
Associations between perfluorinated alkyl acids in blood 
and ovarian follicular fluid and ovarian function in women 
undergoing assisted reproductive treatment

Jessica A. McCoy1, Jacqueline T. Bangma1, Jessica L. Reiner2, John A. Bowden2, John 
Schnorr3,4, Michael Slowey3,4, Thomas O’Leary4, Louis J. Guillette Jr.1,3,§, Benjamin B. 
Parrott1,3,5,6,*

1Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, 
Hollings Marine Laboratory, Charleston, SC, USA

2National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, 
USA

3Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, 
SC, USA

4Coastal Fertility Specialists, Charleston, SC, USA

5Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA

6Odum School of Ecology, University of Georgia, Athens, GA, USA

Abstract

Endocrine disrupting contaminants, in combination with other environmental variables, are 

associated with altered reproductive health. Assisted reproductive technology (ART) procedures 

offer valuable opportunities to explore the connections between environmental contaminants 

in the ovarian microenvironment and measures of fertility, including impaired responsiveness 

to gonadotropins. Here, we investigate an emerging class of environmental contaminants, 

the perfluorinated alkyl acids (PFAAs), to determine whether ovarian contaminant levels are 

associated with measures of ovarian responsiveness and fertility outcomes in a South Carolina 

population of women undergoing ART. Levels of PFAAs in plasma and follicular fluid samples 

collected from women undergoing ovarian stimulation were analyzed by liquid chromatography 

tandem mass spectrometry (LC-MS/MS). Six PFAAs were detected in both plasma and follicular 

fluid. PFAA concentrations in plasma correlate strongly to those detected in ovary and, with 

the exception of one compound, remain stable throughout ovarian stimulation. The concentration 

of PFHxS in follicular fluid inversely relates to baseline follicle counts. While no significant 

relationships were detected between ovarian response measures and PFAA concentrations, we 
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identified a negative relationship between follicular fluid PFDA and PFuNA and blastocyst 

conversion rates. Our assessments indicate that plasma levels of PFAAs serve as a sound proxy of 

those in the ovarian compartment and that follicular fluid levels of specific PFAA compounds are 

inversely related to important clinical measures of reproductive health including baseline follicle 

count and post-fertilization success.
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1. INTRODUCTION

Current estimates of human fecundity and fertility in the United States indicate that 10.9% 

(7.3 million) of married women between ages 15–44 display impaired fecundity and 6% 

(1.5 million) are classified as infertile [1, 2]. While it is difficult to evaluate whether these 

numbers have increased over recent decades, it is clear that the number of individuals 

seeking assisted reproductive technology (ART) therapy is on the rise [3]. Various reasons 

have been postulated to explain this trend including delayed age of first pregnancy, improved 

access to fertility clinics, and increased reporting of fertility problems. Additionally, 

exposure to environmental contaminants can significantly influence reproductive health, 

and exposures have been suggested as a likely contributor [4–7]. Here, we investigate 

an emerging class of environmental contaminants, the perfluorinated alkyl acids (PFAAs), 

to determine whether ovarian contaminant levels are associated with measures of overall 

ovarian health in a population of women undergoing fertility treatment.

The ovarian follicle represents the functional unit of the ovary, and follicular development 

is tightly regulated by both intra- and extra-ovarian factors [8]. Whereas pre-antral stages 

can occur independent of gonadotropin receptor activation and are characterized by growth 

and differentiation of the oocyte, the subsequent antral phases of follicular development 

are dependent upon pituitary derived gonadotropins (follicle stimulating hormone and 

luteinizing hormone, FSH and LH, respectively) and are characterized by differentiation 

and enlargement of the follicle [8]. Thus, the ability of the ovary to properly respond 

to gonadotropin stimulation is a fundamental aspect of its function. Current ART takes 

advantage of the regulatory mechanisms that control follicle growth to promote the 

development of multiple follicles. In this setting, controlled ovarian stimulation is conducted 

by pharmacologically silencing the hypothalamus-pituitary-ovary axis and subsequent 

stimulation with exogenous FSH, allowing for careful control and monitoring of the 

