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Abstract: Opioids are commonly used for the management of severe chronic cancer pain. Their
well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced
constipation (OIC), are the most common limiting factors in the optimization of analgesia, and
have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists
(PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment
on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations
of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including
constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central
nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior.
The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and
inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation.
In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly
its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut
dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount
of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal
symptoms and optimizing analgesia for cancer patients using opioids.

Keywords: opioids; gut dysbiosis; constipation; microbiota; gut–brain axis; tolerance; analgesia;
neuroinflammation; PAMORAs

1. Introduction

Opioids are still a cornerstone in the management of severe chronic pain, particularly in
cancer patients [1]. However, their use is burdened by a number of side effects, particularly
those involving the gastrointestinal system, which include xerostomia, nausea, vomiting,
gastro-esophageal reflux, abdominal bloating, abdominal pain and cramping, anorexia, oral
malodor, a sense of incomplete evacuation, and constipation. This complex clinical picture,
named opioid-induced bowel dysfunction (OIBD), has a great impact on patients’ quality
of life and adherence to opioid therapy [2,3] and finds its underlying cause in the activation
of mu-opioid receptors (MOR) in the enteric nervous system, namely the myenteric and the
submucosal plexus, as well as delta-opioid receptor (DOR) activation, the latter probably
leading to an inhibition of secretomotor neurons and consequently reduced water and
chloride ions passing into the intestinal lumen [4]. Furthermore, epigenetic alterations were
found to correlate with possibility of adverse effects, namely dry mouth and constipation,
suggesting that opioid-induced DNA methylation of certain genes may lead to OIBD,
among other adverse events [5].

Atypical opioids, namely tramadol [6] and tapentadol [7], are known to have a reduced
“mu-load”, hence they may display a better safety profile with regard to enteric adverse
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effects. Particularly, opioid-induced constipation (OIC) is still one of the main limitations to
optimizing analgesia in opioid users, because, conversely to other adverse effects, tolerance
does not build up and OIC may persist throughout the duration of treatment [8,9]. In
fact, prolonged exposure to opioids generally leads to the activation of β-arrestin2 in
the CNS with consequent tolerance development, whilst this protein is downregulated
in the ileum. Moreover, specific intracellular pathways, receptor internalizations and
recycling patterns, and receptor variants may be activated in the colon after prolonged
opioid consumption [10]. In order to reverse OIC, pharmacological research in the last
few years has mainly focused on the discovery of peripherally acting mu-opioid receptor
antagonists (PAMORAs), namely methylnaltrexone, naloxegol, and naldemedine, which
exert their antagonist activity on gastrointestinal MORs without impairing opioid-induced
analgesia since they cannot cross the blood–brain barrier [11]. Furthermore, naldemedine
was found to reach brain regions famously implied with nausea and vomiting, since these
areas are not protected by the BBB; hence, naldemedine may have a role in controlling
opioid-induced nausea and vomiting, which is a burdensome feature of OIBD [4], and may
be even more so in cancer patients already suffering from it because of cancer treatments.
Furthermore, a growing interest has been noted in the possible effects of opioid treatment
on the gut microbiota, alongside the risks connected with an altered microbiota pattern in
patients suffering from cancer pain [12]. Gut dysbiosis could probably contribute to the
gastro-intestinal symptoms observed in OIBD; on the other hand, further implication of
gut dysbiosis in opioid-related effects, as in reward and addiction processes, is still under
debate [13], as is the possible role of PAMORAs in reversing opioid-induced dysbiosis [10].

The aim of this review is to analyze the relationship between opioid use and gut
dysbiosis, and its potential clinical consequences in cancer patients.

2. Gut Microbiota: Definitions, Basic Concepts, and Methodologies

The mixture of commensal, symbiotic, and pathogenic microorganisms living in a spe-
cific part of the human body represents a community with its own peculiar metabolic home-
ostasis, determined by specific microenvironmental features shaped by the microbial–host
crosstalk. Homeostasis disruption (dysbiosis) with qualitative and quantitative alteration
in the microflora composition may precede or be consequent to pathologies [14,15].

Knowledge about “microbiota” or “microbiome” functions in human health and
disease dramatically increased in the last decade thanks to Next-Generation Sequencing
(NGS) technologies, allowing for rapid and massive DNA analysis. The term microbiota
usually refers to the composition of each microbial community, i.e., to the type and rel-
ative abundance of microbes living in a specific niche, while the term “microbiome” (or
“metagenome”) usually refers to the whole (collective) genomic makeup of that community,
including plasmids [16]. Although both concepts theoretically include the analysis of
bacteria, fungi, and viruses, microbiota studies usually just deal with bacteria.

