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Abstract: Multiple organs and tissues coordinate to respond to dietary and environmental challenges.
It is interorgan crosstalk that contributes to systemic metabolic homeostasis. The liver and brain, as
key metabolic organs, have their unique dialogue to transmit metabolic messages. The interconnected
pathogenesis of liver and brain is implicated in numerous metabolic and neurodegenerative disorders.
Recent insights have positioned the liver not only as a central metabolic hub but also as an endocrine
organ, capable of secreting hepatokines that transmit metabolic signals throughout the body via the
bloodstream. Metabolites from the liver or gut microbiota also facilitate a complex dialogue between
liver and brain. In parallel to humoral factors, the neural pathways, particularly the hypothalamic
nuclei and autonomic nervous system, are pivotal in modulating the bilateral metabolic interplay
between the cerebral and hepatic compartments. The term “liver–brain axis” vividly portrays this
interaction. At the end of this review, we summarize cutting-edge technical advancements that have
enabled the observation and manipulation of these signals, including genetic engineering, molecular
tracing, and delivery technologies. These innovations are paving the way for a deeper understanding
of the liver–brain axis and its role in metabolic homeostasis.

Keywords: liver; brain; interorgan crosstalk; metabolism; hepatokines; metabolites; autonomic
nervous system

1. Introduction

In the past thirty years, the global incidence of type 2 diabetes [1] and non-alcoholic fat
disease (NAFLD) [2] has risen rapidly. These pervasive metabolic diseases are characterized
by overlapping features, including insulin resistance and fatty accumulation in the liver [1].
Historically, research has concentrated on the causes of peripheral metabolic dysfunctions,
with scant attention paid to the role of crosstalk between peripheral organs and the central
nervous system (CNS) in preserving systemic metabolic homeostasis. Interorgan crosstalk
is a key way to mobilize organs against environmental and physiological changes to ensure
overall energy homeostasis. The liver’s role in clearing detrimental cerebral proteins during
senescence has suggested the contribution of the liver to central metabolic regulation [3].
Both the brain, especially the hypothalamus, and liver are critical metabolic organs re-
sponsible for discovering, relaying and reacting to signals that emanate from the systemic
energy metabolism. In fact, disturbances of hepatic and cerebral metabolism are common
in numerous metabolic illnesses [4,5]. The liver not only functions as a supplier of essential
nutrients to the brain but also serves as a crucial organ for detoxifying splanchnic blood. It
was not recognized until the last decade that the liver and brain also engage in a distinct
metabolic dialogue, leading to the coinage of the new term “liver–brain axis” [6,7].

The metabolic dialogue along the liver–brain axis is bidirectional, with both afferent
(“liver-to-brain” communication) and efferent (“brain-to-liver” communication) directions.
Hepatokines, metabolites and afferent sensory nerves transmit metabolic stimuli from the
liver to the brain, while neural signals from the CNS, after integrating peripheral cues,
influence the macronutrients metabolism of the liver.
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This review discusses the current understanding of metabolic signaling across the
liver–brain axis. First, we analyze liver–brain comorbidity, whose clinical manifestations
and pathogenesis are indicative of the close connection between the liver and the brain.
Hepatokines and metabolites that deliver hormonal information from the liver to the CNS
are described in Sections 2 and 3. Discussed in Section 4 is the neurological connection
between the hypothalamus and the liver. Lastly, we present an overview of innovative
strategies for mapping metabolic crosstalk between the liver and brain, including tracing
methods and transmitting techniques.

2. Interconnected Diseases of the Liver and Brain

The interplay between liver and brain has been recognized for centuries. Hepatic
encephalopathy (HE) is perhaps the most well-known manifestation of this connection,
characterized by neuropsychiatric symptoms stemming from liver dysfunction. Beyond
HE, however, the intricate pathological links between liver and brain seem obscure. This
part focuses on the interconnected diseases of the liver and brain, providing an overview
of the clinical relationship between liver and brain (Figure 1).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 33 
 

 

Hepatokines, metabolites and afferent sensory nerves transmit metabolic stimuli from the 
liver to the brain, while neural signals from the CNS, after integrating peripheral cues, 
influence the macronutrients metabolism of the liver. 

This review discusses the current understanding of metabolic signaling across the 
liver–brain axis. First, we analyze liver–brain comorbidity, whose clinical manifestations 
and pathogenesis are indicative of the close connection between the liver and the brain. 
Hepatokines and metabolites that deliver hormonal information from the liver to the CNS 
are described in the second and third sections. Discussed in the fourth part is the neuro-
logical connection between the hypothalamus and the liver. Lastly, we present an over-
view of innovative strategies for mapping metabolic crosstalk between the liver and brain, 
including tracing methods and transmitting techniques. 

2. Interconnected Diseases of the Liver and Brain 
The interplay between liver and brain has been recognized for centuries. Hepatic en-

cephalopathy (HE) is perhaps the most well-known manifestation of this connection, char-
acterized by neuropsychiatric symptoms stemming from liver dysfunction. Beyond HE, 
however, the intricate pathological links between liver and brain seem obscure. This part 
focuses on the interconnected diseases of the liver and brain, providing an overview of 
the clinical relationship between liver and brain (Figure 1). 