developing follicle pool. When optimal follicle count and size is achieved, ovulation is 

triggered and measures to promote fertilization (e.g., intrauterine insemination, harvesting of 

follicles subsequent in vitro fertilization) are performed [9]. Ovarian responsiveness to FSH 

treatment is not a standardized parameter across different fertility practices, but typically 

incorporates a combination of more common measures including peak 17β-estradiol (E2), 

peak follicle count, total FSH administered, and total oocytes retrieved. The etiology of 

variation in responsiveness to FSH is likely rooted in a complex of influences including age, 

body mass index (BMI), ovarian reserve, as well as genetic factors. There is, however, also 
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concern that exposures to environmental contaminants may also impair the mechanisms that 

regulate ovarian follicle development [10–12]. The treatment protocol and samples collected 

as part of standard ART procedures offer valuable opportunities to explore the connections 

between environmental contaminants in the ovarian microenvironment potentially providing 

insights into the underlying influences of impaired responsiveness to gonadotropins.

Here we focus on PFAAs, which exhibit surfactant properties that make them desirable 

components of various products including adhesives, water-repellant surfaces, lubricants, 

and aqueous film-forming foams finding use in packaging, as stain repellants on fabrics and 

as firefighting foams. Structurally, PFAAs consist of one or more carbon atoms where all of 

the hydrogen atoms have been replaced by fluorine atoms and an acid functional group [13]. 

The carbon-fluorine bond is the strongest known bond in organic chemistry hence PFAAs 

are stable and long-lived in the environment. PFAAs have also been shown to bioaccumulate 

and biomagnify in the ecosystem [14, 15]. In humans, PFAAs are poorly eliminated and 

exhibit half-lives up to 5 years [16]. Primary exposure routes include inhalation of air 

particles contaminated with PFAAs originating from numerous consumer products including 

non-stick cookware and water-resistant consumables as well as ingestion through food 

and water [17]. Some epidemiological data exists associating PFAAs and health outcomes 

including recent studies demonstrating an association between circulating PFAA levels and 

kidney dysfunction (increased uric acid, reduced glomerular filtration), prostate cancer risk, 

lipid metabolism, and sperm quality [18–21].

Both epidemiological and in vitro studies suggest that PFAA compounds might influence 

ovarian cell signaling and measures of overall reproductive health [22]. In human 

populations, elevated concentrations of perfluorooctanoate (PFOA) and perfluorooctane 

sulfonate (PFOS) are associated with moderate to severe endometriosis as well as polycystic 

ovarian syndrome [23, 24]. Approaches that incorporate transient transfection assays have 

linked PFAA exposure to activation of mouse and human peroxisome proliferator activated 

receptor alpha (PPARα) [25, 26]. PPARs are ligand dependent nuclear receptors with 

roles in many physiological processes including inflammation, energy homeostasis, glucose 

metabolism and cellular proliferation and differentiation. The observed interaction between 

PFAAs and receptors of the PPAR family is intriguing given the documented role of 

PPAR receptor activation in the regulation of folliculogenesis and steroidogenesis and offers 

rationale for inclusion of the PFAA survey conducted here [27, 28]. To our knowledge, 

only two studies have directly assessed the relationship between PFAAs and ovarian health, 

specifically responsiveness to gonadotropin stimulation through fertility treatment. The first 

did not present details regarding individual PFAA concentrations [29]. A more recent 

study involved assessments in a population of Belgium women seeking ART and focused 

on examining post-oocyte retrieval outcomes such as fertilization and cleavage rates and 

identified a direct relationship between PFAA concentrations and embryo quality [30].

The development of the ovarian follicle is a tightly regulated process dependent on a critical 

balance of hormones and growth factors. Given the observations linking PFAAs to disrupted 

ovarian signaling, we set out to address four primary questions (1) Which PFAAs are 

measurable in the ovarian follicular fluid?, (2) Are plasma PFAA levels predictive of levels 

measured in follicular fluid?, (3) Do the concentrations of PFAAs fluctuate over the course 
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of ovarian stimulation with FSH?, and (4) Is there relationship between measures of ovarian 

responsiveness or fertilization success and PFAA body burden? The results will provide 

information regarding abundance and distribution of these compounds in a population of 

women seeking ART. Also important is that the analysis framework described here can 

be applied to study the influence of other compounds of interest on ovarian function and 

responsiveness in the setting of ART.