NGS analysis is based on the simultaneous characterization of DNA from all microbes
coexisting in the same, complex biological sample. The obtained sequences are clustered
and compared with microbial DNA reference databases: the level of similarity with evolu-
tionarily conserved, taxon-specific sequences allows for microbe identification. Microbiota
analysis is commonly performed by NGS of a single bacterial gene, encoding 16S ribosomal
RNA. This gene is highly conserved, but is spanned by nine hypervariable regions, termed
V1–V9, which are more taxon-specific [17]. Thus, the information derived from 16S analysis
is limited to the type and relative abundance of the bacteria residing in the biological
sample. Albeit limited, this approach is rapid and cheap, and thus widely used. In contrast,
studying the microbiome requires whole-genome sequencing of all the microorganisms
present in the analyzed samples, giving information on the metabolic capability of the
population, as well as identifying microbes, including fungi and viruses. Thus, the concept
of dysbiosis explored by metagenomics is wider, covering the functional assessment of the
microbial community. The approach is more laborious and expensive and requires complex
statistical and bioinformatic pipelines, which presently limit its application.
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The human gut microbiome represents a major field of research, and a bulk of knowl-
edge has been accrued about its development, functions, and modifying factors. The
establishment of a peculiar core microflora in the human gut is determined at birth, when
vaginal delivery or cesarean section expose the infant to a different profile of first colonizing
bacteria, which then shape the evolution of the infant’s microbial community. Also, breast-
or formula-feeding affect the composition of the gut microbiota, which in adulthood will
reach a definite and highly personal composition based on both host-related and external
factors, such as diet [18–20].

The plethora of functions exerted by the gut microbiota explains its implication in so
many human pathologies [21,22] and can be roughly summarized as, (i) metabolic: gut
microflora expresses a huge number of genes compared to the host, allowing additional
biochemical reactions which contribute to energy extraction from food, vitamin production,
and bile biotransformation [23]; (ii) protective: besides contributing to the functional effi-
ciency of the gastro-intestinal barrier and limiting the proliferation of pathogenic microbes
by nutrient competition and the secretion of antimicrobial substances, the role of the gut
microbiota in the development and homeostasis of the intestinal mucosal immune system
is described well [24]; (iii) neurological: the gut microbiota is involved in the gut–brain axis
at both local and distant levels [25].

Despite the great expectation concerning novel treatment targets offered by the mi-
crobiota, it should be kept in mind that the systematization and methodological stan-
dardization of knowledge are presently an unresolved pitfall of microbiota/microbiome
research [26,27], representing the main limit to a broad clinical application of specific
diagnostic and intervention tools, aiming to recognize and treat gut dysbiosis.

3. The Effects of Opioid Use on the Gut Microbiota

Recently, plentiful literature has arisen about the effects of opioids on the gut micro-
biota, starting from the evidence that the most common side effects of these drugs are
reduced GI motility and subsequently severe constipation. Thus, it is reasonable to assume
that opioids could have an impact on the microbiota itself. The majority of the studies
on this topic were performed on animal models, given the complexity of human models.
Moreover, the variety of dietary patterns and drug use may be a confounding factor for the
phylogenetic and metabolic analyses needed to examine the interaction between the gut
and brain, and their consequences on host physiology.

3.1. Preclinical Evidence

Most experimental studies, performed in mice, reported dysbiosis as a consequence
of opioid treatment, although specific alterations in microbial species vary among studies.
Wang et al. [28] and Lee et al. [29] found an increase in fecal specimens of Flavobacterium,
Enterococcus, Fusobacterium, Sutterella, Clostridium, Firmicutes, and Ruminococcus species,
isolated from mice treated with a subcutaneous morphine implant or intraperitoneal
injections. On the other hand, Kang et al. reported a significant reduction in Bacteroidetes
and Firmicutes and an increase in Proteobacterias (Enterobacteriales) in the fecal samples of
mice, five days after morphine pellet implantation [30]. In these animal studies, changes in
the microbiome pattern have been detected since the first days of treatment [28], suggesting
a possible effect not only after chronic exposure, but also in acute pain management with
MOR agonists.

Chronic morphine exposure even resulted in disorganization of the tight junctions in
the colon, leading to a disruption of the epithelial integrity, enhanced permeability, bacterial
translocation, and subsequent chronic inflammation [30]. Banerjee et al. demonstrated that
morphine may induce global changes in the gut microbiota, compromise the gut barrier,
and disrupt cholesterol/bile acid metabolism. They reported an increase in Firmicutes after
morphine exposure in mice, therefore reducing the Bacteroidetes/Firmicutes ratio in those
animals [31]. Similar changes have been observed in chronic conditions characterized by
systemic inflammation, such as obesity and aging [32]. Chronic morphine and fentanyl
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exposure has also been associated with impairment of the antimicrobial activity of the
intestinal epithelium, which may be restored by oral supplementation of butyrate [33].