 
Figure 1. The brain and liver are related to each other in the pathogenesis of many diseases. HE, 
hepatic encephalopathy; AHCD, acquired hepatocerebral degeneration; AD, Alzheimer’s disease; 
TBI, traumatic brain injury; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steato-
hepatitis; Aβ, amyloid-β; APOE4, apolipoprotein E4. This figure was created using Figdraw. 

Figure 1. The brain and liver are related to each other in the pathogenesis of many diseases. HE,
hepatic encephalopathy; AHCD, acquired hepatocerebral degeneration; AD, Alzheimer’s disease; TBI,
traumatic brain injury; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis;
Aβ, amyloid-β; APOE4, apolipoprotein E4. This figure was created using Figdraw.

2.1. Neurological Syndrome Linked to a Liver Disease

As a concept, metabolic diseases of the nervous system means the manifestations of
systemic metabolic diseases in the nervous system [8]. Neurological syndromes associated
with a liver disease encompass a spectrum of conditions, including CNS function related
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to structural liver diseases, neurological consequences caused by inborn specific hepatic
enzyme deficiency, trophonosis during childhood that affect the liver and CNS, and periph-
eral neuropathies associated with liver conditions. Given the prevalence of these disorders,
neurologic manifestations other than structural liver diseases (e.g., NFALD, liver fibrosis,
liver cirrhosis, hepatocellular carcinoma et al.) cannot be addressed due to limited space.

2.1.1. Hepatic Encephalopathy (HE)

HE stands as a quintessential example of how liver failure can precipitate alterations
in brain function [8]. Impaired liver function results in inadequate detoxification, thus
allowing the entry of neurotoxins, such as ammonia, manganese, and other harmful
substances, into the cerebral circulation. As of now, elevated serum ammonia levels have
been central to our comprehension of HE, and therapy strategies remain aimed at lowering
ammonia concentrations in the body [5].

2.1.2. Acquired Hepatocerebral Degeneration (AHCD)

AHCD arises from recurrent hepatic encephalopathy, or multiple metabolic disorders
over a long period of time [9]. The onset of AHCD is generally insidious, with the main man-
ifestations of mental disorders, cognitive decline, and Parkinson’s disease-like syndromes,
which are easily misdiagnosed as neurodegenerative diseases [10]. AHCD differs from
hepatic encephalopathy with a solid lesion in the brain [11,12]. Pathologically, it is marked
by neuronal loss and the accumulation of glycogen granules in the cytoplasm of the basal
ganglia, along with abnormal hypoperfusion in some specific brain regions. Studies have
shown that AHCD is associated with a variety of metabolic abnormalities, such as ammonia,
aromatic amino acids, manganese, etc. The neurotoxic effects of manganese are thought
to be causative in AHCD [13], with impaired hepatobiliary clearance leading to higher
serum and cerebrospinal fluid manganese levels in patients with AHCD [14]. Manganese
deposition in the brain often causes diffuse brain parenchymal degeneration [12].

2.1.3. Stroke

Patients with liver disease are prone to both bleeding and thrombophilia due to the
impaired synthesis of coagulation and anticoagulant factors [15], thus increasing their
risk of stroke. Whether NAFLD increases the risk of stroke is currently under intense
investigation. Research with 79,905 participants (including 24,874 NAFLD participants)
indicated that those with NAFLD had a 16% higher risk of ischemic stroke than those
without NAFLD at baseline [15]. A mendelian randomization study suggests that the
potential causal effect of NAFLD on ischemic stroke may be specific to the small vessel
occlusion subtypes and large artery atherosclerosis [16]. As shown above, the liver–brain
axis plays a vital role in stroke and NAFLD. However, contrasting findings from a European
cohort study of 120,795 adults with diagnosed NAFLD or NASH, adjusting for established
cardiovascular risk factors, revealed no association between NAFLD/NASH diagnosis and
stroke risk [17]. Similarly, a small observational study, which included 1601 patients, also
showed that the presence of NAFLD did not exert an impact on post-stroke disability or
mortality outcomes [18].

2.2. Neurodegenerative Diseases and the Liver
2.2.1. Liver’s Role in Neurodegeneration

An emerging therapeutic concept for neurodegenerative diseases, brain energy
rescue [3] highlights similarities in the pathogenesis between neurodegenerative diseases
and metabolic syndrome. More importantly, the liver may be a key regulator of both.
Metabolomics have shown that the liver was the earliest affected organ during the amyloid
pathological cascade in APP/PS1 mice at 5 months of age [19], manifesting as hepatic
hypometabolism and perturbed metabolites mainly involved in amino acid metabolism,
nucleic acid metabolism, fatty acid metabolism, energy metabolism, and ketone body
metabolism. In human populations, liver dysfunction also correlates with cognitive de-
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cline and AD [20]. The clinical and pathophysiological association of NAFLD and fibrosis
with incident dementia and cognition has been widely documented [21–23]. Low-density
lipoprotein receptor-related protein 1 (LRP-1) and amyloid-β (Aβ) levels in the liver tissue
of rats [24] and mice [25] with NAFLD were reduced; these decreases correlated inversely
with Aβ levels in the brain and plasma as well as cognitive function. Reduced peripheral
LRP-1 causes brain Aβ accumulation and cognitive impairment in NAFLD by mediating
the negative effects of NAFLD on peripheral Aβ clearance [24]. Furthermore, clinical
observation data demonstrated that cirrhosis patients exhibited increased plasma levels of
Aβ40 and Aβ42 compared to controls with normal liver function [26,27].