2. METHODS

2.1 Patients

This study was approved by the Medical University of South Carolina institutional review 

board (IRB# Pro00015729). Informed consent was obtained from all subjects before 

inclusion in the study. A total of 50 subjects undergoing in vitro fertilization at the Coastal 

Fertility Center in Mount Pleasant, South Carolina, USA, were enrolled between May 2013 

and August 2014. Of the enrolled subjects, we collected follicular fluid from 36 subjects. No 

exclusions were applied. All subjects underwent pelvic ultrasound examination to determine 

baseline antral follicle counts. The initial dosage of gonadotropin was determined based on 

baseline antral follicle counts, baseline FSH levels, and patient age. Ultrasound tracking 

and hormone measures were carried out at appropriate intervals and human chorionic 

gonadotropin (hCG) was administered to trigger final oocyte maturation. Ultrasound guided 

oocyte retrieval was carried out approximately 36 hours post hCG trigger and all visible 

follicles larger than 10 mm in diameter were aspirated.

2.2 Sampling Protocol

Blood and follicular fluid were collected from enrolled subjects. A baseline blood and 

urine sample was collected prior to the gonadotropin stimulation phase. Additional blood 

samples were collected throughout the stimulation phase. At the time of oocyte retrieval, 

ovarian follicular fluid was collected from follicles >10mm in diameter. The total volume 

of follicular fluid from each patient was pooled and collected directly into glass containers, 

transferred to 50 mL conical centrifuge tubes (Thermo Fisher Scientific, Grand Island, 

NY, USA) and immediately processed by centrifugation at 600 RCF for 10 min to pellet 

associated follicular cells. The cleared supernatant was removed and stored in glass vials at 

−40 °C until further analysis. Whole blood was centrifuged at 1500 RCF for 20 min at room 

temperature and the cleared plasma supernatant was stored at −40 °C until further analysis.

2.3 Calculating ovarian responsiveness index and measures of fertilization success

For each patient, data regarding patient age, body mass index (BMI), basal and peak E2 

levels (pg/mL), amount of gonadotropin applied, number of oocytes retrieved (>10 mm), 

and other related fertility measures were collected. From this information, we calculated 

three measures of ovarian responsiveness: ΔE2 (pg/mL), Δ antral follicle account and 

oocytes at retrieval. The ΔE2 was calculated by determining the proportional increase of 

E2 over the course of FSH stimulation. The Δ antral follicle count was calculated by 

determining proportional change in antral follicle count over the course of FSH stimulation 

(as determined by ultrasound examination). The oocytes at retrieval measure reflects the 

total number of oocytes retrieved. Additionally, fertilization rate, blastocyst conversion rate, 
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and pregnancy outcomes were collected for each subject and incorporated into the analysis. 

Fertilization rate was determined 17–20 hours post insemination by calculating the number 

of zygotes with two pronuclei (2pn) / total number of mature oocytes retrieved. Blastocyst 

development was defined as embryos with blastocoel development and expansion of at least 

grade 2 using the Gardner scale on day 5 or 6 of development [31]. Blastocyst conversion 

is defined as the number of blastocysts generated by day 6 of development / the number of 

embryos cultured past day 3 of development. Whether the in vitro fertilization procedure 

resulted in the birth of one or more babies was recorded and categorized as pregnancy 

outcome.

2.4 Measurement of perfluorinated alkyl acids

The National Institute of Standards and Technology (NIST) Standard Reference Material 

(SRM) 1958 organic contaminants in fortified human serum was employed as a control 

material during PFAA analysis. The SRM was reconstituted with deionized water based on 

the certificate of analysis (www.nist.gov/srm/).