Chronic opioid use is widely known to be associated with addiction, tolerance, and
hyperalgesia [8]. Recent evidence suggests a possible role for dysbiosis in these processes.
Zhang et al. found a selective depletion in both Lactobacillaeae and Bifidobacteria in morphine-
tolerant mice, alongside a disruption in gut integrity, facilitated bacterial translocation, and
over-expression of TLR2 and TLR4, which are the major receptors mediating the host’s
response to Gram-positive and Gram-negative bacteria, respectively [34]. Particularly,
TLR2 seems to be mostly associated with opioid tolerance in animal studies, suggesting a
particular role of Gram-positive bacteria, namely Enterococcus, in this process. Interest-
ingly, morphine-induced dysbiosis supported local gut inflammation and maintenance
of opioid tolerance; however, both antibiotic [35] and probiotic treatments were shown
to be effective in attenuating analgesic tolerance and improving morphine efficacy [34].
Although the precise mechanism by which morphine may induce epithelial disruption
remains unknown, a role of µ-opioid receptors (MOR) and toll-like receptor (TLR) signal-
ing has been proposed [36,37]: in murine models for colitis, MOR activation led to the
activation of inflammatory responses through an increased migration of immune cells and
TLR-mediated disruption of tight junctions [37].

Alterations of the gut microbiota are of utmost importance in chronic opioid users,
since they play a role in developing severe constipation, which is currently considered
as the most important side effect of chronic opioid use, as a consequence of the activity
of exogenous opioids on MOR dislocated in the myoenteric and submucosal plexuses.
According to several studies, while severe opioid-induced constipation is associated with
barrier disruption and bacterial translocation, which enhance systemic inflammatory re-
sponse overall [38], non-opioid-induced constipation (for instance, resulting from low
food intake or a low-fiber diet) is not associated with alterations of the epithelium and
microbiota translocation. This observation highlights the different underlying mechanism
that supports different types of constipation [31].

Nonetheless, opioid administration was found to alter microbial composition even
after brief exposures in murine models, and such modifications not only endured in the
few days after morphine treatment [39], but were also linked to dysbiosis in offspring after
opioids, namely hydromorphone, were administrated in pregnant mice [40]. Accordingly,
after a 2-week period of prenatal hydromorphone administration, followed by methadone
exposure as a model for maintenance treatment, Abu et al. found altered microbiome
and enhanced sensitivity to mechanical and thermal pain in mice offspring, which were
reverted via supplementation of the probiotic VSL#3 [41] (Table 1).

Table 1. Preclinical data on opioid-induced gut dysbiosis and related effects on pain perception.

Study
Opioid
RoA
Dosage

Treatment
Duration Findings on Dysbiosis Findings on Analgesia

Lee et al.
2018
[29]

i.p. morphine
10, 20, 30, 40 mg/kg BID
vs.
s.c. morphine
(implanted pellet)
25 mg

4 days

Both intermittent or sustained
morphine led to gut bacterial
changes. Intermittent morphine
increased relative abundance of
Ruminococcus spp. and decreased
Lactobacillus spp.
Sustained morphine increased
relative abundances in
Clostridium spp. and the family
Rikenellaceae.

Both intermittent and
sustained morphine
treatment regimens resulted
in morphine tolerance.
Intermittent, but not
sustained, morphine altered
microglial morphology,
and hyperalgesia.
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Table 1. Cont.

Study
Opioid
RoA
Dosage

Treatment
Duration Findings on Dysbiosis Findings on Analgesia

Banerjee
et al. 2016
[31]

s.c. morphine
(implanted pellets)
25 mg

24–48 h

Morphine induced significant
gut microbial dysbiosis:
expansion of gram-positive
Firmicutes phylum and
reduction of phylum
Bacteroidetes (reduced
Bacteroidetes/Firmicutes ratio).
Elevated levels of IL17 were
observed after
morphine treatment.
Gut dysbiosis was reversed by
fecal transplantation.
Morphine disrupted
cholesterol/bile
acid metabolism.

N.A.

Kang et al.
2017
[30]

i.p. morphine
10 mg/kg (acute)
vs.
s.c. morphine
(implanted pellets)
75 mg (chronic)

5 days
(after 5 days
of ABX
pretreatment)

Chronic, but not acute,
administration of morphine,
altered gut permeability,
enhanced bacterial translocation,
and increased IL-1beta.
All these effects were prevented
by ABX treatment.

Chronic morphine exposure
resulted in antinociceptive
tolerance (in tail immersion
and acetic acid stretch assay).
ABX reduced gut bacteria
and prevented
antinociceptive tolerance.

Wang et al.
2018
[39]

s.c. morphine
25 mg
vs.
s.c. naltrexone
30 mg
vs.
s.c. morphine and
naltrexone
(implanted pellets)

1–6 days
+6 days
post-treatment

At day 1, the microbiome from
the morphine-treated group
clustered distinctly from all
other groups; bacterial
translocation into the MLN was
observed; this trend was
maintained as long as day 6.
Naltrexone antagonized
these effects.
At day 3, naltrexone-treated
animals clustered distinctly from
placebo (possible role for
endogenous opioids in the basal
host microbial profile).

Infection with E. faecalis
augmented morphine
induced analgesic tolerance
(in tail flick test).