2.2.2. Liver’s Clearance of Aβ

The aggregation of cerebral Aβ accumulation, consequent to impaired Aβ clearance,
is a central event in the pathogenesis of AD. Strategies for AD treatment have primarily
concentrated on clearing Aβ from the CNS, but these attempts have not yielded significant
therapeutic benefits [28]. The physiological capacity of peripheral organs to clear brain-
derived Aβ is pivotal in attenuating brain Aβ burden [29]. A significant proportion of
brain-derived Aβ, estimated to be 40–60%, is transported to the periphery through the
blood–brain barrier (BBB), lymphatic pathways, etc. [30]. The liver, as a major organ tasked
with the clearance of metabolites in the periphery, eliminates a considerable portion of
Aβ42 (13.9%) and Aβ40 (8.9%) from the bloodstream [26]. This clearance was reduced by
the down-regulation of the hepatocyte Aβ receptor LRP-1 with increasing age.

2.2.3. Liver-Derived APOE in AD Pathogenesis

There is an abundant expression of apolipoprotein E (APOE), a hallmark molecule for
AD, in both the brain and the liver. ApoE mRNA expression in the brain is 1/3 of that in
the liver, and astrocytes are the main synthesis sites [31]. The ε2, ε3 and ε4 alleles of the
APOE gene make up the proteins of three ApoE isoforms, ApoE2, ApoE3, and ApoE4, in
which E3 is a protective factor and E4 is a risk factor for Alzheimer’s disease [32].

It has been demonstrated in mouse models that liver-expressed apoE4, independent
of brain-expressed apoE4, has a separate impact on synaptic plasticity and cognition by
impairing cerebrovascular function [33]. To be specific, Liu et al. [33] and Lam et al. [34]
created conditional mouse models where human APOE3 or APOE4 were expressed in the
liver but not in the brain. When these mice were bred with APP/PS1 model mice, they
observed that the presence of apoE4 in the liver worsened brain Aβ deposition and led to
cerebrovascular dysfunction, while apoE3 had the opposite effect, reducing Aβ deposition.

Some hepatic indicators can reflect the progression of amyloid pathology in the brain;
however, routine liver function tests fail to detect the liver’s Aβ clearance capabilities. Liver
LRP-1, Aβ and APOE may be used for the early diagnosis of AD. Peripheral Aβ clearance
and apoE4 blockade that are targeted at the liver provide a strong rationale to treat AD.

2.3. Hepatic Responses to Cerebral Lesions

Brain alterations caused by liver diseases are frequently observed. On the contrary,
is it feasible that a brain injury can affect liver metabolism? This issue is critical in liver
transplants from brain-dead donors, as well as the prognosis for brain damage.

Traumatic brain injury (TBI) is a serious public health issue, with a mortality rate
of 20% to 30% [35] and affecting 27 to 60 million individuals annually [36]. The great
frequency of drug-induced liver damage during hospitalization for brain injury has been
clinically documented [37]. The liver contains the highest macrophage density among
organs and synthesizes most chemokines and cytokines in serum following brain trauma.
In the aftermath of acute brain damage, chemokine production in liver triggers neutrophil
recruitment and subsequent hepatic damage [37]. The liver itself manifests an increase in
enzyme markers of liver tissue injury and acute-phase proteins (APP). On the one hand,
chemokines from the liver amplify the inflammatory response from the CNS to the whole
body. On the other hand, hepatic inflammation alleviates CNS damage by promoting
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the migration of circulating immune cells into the injured brain. These molecular signals
from the liver, in response to brain injury, are instrumental in the peripheral regulation of
brain function.

Recently, attention has been paid to a protein whose expression is diminished in the
liver after brain injury. Employing established mouse models of TBI, Zhu et al. observed
a prompt decrease in hepatic soluble epoxide hydrolase (sEH) levels after TBI, and it
subsequently returned to baseline. The serum level of 14,15-EET (epoxyeicosatrienoic acid)
is inversely related to hepatic sEH activity. 14,15-EET, rapidly crossing the blood–brain
barrier, mimics the neuroprotective effect of hepatic sEH deficiency by facilitating the
emergence of A2 phenotype astrocytes in response to TBI [38].

These findings underscore the neuroprotective capacity of the liver in cerebral lesions.
Most of the TBI treatment was grounded in neuroprotective measurements to curtail
inflammation and secondary brain damage [39]. Given that focal brain lesions elicit a fast
hepatic reaction [40], it is imperative to consider liver injury after brain lesions and avert
secondary brain injury from the perspective of hepatic molecular signaling.

3. Hepatokines Which Act on the Brain

It has recently been discovered that the liver produces a variety of humoral substances
as endocrine moderators [41,42]. The role of several hepatokines in the pathology of obesity,
diabetes, and NAFLD has been studied [41,43]. Some of these hepatokines have been found
to affect other diseases, especially encephalopathic ones such as AD and TBI. Moreover,
some of these circulating factors transmit metabolic messages from the liver to the brain,
thereby modulating body weight and food intake [44,45]. Receptors of a few hepatokines
have been identified in the CNS [46,47]. While the precise neural targets and receptors for
numerous hepatokines remain to be fully elucidated, emerging evidence points to their
participation in central metabolic regulatory processes [48,49]. Here we summarize the
current understanding of hepatokines that exert effects on the brain, outline their known
receptors, and discuss their action on the brain (Table 1).