Calibration solutions were comprised of two solutions produced by the NIST 

Reference Materials (RMs): RM 8446 Perfluorinated Carboxylic Acids and 

Perfluorooctane Sulfonamide in Methanol and RM 8447 Perfluorinated Sulfonic 

Acids in Methanol. Together, the solution contained 15 PFAAs as follows: 

perfluorobutyric acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid 

(PFHxA), perfluoroheptanoic acid (PFHpA), PFOA, perfluorononanoic acid (PFNA), 

perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), perfluorododecanoic 

acid (PFDoA), perfluorotridecanoic acid (PFTriA), perfluorotetradecanoic acid (PFTA), 

perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), PFOS, and 

perfluorooctanesulfonamide (PFOSA). Internal standards (IS) were purchased from 

Cambridge Isotope Laboratories (Andover, MA), RTI International (Research Triangle 

Park, NC), and Wellington Laboratories (Guelph, Ontario) to generate an internal standard 

(IS) mixture containing eleven isotopically labeled PFAAs, and they were as follows: 

[13C4]PFBA, [13C2]PFHxA, [13C8]PFOA, [13C9]PFNA, [13C9]PFDA, [13C2]PFUnA, 

[13C2]PFDoA, [18O2]PFBS, [18O2]PFHxS, [13C4]PFOS, and [18O2]PFOSA.

The isolation and purification methods are outlined in detail by Reiner and colleagues 

[32]. Purified extracts from 1 mL of follicular fluid were analyzed for PFAAs by liquid 

chromatography tandem mass spectrometry (LC-MS/MS) using an Agilent 1100 LC system 

(HPLC; Santa Clara, CA) coupled to an Applied Biosystems API 4000 triple quadrupole 

mass spectrometer (Applied Biosystems, Foster City, CA) with electrospray ionization in 

negative mode. A total of 5 μL of resulting sample extract was injected onto an Agilent 

Zorbax Eclipse Plus C18 analytical column (2.1 mm x 150 mm x 5 μm). The following 

solvent gradient flow was employed: 50% 20 mmol/L ammonium acetate in methanol, 

50% 20 mmol/L ammonium acetate in water (at a flow rate of 250 μL/min). By 20 min, 

the methanol increased to 75% methanol and held for 5 min, followed by an increase 

to 95% methanol by 35 min with a subsequent return to 50% methanol at 40 min. Two 

multiple reaction monitoring (MRM) transitions for each PFAA were monitored to ensure 

no interferences with PFAA measurement, one MRM was employed for quantitation and 
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the other one was used for confirmation [32]. All plasma and follicular fluid samples were 

processed alongside quality control material NIST SRM 1958, a follicular fluid quality 

control sample, and blanks to determine the accuracy and precision of the method. The 

PFAA concentrations of SRM 1958 processed during our extraction met established values 

reported on the Certificate of Analysis (CoA). Repeated measurements of the follicular 

fluid quality control material showed good agreement (RSD < 15 %). The PFAAs were 

considered to be above the limit of detection (LOD) if the mass of an analyte in the sample 

was greater than the mean plus three standard deviations of all blanks.

2.5 Statistics

All statistical analyses were performed with SPSS Statistics version 22 (IBM, Armonk, 

NY, USA) and GraphPad Prism version 6.01 (GraphPad Software, La Jolla, CA, USA). 

PFAA concentrations were log transformed prior to analysis. Measures were analyzed 

using a ROUT test to identify outliers, Q=0.5. For each individual PFAA, a T-test was 

used to detect differences between plasma and follicular fluid concentrations. To determine 

whether plasma PFAA concentration related to follicular fluid PFAA concentration, Pearson 

correlation analyses were used. For assessments aimed at determining if concentrations 

of PFAAs changed over the course of ovarian stimulation, a repeated measures ANOVA 

was utilized. To identify relationships among ovarian response and contaminant burden, a 

partial correlation analysis was conducted with a correction for age built into the model. A 

correction for BMI was not applied in this context because unlike age, a direct association 

between BMI and ovarian responsiveness was not detected. For statistical analysis of PFAA 

measurement data, PFAAs measured below the LOD were set equal to half the LOD prior to 

running the statistical tests [33]. Statistical significance was set at p<0.05 for all tests.