Abu et al.
2022
[40]

i.p. hydromorphone
10 mg/kg OD

3 days
G11–G13
-beginning of GI
development in
the growing fetus
-(G0 gestation
day 0)

Brief hydromorphone exposure
during pregnancy induced
changes in both maternal and
neonatal microbioma.
In dams, Gram-negative bacteria
increased and Gram-positive
bacteria decreased.
This trend was inverted in
POE neonates.

N.A.

Abu et al.
2023 [41]

s.c. hydromorphone
0.5–3.5 mg/kg BID
(0.75 mg/kg dose
increments every 3 days)
Followed by
i.p. methadone
10 mg/kg BID

14 days
pre-mating,
then rotated to
methadone

Methadone-exposed dams
showed enriched aerobic,
biofilm forming bacteria, and
Gram-negative bacteria relative
to control, and decreased relative
abundance of
Gram-positive bacteria.
Dysbiosis of dams correlated
with dysbiosis in POE neonates.

POE (methadone) increased
sensitivity to thermal and
mechanical pain.
Supplementation with
probiotics in dams altered
neonatal gut microbiome
and rescued hypersensitivity
to thermal and
mechanical pain.
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Table 1. Cont.

Study
Opioid
RoA
Dosage

Treatment
Duration Findings on Dysbiosis Findings on Analgesia

Zhang et al.
2019
[34]

s.c. morphine
5–40 mg/kg BID
Escalating doses

8 days

Chronic morphine induced gut
dysbiosis: reduction in
Actinobacteria and Firmicutes,
Bifidobacteriaceae and
Lactobacillaceae families, and
Bifidobacterium and
Lactobacillus gena; significant
bacterial translocation
was observed.
Morphine initiated local gut
inflammation through TLR2 and
TLR4 activation (reversed in
ABX mice): increased levels of
proinflammatory cytokines IL6,
IL1 beta, and TNF alfa.

Probiotic pretreatment
attenuated morphine
tolerance and prevented
morphine-induced gut
microbiota alterations.

RoA route of administration; i.p. intraperitoneal; BID twice-daily; s.c. subcutaneous; OD once daily; GI gastroin-
testinal; N.A. Not available; POE prenatal opioid exposure; ABX broad-spectrum antibiotics; MLN mesenteric
lymph nodes; TLR tool-like receptors; TNF tumor necrosis factor.

3.2. Clinical Evidence

Literature is currently poor in terms of clinical studies, for different reasons. The
complexity of human models and the numerous confounding factors that can alter micro-
biota composition, such as diet, drug exposure, and comorbidities, make clinical studies
hard to conduct and results challenging to interpret. Moreover, it is still unclear whether
preclinical studies could be transposed to clinical use, because the human gut microbiota
is quite different from those of mice and rats, and more similar to Non-Human Primates
(NHPs), such as monkeys. The human microbiota is dominated by Bacteroides followed by
Ruminococcaceae and Clostridiales. Rats and NHPs show a higher prevalence of Prevotella,
while mice present members of the family S24-7 and Clostridiales. These host species-specific
gut microbiota signatures may reflect disparities in host factors. Unfortunately, studies
using NHP models are limited [42]. However, Sindberg et al. first found that morphine
administration in NHPs changes metabolite profiles and bacterial composition, with a
decrease in Streptococcaceae streptococcus and Pasteurellaceae Aggregatibacter, especially exac-
erbating simian immunodeficiency virus (SIV)-mediated dysbiosis in the early stages of
infection [43].

Dysbiosis itself may be defined as a “microbiota community associated with a diseased
state that can be differentiated from the microbiota community associated with a healthy
control state” [44]. Even though it is well known that the microbiota is essential for gut
health, its exact role in maintaining this homeostasis is still unclear [45].

Chronic opioid use has been reported as an independent factor for increased hospi-
tal readmission in cirrhotic patients, regardless of hepatic encephalopathy (HE). In these
patients, opioid-induced constipation may worsen bowel overgrowth and bacterial translo-
cation. Moreover, they were diagnosed with a reduction in Bacteroidaceae and bacterial
metabolic products and an increase in endotoxin and interleukin-6 (IL-6) levels [46]. Opioid
administration also correlated with increased Bifidobacterium presence in diabetic African
American men, with a significant interaction between opioid use, type 2 diabetes, and
metformin administration, particularly on Bifidobacterium and Prevotella abundance [47].