3.1. FGF21

The liver is thought to be the primary origin of circulating fibroblast growth factor
21 (FGF21) [50], a hormone induced by peroxisome proliferator-activated receptor alpha
(PPARα) in the liver [51,52]. A receptor complex made up of a classic FGF receptor (FGFR1)
and the essential FGF co-receptor (β-klotho) interprets how FGF21 communicates with
cells [53]. FGF21 in the blood can penetrate the blood–brain barrier [53] and can be detected
in human cerebrospinal fluid [54]. FGFR1 is spread throughout the CNS [46], but the
co-receptor β-klotho is predominantly expressed in a few areas that control energy home-
ostasis [46,55], including the suprachiasmatic nucleus (SCN) [56] and the paraventricular
nucleus (PVN) [57] (Figure 2a).

FGF21 may have the potential to treat diabetes and obesity by acting on the CNS.
Central FGF21 treatment increased metabolic rate and hepatic insulin sensitivity. These
metabolic processes are accompanied by the enhancement of sympathetic nerve activ-
ity [53,58], the alteration of circadian behavior, and the increase in glucocorticoid concen-
trations [56]. FGF21 has been reported to regulate metabolism centrally in the following
ways: Firstly, hepatic FGF21 affects peripheral metabolism, probably mediated by inducing
the activation of the hypothalamic–pituitary–adrenal (HPA) axis [57] and suppressing
the expression of the neuropeptide vasopressin in the SCN [59]. Secondly, it stimulates
sympathetic nerve activity via a process involving the neuropeptide corticotropin-releasing
factor [58]. Thirdly, FGF21 also stimulates GABA-containing neurons in the lateral hypotha-
lamic region and zona incerta to protect against obesity [60]. Fourthly, FGF21, as a humoral
regulator of sugar and alcohol appetite, activates glutamatergic neurons in the VMH to
lower sucrose intake [61,62]. Additionally, through an amygdalo-striatal circuit [63], it
decreases alcohol consumption and raises water consumption [64]. Taken together, these
findings provide a unified description for how FGF21 works at a central site (Figure 2a).
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ANGPTL8 is widely expressed in the PVN, DMH, VMH, and ARC. (d) LEAP2 serves as a liver-
derived antagonist of the ghrelin receptor, and its secretion is suppressed by fasting. (e) Stress trig-
gers the release of LCN2 from the liver, which in turn contributes to the development of anxiety-
like behavior in mice. FGF21, fibroblast growth factor 21; PVN, paraventricular nucleus; SCN, su-
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Figure 2. Hepatokine signaling from liver to brain. (a) FGF21, as a hepatokine, acts on the hypothala-
mus to regulate the HPA axis, GABA-containing neurons, and sympathetic nerve activity. (b) GDF15
is mainly secreted by the liver under injury or metabolic stress as an endocrine signal that initiates
emergency neural circuits. (c) Both peripheral and central ANGPTL8 administration reduces c-Fos
positive neuronal expression in the DMH and alters NPY activity to reduce food intake. ANGPTL8 is
widely expressed in the PVN, DMH, VMH, and ARC. (d) LEAP2 serves as a liver-derived antagonist
of the ghrelin receptor, and its secretion is suppressed by fasting. (e) Stress triggers the release of
LCN2 from the liver, which in turn contributes to the development of anxiety-like behavior in mice.
FGF21, fibroblast growth factor 21; PVN, paraventricular nucleus; SCN, suprachiasmatic nucleus;
HPA, hypothalamic–pituitary–adrenal; AP, area postrema; NTS, nucleus of the solitary tract; RET,
rearranged during transfection; GFRAL, glial-derived neurotropic factor receptor-alike; DMH, dorsal
medial nucleus; VMH, ventral medial nucleus; ARC, arcuate nucleus; GHSR, growth hormone
secretagogue receptor; SLC22A17, solute carrier family 22 member 17; BBB, blood–brain barrier;
GDF15, growth differentiation factor; ANGPTL8, angiopoietin-like proteins; LEAP2, liver-enriched
antimicrobial peptide-2; LCN2, lipocalin-2.
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Table 1. Hepatokines which act on the brain. Molecular weights are calculated from https://www.uniprot.org (accessed on 26 May 2024).

Hepatokines Molecular Weight Concentration in
Human Blood Receptors Central Site of

Receptor Expression Effects on the Brain Diseases with
Therapeutic Potential

Apolipoprotein E
(APOE) 34 kDa 0.03~0.05 g/L [65]

Low density lipoprotein
receptor(LDLR) family;
LDL receptor-related
protein 1(LRP1)

Low region specificity

Maintains cholesterol
homeostasis of brain;
liver-expressed apoE4
exacerbated brain Aβ

deposition and
cerebrovascular dysfunction,
whereas apoE3 reduced it.