3. RESULTS

3.1 Description of Subjects

Of the 50 subjects enrolled, we collected both baseline and stimulatory phase plasma 

samples, along with follicular fluid samples, for 26 individual women participating in the 

standard in vitro fertilization treatment protocol. Baseline and stimulatory phase samples 

were collected (i.e. plasma samples) from an additional 8 patients but corresponding 

follicular fluid samples at time of egg retrieval were not collected. These samples were 

used when addressing questions regarding fluctuations of PFAAs over the course of ovarian 

stimulation and ovarian responsiveness. Descriptive data including average age (33.7 ± 4.5 

years) and average BMI (24.8 ± 4.2 kg/m2) were determined for the study cohort and 

accounted for in subsequent statistical analyses.

3.2 PFAA burden in ovarian follicular fluid and plasma

Of the panel of fifteen PFAAs measured, six were detected above the LOD in all patient 

follicular fluid samples, with the exception of one patient that had PFDA and PFUnA 

concentrations below the LOD ( PFDA >0.3 ng/g, PFUnA > 0.2). In order of abundance, 

these include: PFOS, PFOA, PFNA, PFHxS, PFDA, and PFUnA (Figure 1A). Correlation 

analysis revealed a high degree of association among the individual PFAA levels, indicating 
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that exposures to the compounds are linked either by source or perhaps by behavior (Table 

1).

Overall, follicular fluid levels of PFAAs are similar to those detected in plasma. Of the six 

compounds detected, only PFUnA concentrations differed between the two matrices with 

plasma levels being approximately 1.5 times higher than those detected in follicular fluid 

(unpaired T-Test, p=0.01) (Figure 1, Table 2).

3.3 PFAA concentrations in plasma are highly correlated to those detected in follicular 
fluid

For total and individual PFAA compounds, significant positive correlations between plasma 

and follicular fluid concentrations are detected (Figure 1, B–H). However, the strength of 

these relationships varies among the individual compounds (range r=0.81 – 0.99).

3.4 PFAA plasma concentrations remain stable over the course of ovarian stimulation

To evaluate whether the average plasma levels of PFAA compounds vary significantly over 

the course of ovarian stimulation, we measured compounds in plasma samples collected 

from women prior to stimulation with FSH and at three subsequent time points during the 

stimulation protocol, reflecting an average of 17 days total (min. 12 days, max. 26 days). 

Results indicate that levels generally remain unchanged (Figure 2, Supplementary Table 

1), with the exception of PFOA, which decreased over the course of stimulation (repeated 

measures ANOVA, p=0.001, F=7.4).

3.5 Connections between ovarian responsiveness and plasma PFAAs

To assess the potential influence of PFAAs on ovarian health, we first considered whether 

detected plasma and follicular fluid PFAAs relate to baseline follicle counts, E2 levels, 

and patient age (Figure 3, Table 3). A non-significant relationship was determined for 

total PFAA burden and baseline measures of E2 and follicle counts (Figure 3). However, 

the follicular fluid levels of one particular PFAA, PFHxS, negatively correlate to baseline 

follicle counts (Pearson correlation, r= −0.43, Table 3). We did not detect an association 

between patient age and PFAA body burden (Table 3).

Subsequently, we assessed whether PFAAs relate to ovarian response to exogenous 

gonadotropins. Three different, but related, measures of ovarian responsiveness were 

considered: (1) ΔE2, (2) Δ antral follicle count, and (3) oocytes retrieved. The range of 

responsiveness observed in our sample set is displayed in Figure 4. The oocytes retrieved 

measure of responsiveness negatively correlates with age (Pearson correlation, r= −0.47, p 

= 0.007). To control for this relationship, an age correction was applied when examining 

the link between PFAA burden and ovarian responsiveness. The analysis did not reveal 

any significant relationships linking ovarian responsiveness to total or individual PFAA 

concentrations in plasma or follicular fluid (Figure 4, Table 3).

3.6 Fertility outcome measures and PFAAs

When considering the relationship between PFAA body burden and fertilization measures 

we found that both PFDA and PFuNA levels in follicular fluid are inversely related to 
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blastocyst conversion rate (r=−0.52 and r=−0.60, respectively, Table 3). A relationship was 

not detected between PFAA levels and fertilization rates or pregnancy outcomes (Table 3).