4. The Gut Microbiota–Brain Axis

Nearly 80% of microbes of the human body reside in the gut. This rich microbiome
is believed to somehow “communicate” with other systems and apparatuses. The gut
microbiota–brain axis has recently been identified as an entity encompassing the micro-
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biome hosted in the gut and the brain. Currently, the precise mechanism of communication
between these two entities is not fully understood, but there is evidence that a bidirectional
interaction may exist (Figure 1). On one hand, the gut microbiota can influence the structure
and functionality of the central nervous system (CNS), hence modulating behavior and
cognitive development. For example, the administration of probiotics had beneficial effects
in animal models on both depression and autism spectrum disorder (ASD). On the other
hand, the central nervous system regulates several functions of the GI tract and the ENS,
namely motility, acid, bicarbonates, and mucus production and secretion, fluid balance
through the epithelium, immunological response, and so on [28,48].
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Figure 1. Mechanisms of opioid-mediated modifications of the gut microbiota. Opioids ensure anal-
gesia and cause constipation through their activity on mu-opioid receptors respectively in the central
and enteric nervous system. Leaky-gut has been recognized as the main mechanism of bacterial
translocation, which activates enteric glia, leading to the massive release of pro-inflammatory media-
tors. The resulting altered gut microbiota has been implicated in most of the challenging conditions
related to chronic opioid use, such as tolerance, addiction, and reward. The bidirectional relationship
between the gut microbiota and the brain play a key role in the well-known gut–brain axis.

Several possible ways of communication between the CNS have been identified:
(i) through the sympathetic and parasympathetic branches of the autonomic nervous system
(ANS), (ii) the hypothalamic–pituitary–adrenal (HPA) axis, (iii) the gut immune system,
a humoral communication through neurotransmitters and molecules synthetized by gut
bacteria; (iv) the gut–mucosal barrier and (v) the blood–brain barrier (BBB) [49]. Bacteria in
the gut can produce and/or consume several known neurotransmitters, for instance gamma-
aminobutyric acid (GABA), norepinephrine, dopamine, and serotonin. Modifications in
the gut microbiome may be responsible for altered levels of neurotransmitters in the
gut, blood, and the CNS, hence causing neurological disorders [50], especially through
epigenetic mechanisms, including DNA acetylation and methylation, promoted by bacteria-
derived metabolites. Consequently, supplementation with pre- or probiotics was shown to
ameliorate neurobehavioral pathological patterns [51].

5. Gut Dysbiosis and Neuroinflammation

Alterations in the gut microbiome have been widely associated with many pathological
conditions of the nervous system, such as depression [52], anxiety [53], autism spectrum
disorders (ASD) [54,55], schizophrenia [56], multiple sclerosis [57], Parkinson’s disease [58],
Alzheimer’s disease [59], bipolar disorder [60], and substance use disorder (SUD) [61].

Prolonged morphine administration causes the so-called “leaky-gut”, characterized
by a disrupted intestinal epithelial barrier, which permits bacterial translocation [36].
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Morphine-mediated activation of TLRs in epithelial cells cause the transfer in the blood-
stream of pathogen-associated molecular patterns (PAMPs), like lipopolysaccharide (LPS),
lipoteichoic acid (LTA), peptidoglycan (PGN), and beta-glucan, which activate immune
cells and enteric glial cells [62,63]. Enteric glia is mainly located in the myenteric and
submucosal plexuses of the enteric nervous system and is involved in the process of gut
barrier disruption. Despite not being completely understood, growing evidence supports
the key role of the enteric glial cells in regulating GI and immune function, through interac-
tions with intestinal neurons. Glial activation by bacterial PAMPs, such as LPS, determine
a sustained release of cytokines during morphine therapy [64]. The precise relationship
between opioid-induced bacterial translocation, the activation of immune and enteric glial
cells, and the development of analgesic tolerance is still unclear, and may rely on both
central and peripheral neuroinflammation [35]. However, preclinical studies showed that
the development of morphine tolerance was associated with a depletion of specific bacterial
communities and may be attenuated through treatment with probiotics [34].

The microbiota may modulate pain regulation and tolerance through peripheral and
central mechanisms. In mice chronically treated with morphine, loss of MOR in the
dorsal root ganglia (DRG) neurons completely abrogates analgesic tolerance, defined as a
gradual decrease of analgesic efficacy at fixed doses [35]. Accordingly to these findings,
in mice chronically treated with morphine, loss of MOR in the DRG neurons completely
abrogates analgesic tolerance. The same results have been observed for opioid-induced
hyperalgesia (OIH), described as increased pain after normally noxious stimuli [65] and
for pro-nociceptive long-term potentiation, which describes a modification in synaptic
plasticity [66], probably accountable for both tolerance and OIH [67].

Gut bacteria-derived PAMPs, released into the bloodstream, activate immune cells
through TLRs and provoke cytokine and chemokine release, thus eliciting systemic inflam-
mation and indirect sensitization of primary sensory neurons in DRGs [68]. PAMPs can also
directly activate primary sensitive neurons by binding to specific receptors; for example,
LPS can bind to TLR4 and induce the sensitization and activation of nociceptive neurons
in DRGs [69]. Short chain fatty acids (SCFAs) contribute to gut microbiota-related pain
modulation via multiple mechanisms, mainly acting on FFAR2-3 and regulating leucocyte
activation and the production of cytokines (TNF-α, IL-6, IL-2, and IL-10), chemokines, and
eicosanoids [70]. Butyrate can decrease pain sensation and TNF-α levels in experimental
models [71] and its administration in patients suffering from inflammatory bowel disease
(IBD) abdominal pain can relieve pain sensation [72].