Alzheimer’s
disease [33,34]

Fibroblast growth factor
21 (FGF21) 19.5 kDa 200~300 pg/mL [66]

FGF receptor (FGFR1);
FGF co-receptor
(β-klotho)

FGFR1 is spread throughout
the nervous system, but
co-receptor β-klotho is
predominantly expressed in
hypothalamus, hippocampal
region, subiculum, and
amygdala [55]

Regulates energy
homeostasis, via activation
of the hypothalamus–
pituitary–adrenal axis.

Obesity; NAFLD;
Diabetes mellitus [57]

Growth differentiation
factor 15 (GDF15) 24.8 kDa 100~1200 pg/mL [47]

Glial-derived
neurotropic factor
receptor-a like (GFRAL);
co-receptor rearranged
during transfection
(RET)

The area postrema (AP); the
nucleus of solitary tract
(NTS) [67]

Conveys peripheral
metabolic messages to the
brain where it activates
substitutive neuronal
pathways to adapt to
shifting energy demands;
reduces food intake and
body mass.

Diabetes mellitus;
Obesity; NAFLD [68,69]

Tsukushi (TSK) 34 kDa 18–49 ng/mL [70] Not clear yet Not clear yet

Functions as a liver-derived
feedback hormone that
attenuates energy
expenditure by engaging in
crosstalk with the CNS in
hypermetabolic states.

Metabolic disease [49]

Angiopoietin-like
protein 8 (ANGPTL8) 22.5 kDa ~300 pg/mL [71]

Leukocyte
immunoglobulin-like
receptor B3 (LILRB3) [72]

Low region specificity and
vasculature (mainly)

Is involved in the regulation
of appetite.

Anorexia; Diabetes
mellitus; Obesity;
NAFLD [73]

https://www.uniprot.org
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Table 1. Cont.

Hepatokines Molecular Weight Concentration in
Human Blood Receptors Central Site of

Receptor Expression Effects on the Brain Diseases with
Therapeutic Potential

Insulin-like growth
factor 1 (IGF-1) 7.6 kDa 82~487 ng/mL [74] Insulin like growth

factor 1 receptor (IGF1R) Low region specificity

Mediates brain growth and
development; functions as
an anti-apoptotic agent by
enhancing cell survival.

Disorders related to
brain development [75];
Traumatic brain
injury [76]; Age-
Related Neurological
Conditions [77,78]

Energy Homeostasis
Associated gene
(ENHO) (Adropin)

5.0 kDa 3.4~4.5 ng/mL [79] Not clear yet [80] Not clear yet
Regulates endothelial cells
and maintains blood–brain
barrier integrity.

Transient Ischemic
Stroke [81,82];
Aging-related
neuropathology [83]

Liver-enriched
antimicrobial
peptide-2 (LEAP2)

23 kDa 5~20 ng/mL [84]
Growth hormone
secretagogue receptor
(GHSR)

Hypothalamus,
Pituitary gland

Endogenous antagonist of
Ghrelin Receptor, thus
preventing the effects of
ghrelin; regulator of food
intake, glucose level and
body weight.

Obesity [85]

Lipocalin-2 (LCN2) 22.6 kDa 590 µg/L 1 Solute carrier family 22
member 17 (SLC22A17) Low region specificity

Induces neuroinflammation
and blood–brain barrier
dysfunction [86]; induces
anxity-like behavior through
Lcn2 receptors in the medial
prefrontal cortex (mPFC).

Cerebral Ischemia [87];
Anxiety disorders [88];
Neurodegenerative
diseases [89]

1 These data are from PeptideAtlas (https://peptideatlas.org/, accessed on 26 May 2024).

https://peptideatlas.org/


Int. J. Mol. Sci. 2024, 25, 7621 9 of 30

3.2. GDF15

Under normal metabolic conditions, growth differentiation factor 15 (GDF15) can be
found in almost all tissues, and is not substantially expressed in the liver [44,90]. However,
in response to a high-fat diet or obesity, the liver emerges as the primary source of plasma
GDF15 [91]. The intraventricular injection of GDF15 reduced food consumption and caused
weight loss by 10–24% in the model organism after 5–6 weeks [91], indicating that the
brain may serve as a site of action for GDF15 to modulate feeding. GDF15-induced weight
loss surpasses that achieved through caloric restriction alone [92,93]. GDF15 can reverse
the compensatory decrease in energy expenditure, making it a promising candidate for
avoiding weight regain after weight loss. Four teams simultaneously and independently
localized glial-derived neurotropic factor receptor-alike (GFRAL), the receptor for GDF15,
to two regions within the hindbrain in mice [47,94–96] in 2017. GFRAL mRNA was
detected [97] in specific brain areas [67] (Figure 2b), namely the area postrema (AP) and
the nucleus of the solitary tract (NTS). GFRAL, together with the co-receptor rearranged
during transfection (RET) [94,98], triggers intracellular signaling to specifically activate
GFRAL-expressing neurons in AP and NTS, which in turn influence neurons within the
parabrachial nucleus and central amygdala [94].