4. DISCUSSION

Previously, we demonstrated that wildlife exposed to environmental endocrine disrupting 

contaminants display reduced ovarian responsiveness upon exogenous stimulation with 

gonadotropins [34]. In the context of human fertility, women also display a wide range 

of ovarian responsiveness (Figures 4A, C and E). We hypothesized that certain contaminants 

present in the ovarian microenvironment influence the ability of the ovary to properly 

respond to stimulatory signals, such as gonadotropins. This study represents one of the 

first efforts to quantify multiple PFAAs in the plasma and ovarian follicular fluid of 

women and subsequently connect those levels to measures of ovarian health in response 

to gonadotropin stimulation. In addition, it examines the relationship between PFAAs and 

fertilization outcomes and establishes a valuable framework for future investigations into the 

environmental determinants of ovarian sensitivity to gonadotropin stimulation.

Six PFAAs were quantified in plasma and ovarian follicular fluid samples, providing 

evidence that these persistent environmental compounds accumulate in the ovary at levels 

similar to those detected in the plasma. In previous assessments aimed at quantifying 

different classes of environmental contaminants (mostly organochlorines, OCs), a two-fold 

or greater difference was reported between the two tissues, with levels being greater in the 

plasma relative to the ovary [4]. This stands in contrast to our findings and those reported 

previously for PFAA compounds, which were found to be approximately equal in both 

compartments. A likely explanation for this lies in the distinct chemical properties that 

characterize the different contaminant groups. While OC pollutants are lipophilic and stored 

in adipose tissue, PFFAs display lipophobic properties and are frequently detected in human 

plasma samples [13]. PFAAs circulate bound to carrier proteins, which unlike lipid bound 

OCs, and easily transported across the blood follicle barrier [35, 36]. Therefore, it is likely 

that the observed near equal abundance of PFAAs in circulation and in follicular fluid may 

be due to the chemical properties that facilitate transport of these compounds into the follicle 

from the local bloodstream.

The two most abundant PFAAs detected in our samples (both plasma and follicular fluid) 

were PFOS and PFOA, which is similar to recent NHANES reports examining PFAA burden 

in human samples [37]. Our results show that circulating PFAAs are highly predictive of 

PFAA burden in the ovarian follicular fluid, indicating that plasma sampling can serve as an 

appropriate proxy for ovarian exposure levels. The time course results indicate that PFAAs 

remain fairly stable over the course of ovarian stimulation (Figure 2). This finding further 

supports the use of plasma measurements of PFAAs as an indicator of exposures in the 

ovarian compartment. If a high degree of variation had been observed, then predictions 

linking plasma PFAA levels to ovarian health would be challenging. We did note a decrease 

in the measurable levels of one PFAA compound, PFOA, over the stimulatory course. Due 

to the long half-life of PFAAs, it is doubtful that this observation is linked to changes 

in lifestyle (exposure) during the period of ovarian stimulation, but instead might reflect 

physiological changes associated with a change in circulating hormones (i.e. increased E2). 
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Hormonal fluctuations associated with the menstrual cycle have been linked to observed 

differences in the pharmacokinetics and pharmacodymamics of certain pharmaceuticals 

[38, 39]. In addition, PFAA dosing studies in rodents have revealed sex differences in 

clearance rates. Relative to female rats, males display a reduced excretion rate of PFOA. 

Treatment of castrated male rats with E2 results in an increased excretion of PFOA, similar 

to that observed in females [40].Therefore, it seems plausible that the changes associated 

with exogenous FSH treatment may directly impact clearance of circulating PFAAs and 

contribute to the reduction observed in PFOA over the course of ovarian stimulation.