Recent evidence has also highlighted the role of GI bacteria in promoting the develop-
ment, maturation, and function of microglia in the CNS [73]. Once activated, microglial
cells release inflammatory cytokines and chemokines and sustain an increased excitatory
glutamatergic neurotransmission and a decreased GABAergic tone, leading to central sensi-
tization and hyperalgesia [74]. These phenomena, known as “neuroinflammation”, play a
key role in most chronic pain syndromes [75], as well as several stress-related states. Inter-
estingly, gut bacteria may not be the only microorganisms in the microbiome responsible
for such responses: in fact, alterations in the gut virome were recently linked to the devel-
opment of stress-associated behavioral patterns through the activation of pro-inflammatory
cells and cytokine release, alterations of gut bacteriome, and even altered gene expression
in the CNS [76].

Palmitoylethanolamide (PEA), an endogenous lipid mediator belonging to the N-
acylethanolamine (NAE) family, plays a local autacoid role in controlling inflammation
and in analgesic phenomena [77]. Recent studies have supported the hypothesis that
ultramicronized-PEA (um-PEA) administration counteracts neuronal alterations, reduces
morphine tolerance [78], and potentiates morphine analgesia without increasing the mor-
phine’s doses over time [79]. Um-PEA ranges from 0.8 to 6 µm, which is the size that ensure
oral absorption and optimal distribution to the central nervous system. Um-PEA delays the
development of tramadol tolerance, potentiating either oxycodone or tramadol analgesia
and allowing a long-lasting analgesic effect with a low-dose regimen of both opioids [80].
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These interesting pieces of evidence on the role played by um-PEA on the delay of opioid
tolerance and on the enhancement of opioids’ analgesic effects leads to the hypothesis
that um-PEA may restore gut microbiota homeostasis, which is altered in chronic opioid
users. Although specific data are not yet available in the literature, it is well known that
um-PEA administration to BTBR mice, which are recognized as a valid preclinical model
of the core autism symptom domains, and to vitamin D deficient mice, is able to restore
gut homeostasis by improving gut integrity, remodeling the fecal microbiota profile, and
raising the Firmicutes/Bacteroidetes ratio and some specific commensal gut bacteria, such as
Akkermansia muciniphila [81,82].

Similarly, adelmidrol, which is a well-known endogenous PEA enhancer with proven
anti-inflammatory properties in different chronic inflammatory conditions [83], has been
shown to increase PEA levels in the duodenum and colon [84]. Therefore, its use could
maximize the effect of PEA in restoring gut homeostasis.

6. Consequences of Gut-Microbiota Alterations on Reward and Addiction Processes

The reward system is made up of a complex interaction of neural structures that
regulates many psychological processes, such as “liking” and “wanting”, which are crucial
to the reward-behavior circuit. The neurotransmitters involved in these processes are
principally dopamine (DA), γ-amino-butyric acid (GABA), and endogenous opioids [85].

The reward system can be activated by both “natural” (e.g., sex or food) and “synthetic”
stimuli, (such as drugs of abuse and alcohol) and both are processed by meso-cortico-
limbic structures, such as the Ventral Tegmental Area (VTA), nucleus accumbens (NA), and
amygdala. Opioids and other “non-natural” pharmacological reinforcers may induce DA
release in these crucial areas, to a greater extent and duration than natural stimuli, leading to
addiction. Moreover, repeated exposure to an addictive drug may cause neurophysiological
changes, which contribute to the deterioration of addiction [86].

In recent literature, the gut microbiota has been highlighted as a key factor in modulat-
ing neurotransmission, particularly in the neural pathways involved in reward, addiction-
related actions, stress, and motivation. There is a bidirectional crosstalk between gut
bacteria and the central nervous system (CNS) [87,88]. The microbiota has been recognized
as a key regulator of the tryptophan metabolism, with a dual effect on serotonin (5-HT)
synthesis and kynurenine pathway [89]. Moreover, intestinal bacteria can produce SCFAs
under anaerobic conditions, mostly butyrate, propionate and acetate; they are normally
used as an energy substrate, but they are also able to activate intracellular signaling by
binding to free-fatty acid receptors (FFARs) and cross the blood–brain barrier (BBB) through
specific transporters and exert their effects on neuronal and glial cells [90]. SCFAs are able
to modulate serotoninergic, GABAergic and dopaminergic neurotransmission in vivo [91]
especially in striatum and hippocampus, both crucial areas to reward behavior [92]. The
gut microbiota and SCFAs are crucial in modulating morphine reward and exert a key role
in morphine addictive behavior [52].

Shishov et al. reported that certain E. coli subtypes can produce and degrade monoamines,
such as DA, NA, and 5-HT, through specific enzymes [93]. Similarly, Escherichia coli,
Lactobacillus, and Bifidobacterium genera have been shown to produce GABA [94]. The vagal
gut–brain axis plays a pivotal role in reward and motivation, influencing host response to
various rewards, included drugs [95].