Interestingly, GDF15 appears to be an emergency hormonal signal from the liver [99],
conveying peripheral metabolic messages to the brain, where it activates substitutive neu-
ronal pathways [69] to adapt to shifting energy demands under metabolic stress (Figure 2b).
Furthermore, this adaptive response is unrelated to other appetite-regulating hormones
(e.g., leptin, growth hormone-releasing peptide, and glucagon-like peptide 1) to a large
extent [68]. In an animal model of lipopolysaccharide (LPS)-induced inflammatory injury,
the GDF15 blockade resulted in lower norepinephrine efflux from the output ganglia and
reduced hepatic and plasma triglyceride levels [100]. Thus, GDF15 may enhance organic
tolerance during metabolic imbalances as a liver–brain axis mediator.

3.3. ANGPTL8

Angiopoietin-like proteins (ANGPTLs) are a group of secretory glycoproteins that struc-
turally resemble angiopoietins. They are recognized as the key regulators of lipid metabolism,
since they affect the activity of lipoprotein lipase (LPL) through post-translational modifica-
tions, thereby increasing circulating triglyceride levels [101,102]. The circulating ANGPTL8
in humans and mice is predominantly liver-derived, with a minor proportion coming
from adipose tissue [101]. Within the ANGPTLs family, ANGPTL8 has been shown to act
as a hepatokine involved in hypothalamic appetite control [45]. ANGPTL8 levels were
reduced by fasting [103] and increased upon refeeding [104]. Both peripheral and central
ANGPTL8 administration reduce c-Fos positive neuronal expression in the dorsomedial
hypothalamus (DMH), and alter neuropeptide-Y (NPY) activity in the hypothalamus, thus
significantly reducing food intake [48]. ANGPTL8 is expressed in a range of appetite-
related hypothalamic nuclei, including the paraventricular nucleus of the hypothalamus
(PVN), DMH, the ventromedial hypothalamus (VMH), and the arcuate nucleus (ARC) [48]
(Figure 2c). However, receptors for ANGPTL8 have not been definitively identified [45,105],
and further research is warranted to clarify the mechanisms by which ANGPTL8 regulates
metabolic activity across the liver–brain axis.

4. Metabolites from the Liver to the Brain

The role of the metabolites within the liver–brain axis can be summed up in several
aspects: (1) Multiple hepatic metabolites, such as bile acids and ammonia, require secondary
metabolism by the gut microbiota before entering the bloodstream and brain. (2) Gut-
derived metabolites, such as short-chain fatty acids and gut hormones, act both in the liver
and brain. (3) The metabolites of the liver itself, without intestinal secondary metabolism,
affect the brain after intestinal absorption into the bloodstream, affecting nutrients such as
bilirubin, choline, and vitamins.
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4.1. Bile Acids

The portal vein, which collects blood from the gut, spleen, and pancreas, and the bile
ducts, which contain bile secreted by the liver into the intestine, establish an anatomical bidi-
rectional circulation along the liver–gut axis [106]. Bile acids (BAs) are the most well-known
metabolites produced by the liver for secondary intestinal metabolism. Bile acids enter
the systemic circulation, bind to plasma proteins, mainly albumin and lipoproteins [107],
and distribute throughout the non-enterohepatic organs [108], such as the brain, heart,
and muscles. Despite their low concentration in the brain, BAs play a key role in the
regulation of central metabolic and immunological homeostasis [109]. Emerging evidence
suggests that organs like the brain may participate in alternative BA synthetic pathways.
For instance, CYP39A1, a cytochrome P450 in the brain, can convert cholesterol to oxys-
terols [110], which can be utilized for primary BA synthesis in the liver [111]. In the brain,
the BA receptor, Takeda G protein-coupled receptor 5 (TGR5), is expressed in neurons,
microglia, and astrocytes [112]. BAs, acting directly or indirectly on the brain via TGR5,
have been shown to regulate food intake and mood. Physiological feeding in mice up-
regulates the concentration of BAs in the hypothalamus for a short time and specifically
activates the expression of AgRP/NPY neuron membrane TGR5, thereby regulating the
appetite [113,114]. Chronic stress has been linked to reduced TGR5 expression in the lateral
hypothalamic area (LHA), and TGR5 agonists have been shown to modulate depression-
like behavior through specific neural circuits [115]. Furthermore, TGR5 agonists exhibit
anti-inflammatory and neuroprotective properties, and BAs are implicated in neurodegen-
erative diseases [116–118], hepatic encephalopathy [119] and amyotrophic lateral sclerosis
(ALS) [120]. The role of BA metabolism in cognitive function and brain aging is an area of
growing interest, with elevated serum conjugated primary bile acid (CPBAs) and ammonia
observed in the elderly and individuals with cognitive impairment [121], while inhibiting
intestinal bile acid absorption can alleviate cognitive decline in aged rodents [121].

4.2. Short-Chain Fatty Acids

A well-described effect of the gut microflora, with implications for CNS disease and
therefore possibly affecting the liver–brain axis, is the production of short-chain fatty acids
(SCFAs). SCFAs that are not taken up by colonic cells are transported into the portal
vein. In the liver, all three SCFAs (butyrate, propionate, and acetate) serve as energy
substrates for hepatocytes [122]. Only a small proportion of acetic, propionic, and butyric
acids (36%, 9%, and 2%, respectively) from the colon reaches the circulatory system and
parenteral tissues [123]. Sometimes the vagal afferent is a new route where metabolites
execute the remote control of brain functions. SCFAs have been demonstrated to activate
vagal afferent neurons, hence suppressing food intake [124].