We tested the hypothesis that ovarian health is correlated with PFAA body burden in 

women seeking ART. We found that baseline follicle count is inversely related to plasma 

PFHxS concentrations, flagging this particular PFAA as a potential compound of interest in 

the context of ovarian pathology. The identified relationship between PFHxS and baseline 

fertility measures is intriguing given the documented ability of PFAAs to bind PPARs in 
vitro and recognized roles for PPAR signaling in proper ovarian follicle maturation and 

ovulation [26]. Gene expression analysis in rodents reveals that fluctuations in ovarian PPAR 

transcription characterize different stages of follicle development. Transcript abundance 

of PPARγ, for example, declines dramatically as follicles transition into the late antral 

stage and prepare for ovulation through activation of human chorionic gonadotropin 

(HCG) signaling cascades [28]. Therefore, it seems plausible that persistent activation of 

ovarian PPARs, through binding to PFAA compounds, could impede follicle maturation 

and responsiveness to ovulation triggers contributing to impaired fertility. Support linking 

environmental contaminant exposure to impaired ovarian responsiveness via PPAR mediated 

signaling comes from in vitro studies demonstrating the ability of monoethylhexyl phthalate 

(MEHP) to activate PPARs and subsequently lead to reduced aromatase mRNA and protein 

along with a corresponding reduction in E2 synthesis, an action that could ultimately lead 

to impaired follicle maturation and ovulation [41]. Given the correlative nature and small 

sample size of these analyses, a causal relationship is certainly not demonstrated with our 

current study design. Future studies employing larger samples sizes are still needed to test 

the robustness of the relationship between PFAA exposure and ovarian responsiveness to 

FSH. Further, experimental approaches capable of establishing causality will be required 

to determine the potential molecular mechanisms by which PFAAs might influence ovarian 

health.

In addition to ovarian responsiveness, we also assessed whether PFAA body burden relates 

to ART outcome measures and found that increased follicular fluid PFOA and PFuNA 

levels are associated with lower rates of blastocyst conversion, but not fertilization or 

pregnancy outcomes. In human IVF, there is a trend toward blastocyst stage transfer 

and cryopreservation [42]. Culturing embryos to the blastocyst stage allows for the in 
vitro selection of embryos with the highest implantation potential through morphokinetic 

assessment [43]. Blastocyst conversion is thus an important measure of IVF cycle quality. 

Interestingly, a previous report observed a positive relationship between PFAA levels 

and fertilization rates as well as higher top quality embryo rates [30]. However, this 

study incorporated a principle component analysis in which potential negative impacts of 

organochlorine endocrine disrupting contaminants (e.g., p,p’-DDE) on these endpoints were 

corrected for [44]. The current analyses did not measure or include corrections for this class 
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of contaminants, and thus, observed negative correlations between blastocyst conversion rate 

and PFOA and PFuNA levels could be confounded by effects of co-occurring compounds to 

which individuals are exposed.

The current study as well as the Petro, et al., 2014 report are based on relatively 

small sample sizes and future studies examining the relationship of these compounds to 

clinical measures of fertility more broadly across the population are warranted. Further, 

mechanistic studies, aimed at identifying causal roles of PFAAs in affecting early embryonic 

development, are needed to more fully understand the impact of these exposures on 

reproduction.

In summary, the experimental design and analysis approach presented here provides a 

framework for investigating the relationships between ovarian contaminant burden and 

function. Our assessments indicate that plasma levels of PFAAs are fairly stable and 

highly predictive of those present in the ovarian compartment follicular fluid. While 

future studies incorporating an increased number of patient samples as well as unbiased, 

untargeted analytical approaches to profile the suite of contaminants that accumulate in the 

follicular fluid will certainly provide insight and targets for future investigations, additional 

mechanistic studies are also needed to better understand the downstream effects of PFAA 

exposure in the ovary. An in vitro system incorporating ovarian granulosa cells cultured 

in the presence or absence of PFAAs, and stimulated with FSH could be used to identify 

potential genomic or transcriptional level PFAA responsive targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Measurable PFAA compounds in plasma and follicular fluid. Mean concentrations (A) and 

tissue level correlations (B-H) for each individual compound are displayed. The asterisk 

(*) in panel A denotes a statistically significant difference was determined by T-test 

(p<0.05). The Pearson correlation coefficients are displayed in panels B-H, p<0.05. Error 

bars displayed in panel A reflect SEM.
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Figure 2. 
Plasma PFAA concentrations (ng/g) measured over the study time period: (A) PFOS, (B) 