Addiction is a chronic disorder characterized by an alteration in motivation, stress,
and reward response. It has been demonstrated that both chronic and acute stress play a
role in modulating host response to natural and non-natural rewards, and that is a crucial
risk factor for developing drug abuse and addiction [96]. A bidirectional relationship has
been demonstrated between gut dysbiosis and stress, where imbalances in gut bacteria
cause an amplification of the hypothalamic–pituitary–adrenal (HPA) axis stress response,
starting a vicious circle [97]. Therefore, gut microbiota imbalance, as caused by opioids,
has a role in the development and worsening of addiction to opioids [98] as well as other
licit or illicit substances [99].
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7. Opioid-Induced Gut Dysbiosis in Cancer Patients

In the last few years there has been a growing interest in the literature about the
role of the gut microbiota in cancer patients. The most investigated topics were, on one
hand, the relationship between dysbiosis and carcinogenesis, and on the other hand, the
effect of dysbiosis on the effectiveness of cancer treatments. Few data are still available on
the more complex relationship between opioid use, the gut microbiota, and cancer treat-
ment. Therefore, in the specific subset of cancer patients, clinicians may raise the question
about the interference of opioid-induced gut dysbiosis and the efficacy of chemotherapy
and immunotherapy.

A correlation between gut dysbiosis and carcinogenesis, as well as poor responsive-
ness to anti-cancer treatments, may be plausible [100]. Modulation of the gut microbiota
has been identified as a potential strategy for overcoming resistance to immunotherapy.
The intestinal microbiota plays a key role particularly in the response to immune check-
point inhibitors (ICIs) [101]. Certain specific bacterial compositions such as Akkermansia,
Ruminococcaceae, Faecalibaterium, Bacteroides, and Bifidobacterium have been associated with
better outcomes when using ICIs, including a reduction in tumor growth and an increase
in prolonged progression-free survival (PFS) [102].

Nowadays, there is no evidence that opioid use may affect the efficacy of chemo- or
immunotherapy through gut dysbiosis. Neither do specific opioids seem to increase the risk
more than others. However, a retrospective study, conducted on a cohort of 442 metastatic
non-small cell lung cancer (NSCLC) patients, showed that antibiotic and opioid adminis-
tration were related to an overall decreased survival, without any statistically significant
difference between the chemotherapy and immunotherapy group. Authors explained
these findings as a consequence of confounding factors rather than a real opioid- and
antibiotic-induced imbalance in the microbiota [103]. Similarly, a retrospective study in
melanoma patients evaluated all potential interactions between drugs known to modify
the gut microbiota, included opioids, and overall survival. Only antibiotics were associ-
ated with shorter survival in ICI-treated patients [104]. A recent study on 8870 patients
treated with ICIs for different types of stage 4 cancer (NSCLC, urothelial carcinoma, and
melanoma) revealed that both corticosteroids and opioids, prescribed within 30 days before
ICI initiation, strongly correlated with poor prognosis [105].

ICIs work by blocking checkpoint proteins from binding their partner protein, and
therefore, by allowing T cells to increase their antitumor activity. Clearly, any medication
that may interfere with the immune system is supposed to impair their efficacy. For this
reason, the impact of analgesics used for alleviating cancer-related pain on the efficacy of
ICIs represent a hot topic in the current literature. Opioids are supposed to repress the
immune system through different mechanisms, for example by altering T-cell maturation
and function and intestinal microbe composition [98]. Opioids may compromise the
immune response by impairing the immune system, may directly act on cancer cells, or
may indirectly act on the surface barriers located in the gut. Conversely, COX inhibitors
seem to have a favorable effect on the immune system [106], but their use is not suitable for
long-term treatment, nor for severe chronic cancer pain.

Clearly, cancer patients with advanced diseases are more likely to use opioids and, at
the same time, are more likely than others to develop resistance to chemotherapy and to
die. Therefore, it is difficult to correlate opioid use with cancer survival, and specifically
with eventual poor outcomes to chemotherapy or immunotherapy. A recent cohort study,
conducted on over 1700 patients, showed that long-term opioid use before cancer diagnosis
is, by itself, associated with a poor overall outcome [107].

Further research is warranted to discover the potential role of opioids on the gut
microbiota and related immuno- and chemotherapy effects.

Finally, opioid-induced constipation leads to a wide use of laxatives, prokinetics,
antispasmodics, and peripherally acting modulators among cancer patients. Osmotic
laxatives have been shown to disrupt the gut microbiota and render mice susceptible to
Clostridium difficile colonization [108].
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Despite the fact that the mechanism by which opioids induce constipation is well
known, guidelines continue to suggest over-the-counter laxatives as first-line therapy [109].
It is still unclear which laxatives are appropriate to prevent opioid-induced constipation,
but the only mechanism-based treatment is the peripheral antagonism of MOR on the
enteric nervous system, through PAMORAs [110]. Further research should focus on the
possible different effects of traditional laxatives vs. PAMORAs on the maintenance of a
healthy gut microbiota.