SCFAs can cross the BBB to reach the brain, potentially facilitated by the monocar-
boxylate transporters (MCT) on endothelial cells [125]. Six SCFA receptors have been
identified [126], and notably, GPR109A expression has been detected in the hypothalamic
neuron [127] and rostroventrolateral medulla [128]. In several neurodegenerative illnesses,
the concentrations of combinations of SCFAs and their corresponding gut flora are altered.
SCFAs can modulate CNS immune responses by regulating microglia and T cells [129],
regulate protein misfolding and accumulation, and improve cognitive impairment by res-
cuing mitochondrial dysfunction in the brains of diabetic mice [130], thereby affecting
neurodegenerative diseases [126]. There are, however, two facets of the effects of SCFAs
on the brain: the protective effects form the majority and the harmful effects form the
minority [129]. Relevant experiments need to refine the composition and concentration of
SCFAs that reach the brain.

4.3. Ammonia

About 90% of the total amount of ammonia produced by the intestine (about 4 g per
day in adults) comes from bacterial urease-mediated urea hydrolysis [131]. Ammonia, con-
tinuously generated from amino acid breakdown in tissues, is efficiently converted to urea
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by the liver, with low blood concentrations [132]. When liver dysfunction occurs, ammonia
cannot be metabolized into urea in the liver [133]. It enters the blood circulation from the
intestine, resulting in increased blood ammonia [134]. Ammonia is neurotoxic, and the brain is
one of the most vulnerable organs to the deleterious effects of ammonium [135,136]. Hepatic
encephalopathy, characterized by an altered mental state and cognitive impairment, is a
clinical manifestation of ammonia toxicity. Elevated ammonia levels in the blood and brain
were observed in AD patients [137] and aged mice [121]. Previous studies have revealed
that excessive ammonia exacerbates brain pathology. Interestingly, recent studies have
found that ammonia can relieve stress and soothe mood, potentially through enhancing
glutamine availability and supplementing presynaptic GABAergic neurotransmission [131].

4.4. Bilirubin

Roughly 80% of bilirubin is from the disintegration of senescent red blood cells by
mononuclear phagocyte systems of liver, spleen, and bone marrow and from prematurely
destroyed erythroid cells in the bone marrow. Unconjugated bilirubin travels with the
blood stream to the liver, which converts unconjugated bilirubin into conjugated forms for
bile secretion. Any obstacle in the process of bilirubin metabolism, such as the destroyed
integrity of the BBB and the low plasma albumin, will cause bilirubin in the plasma to
increase (hyperbilirubinemia) [138], commonly seen in neonates [139]. Free bilirubin passes
through the BBB and is deposited in brain regions, inhibiting the utilization of oxygen by
brain tissue and causing irreversible damage to the nervous system, a condition known as
bilirubin encephalopathy [140].

4.5. Vitamin

The liver and bile salts play a crucial role in the absorption, storage, and metabolic
transformation of fat-soluble vitamins A, D, E, K, and B12 [141,142]. When the liver is
dysfunctional, vitamins synthesized by other organs cannot be absorbed, stored, and
transformed by the liver, resulting in vitamin deficiency.

Vitamins are indispensable for brain development and function, with deficiencies
implicated in degenerative diseases. Each vitamin is actively carried across the BBB [143].
B vitamins, in particular, are vital for neurotransmitter synthesis and brain physiological
functions [144], with their concentration in the brain being 50 times higher than in the
bloodstream [145]. Additionally, the turnover rate of B vitamins in the brain is considerable,
from 8% to 100% every day [21]. Vitamin B6, as a coenzyme, deals in the biosynthesis
of neurotransmitters including dopamine, serotonin, and GABA, and it exerts a neuro-
protective influence on the glutamate system [146,147]. The principal role of vitamin
B12 in neuropathy is attributed to myelin synthesis, which facilitates peripheral nerve
regeneration [148,149]. Niacin, also known as vitamin B3, is an essential micronutrient for
the synthesis of nicotinamide adenine dinucleotide (NAD) [150]. As a precursor of NAD+,
niacin may be involved in the brain aging process.

The impact of vitamin C on the central nervous system, though less studied, is believed
to be significant in curbing excessive inflammatory responses [151]. A deficiency in vitamin
C can lead to the hyperactivity of the microglia, resulting in the release of numerous inflam-
matory mediators and the potential onset of neurological disorders and neurodegeneration.

The nexus between vitamin D and neurodegenerative diseases has been extensively
studied in recent years. Population-based observational studies [152] and controlled
trials [153] have suggested that vitamin D supplementation could offer benefits against
dementia and AD. However, conflicting findings from animal and longitudinal studies
have shown that vitamin D supplementation might exacerbate the progression of AD and
increase mortality risk [154]. These divergent outcomes prompt us to pay attention to the
dosage of vitamin D and course of vitamin D treatment on the CNS.
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4.6. Choline

Choline is an essential nutrient found in various foods and serves as a precursor
for the synthesis of betaine, choline phospholipids, and acetylcholine [155]. Choline
absorbed by the brain may first enter a storage pool, possibly phosphatidylcholine in
the membrane, and then be converted to acetylcholine. The human body can produce a
modest amount of choline in the liver [156], yet the intake of this nutrient from external
sources is imperative to avert deficiency symptoms. Current dietary recommendations for
choline intake, 425 mg/day for adult women and 550 mg/day for adult men [156], may not
be optimal for brain health, and inadequate intake has been correlated with an increased
risk of dementia [157].