PFOA, (C) PFHxS, (D) PFNA, (E) PFDA, and (F) PFUnA. Plots depict the detectable 

levels of individual plasma PFAAs collected from women (n=10) prior to and throughout the 

course of ovarian stimulation. Individual (light grey) and average (n=10, black) values are 

displayed. Error bars reflect S.E.M.
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Figure 3. 
PFAA concentrations (ng/g) related to basal E2 and follicle count measurements. Plasma 

(black circles) and follicular fluid (gray circles) are depicted along with significance values 

(p) obtained from partial correlation analysis.
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Figure 4. 
Ovarian response measures related to total PFAA concentrations (ng/g). The range of 

observed ovarian responsiveness for three different response measures is displayed in 

panels A, C, and E. The relationship between ovarian responsiveness and total PFAA 

concentrations (ng/g) are depicted in panels B, D, and F. Plasma (black circles) and 

follicular fluid (gray circles) are depicted along with significance values (p) obtained from 

partial correlation analysis.

McCoy et al. Page 17

Sci Total Environ. Author manuscript; available in PMC 2024 July 26.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

McCoy et al. Page 18

Ta
b

le
 1

.

In
tr

a-
PF

A
A

 c
or

re
la

tio
ns

 v
al

ue
s 

(r
) 

in
 p

la
sm

a 
an

d 
fo

lli
cu

la
r 

fl
ui

d.

F
ol

lic
ul

ar
 F

lu
id

ln
P

F
O

A
ln

P
F

N
A

ln
P

F
D

A
ln

P
F

U
nA

ln
P

F
H

xS
ln

P
F

O
S

PF
O

A
-

0.
74

1*
*

0.
64

8*
*

0.
32

6
0.

36
3 

*
0.

52
4 

**

PF
N

A
-

0.
85

0*
*

0.
43

8*
0.

41
1 

*
0.

77
0 

**

PF
D

A
-

0.
58

6 
**

0.
27

6
0.

71
4 

**

PF
U

nA
-

0.
33

6
0.

38
3 

*

PF
H

xS
-

0.
45

1 
*

PF
O

S
-

Pl
as

m
a

ln
PF

O
A

ln
PF

N
A

ln
PF

D
A

ln
PF

U
nA

ln
PF

H
xS

ln
PF

O
S

PF
O

A
-

0.
81

4*
*

0.
61

7 
**

0.
28

9
0.

17
3

0.
54

0 
**

PF
N

A
-

0.
80

9*
*

05
22

**
0.

42
1 

*
06

13
 *

*

PF
D

A
-

0.
69

9 
**

0.
32

4
0.

50
6 

**

PF
U

nA
-

0.
57

1 
**

0.
36

3

PF
H

xS
-

05
34

 *
*

PF
O

S
-

* si
gn

if
ic

an
t a

t t
he

 0
.0

5 
le

ve
l (

2-
ta

ile
d)

.

**
si

gn
if

ic
an

t a
t t

he
 0

.0
1 

le
ve

l (
2-

ta
ile

d)
.

Sci Total Environ. Author manuscript; available in PMC 2024 July 26.



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

McCoy et al. Page 19

Table 2.

Detected concentrations (ng/g) of individual and total PFAAs in plasma and follicular fluid (FF).

Plasma (ng/g; n=26) FF (ng/g; n=31) Plasma/ FF (n=26) p value

PFOS 6.52 ± 0.50 5.33 ± 0.42 1.22 0.07

PFOA 2.44 ± 0.30 1.94 ± 0.20 1.26 0.16

PFHxS 2.23 ± 0.44 1.75 ± 0.30 1.27 0.36

PFNA 0.78 ± 0.08 0.63 ± 0.06 1.24 0.12

PFDA 0.42 ± 0.05 0.33 ± 0.04 1.27 0.19

PFUnA 0.25 ± 0.03 0.17 ± 0.02 1.47 0.01*

ΣPFAAs 12.6 ± 1.1 10.1 ± 0.8 1.25 0.06
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