8. Gut Microbiota: A New Target of Treatment

As above said, alterations in the gut microbiota/microbiome have been implicated
in various diseases and inflammatory conditions. Restoring the physiological quantity of
specific gut bacteria is now believed to be a valid treatment option.

8.1. Probiotics and Prebiotics

Several studies have highlighted the beneficial effects of probiotics (defined as living
microorganisms) and prebiotics (food components able to provide benefits by maintaining a
healthy microbiota) [111] on various aspects, ranging from improved digestion and reduced
hospitalization rates in cirrhotic patients [112], to ameliorated immune function, and even
positive pain modulation. Particularly, Lactobacillus was found to induce the expression
of mu-opioid receptors in intestinal epithelial cells [113] and in the spinal cord [114].
Preclinical studies have demonstrated a beneficial effect of probiotics in relieving chronic
visceral pain. Zhao et al. demonstrated in an IBD animal model that Clostridium butyricum,
a common gut commensal bacterium, was able to relieve visceral hypersensitivity by
reducing bowel inflammation [115]. Similar findings were reported for Bifidobacterium
infantis [116], probiotic VSL3 [117], and Lactobacillus rhamnosus GG [118] administration in
rats. In mice models, VSL3 was also able to attenuate morphine analgesic tolerance [119].
Moreover, a formulation of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175
was reported to attenuate the HPA axis-induced stress response [120].

Conflicting findings are available about the effectiveness of probiotics on relieving
pain. In a study performed in children, Lactobacillus reuterii administration significantly
reduced non-surgical abdominal pain [121], while Spiller et al. failed to prove a beneficial
effect of Saccaromyces cerevisiae administration in improving intestinal pain in patients with
IBS [122].

The administration of probiotics has been shown to play a potential role in controlling
the adverse effects of cancer therapies, such as oral mucositis and chemotherapy-induced
neuropathic pain [123,124]. Moreover, gut microbiota modulation seems to impact the
effectiveness and relative outcomes of cancer therapies, such as capecitabine for colorectal
cancer pain [125,126].

Prebiotics may also have a role, alone or in combination with probiotics, in chronic
pain relief [127]. In a recent study, a mixture of galacto-oligosaccharide was demonstrated
to reduce abdominal pain in adults suffering from GI diseases [128]. A combination of
specific probiotics with um-PEA could represent an innovative approach for restoring the
gut microbiota and preventing opioid-induced disruption of the gut epithelial barrier, by
attenuating enteric glia activation.

Future therapies should be oriented toward a “tailored” approach: the identification of
specific microbiota alterations may lead to a targeted therapy in order to restore a healthy
microbial balance.

8.2. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) is a therapy used to treat several diseases, such
as Clostridium difficile infections, inflammatory bowel disease (IBD), and insulin resistance.
It consists of an infusion of liquid filtrated feces from a donor directly into the gut of
a patient [129]. Few data are still available on the possible effects of FMT in chronic
pain syndromes. Thurm et al. reported a full recovery from pain symptoms in a patient



Int. J. Mol. Sci. 2024, 25, 7999 12 of 17

suffering from fibromyalgia after FMT. Interestingly, an increase in Bifidobacterium from 0%
to 5.23% and a decrease in Streptococcus was noticed as related to improved symptoms [130].
Moreover, FMT from naïve donors into chronic morphine treated models can prevent or
delay the development of analgesic tolerance [131].

The hypothesized mechanism by which FMT could be helpful in relieving chronic
pain is the restoration of a balanced gut microbiota, either directly through competition of
pathogenic bacteria or indirectly through stimulation of the intestinal immune system and
gut epithelial barrier protection.

9. Conclusions

Chronic opioid use leads to several adverse gastrointestinal events, which are not
limited to the most commonly known nausea, vomiting, and constipation. Growing evi-
dence in the literature supports an opioid-induced change in gut microbiota, an alteration
of the permeability of the epithelial barrier, and an increased risk of bacterial translocation.
Unfortunately, most information comes from animal studies, while clinical data on chronic
pain patients are currently scarce. With particular regard to cancer patients, who also tend
to have an altered food intake, both in quantity and diversity, and are often polymedicated,
all of these factors should be taken into consideration, as they may potentially affect their
microbiome. Moreover, patients experiencing opioid-induced constipation may further
suffer from gut microbiome disturbances due to the misuse/abuse of laxatives, which are
currently the first line of treatment. We strongly believe that the early use of PAMORAs,
which are the only mechanism-based treatment for OIC, specifically targeting the activation
of opioid receptors in the gastroenteric tract, may be a possible ready-to-use solution. Gut
dysbiosis is surely a potential target for future constipation research, as it may interfere
with the peristaltic action of the intestine. Future investigations should clarify the effects of
opioid-induced gut dysbiosis on the gastrointestinal function of opioid users, on chronic
pain management, and on the efficacy of anti-cancer therapies.
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