurodegeneration preceded the
development of an antibody response. In contrast, the cell-surface localisation of IgLON5,
capability of IgLON5-IgG to exert direct in vitro pathogenicity and disrupt IgLON5 in-
teractions with its binding partners, HLA-DRB1*10:01 and HLA-DQB1*05:01 allele pre-
ponderance loaded with high affinity binding of IgLON5 peptides, and responsiveness to
immunotherapy favour a primary autoimmune mechanism.

Nonetheless, we caution against relying on this dichotomous classification. We hy-
pothesise that a multitude of immune mechanisms are likely simultaneously operational in
response to varied triggering factors as evidenced by the time-course and phenotype het-
erogeneity of the IgLON5-IgG disease cohort. This heterogeneity appears to be explained,
in part, when patients are stratified by HLA-DRB1*10:01 and HLA-DQB1*05:01 positiv-
ity. HLA class II molecules are implicated in antigen presentation and the subsequent
activation of the adaptive immune response, including B-cells and T-cells. The weighting
of these responses, based on genetic variation such as HLA, seems likely to impact the
individual presentation of IgLON5-IgG disease. We promote moving toward a personalised
approach to diagnosis and treatment, one that encapsulates the factors outlined above
to best define the underlying dominant pathogenic factors in the individual. Moreover,
careful clinical phenotyping and bio-banking of these rare diseases is encouraged so that
further hypotheses may be generated and tested.
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