A large body of evidence underscores the importance of choline for maintaining
healthy brain function [158,159]. Dietary choline deficiency developed AD symptoms and
disrupted hippocampal networks in mice [159]. The vitality of choline in maintaining
the brain health of humans starts prenatally and continues into maturity and old age.
Randomized controlled experiments have demonstrated that increasing maternal choline
consumption has long-lasting positive effects on children’s attention, memory, and problem-
solving abilities throughout their school years [160]. In an AD mouse model, maternal
supplementation with a 4.5-fold adequate daily intake of choline has shown improvements
in spatial memory for offspring [161]. Additionally, choline supplementation in adult AD
mice significantly reduced Aβ plaque density and brain inflammation [162,163].

4.7. Liver–Brain Axis and Gut Metabolites: Possible Association

The gut–liver–brain axis influences the development of disease, including changes
in liver metabolites, microbial metabolites, intestinal permeability, endotoxins, antigens,
cytokines, neurotransmitters, gut hormones, the intestinal enteric nervous system, and
hepatic autonomic nerves. By taking into account the extensive research on the gut–brain
axis [164,165], Figure 3 elucidated the role of liver-derived metabolites in the brain and
explored mechanisms of bidirectional crosstalk between the liver–brain axis and the gut.

The absorption and utilization of the food from the gut to the brain passes through the
liver. The influence of gut microbiota metabolites on liver [166] and neurological [167,168]
diseases is widely established. Metabolites produced by the liver are further processed
by gut microflora and then absorbed into the blood through the intestine. Disruptions at
any stage of the gut barrier—whether microbial, epithelial, or vascular—can challenge
gut-liver crosstalk and trigger liver diseases such as NAFLD, alcoholic liver disease (ALD),
and primary sclerosing cholangitis (PSC) [166]. As a result of which, the gut microflora
has implications for liver and CNS disease, and, therefore, may also affect the liver–brain
axis [169].

Enterohepatic circulation carries a variety of factors and metabolites to mediate com-
munication between liver and intestine. Most metabolites of the intestine and liver can
reach the brain via the blood flow; in addition to this, the autonomic nervous system of the
intestine and liver sends information to the brain. The liver harbors a multitude of enzymes,
some unique to it; for example, enzyme systems that synthesize ketone bodies and urea
play a critical role in synthesizing essential metabolites that underpin the vitality of gut
and brain. In addition to being produced in the brain, several neurotransmitters, such as
serotonin, dopamine, and norepinephrine, are also produced by several bacteria present in
the human gut microbiome. Although gut-produced neurotransmitter metabolites cannot
directly cross the BBB, peripherally produced neurotransmitters may subsequently alter
brain chemistry via vagus nerve stimulation. The hepatic vagus nerve works by sensing
the intestinal microenvironment and providing sensory input to the brainstem nuclei [170].

The use of antibiotics, probiotics, and polyphenols confirmed the gut–liver–brain
axis’ key role in different diseases. Some specific treatments, such as TGR5 agonists, FXR
agonists, GLP-1 receptor antagonists, and FGF21 analogues, have beneficial effects on
maintaining the balance of the gut–liver–brain axis [171]. Metabolomics has revealed
a plethora of metabolites along the liver-gut–brain axis, yet few have a special effect
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on the brain. The further development of drug targets along the gut–liver–brain axis
may be a key pathway for neuroprotection and metabolic improvement. Addressing this
challenge necessitates a combination of liver secretomics, gut microbial metabolomics and
cerebrospinal fluid metabolomics.
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5. Neural Interfaces between Brain and Liver

Hepatic metabolism is regulated by humoral factors and neuronal activity. Even
though humoral effects have long been considered predominant, the role of neuronal
activity in liver metabolism is equally significant. The first report suggesting that liver
metabolism could be affected by the CNS might be Claude Bernard’s experiment in 1849
that a puncture of the fourth ventricle caused temporary glycosuria [172]. Subsequent
research has indicated that local neural networks are integral to liver pathologies such as
NAFLD and hepatic insulin resistance [173]. Hypothalamic nuclei project to the brainstem
and spinal cord, where they launch sympathetic or parasympathetic outflow to the liver.
The liver also sends metabolic signals to the CNS via afferent nerves [174]. With the
development of molecular neurobiology, neural pathways connecting the CNS to the liver
are gradually elucidated.

vecteezy.com
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5.1. Hypothalamic Nuclei Influence Liver Metabolism
5.1.1. Hypothalamic Nuclei and Liver

The hypothalamus can be artificially divided into several sections [175,176]. Stanley
et al. applied a combination of viral and transgenic techniques to locate and describe
neural populations that project from the hypothalamus to the liver [177], including the
following: arcuate nucleus (ARC), suprachiasmatic nucleus, paraventricular nucleus, lateral
hypothalamus (LH), dorsomedial hypothalamus (DMH) of hypothalamus, dorsal motor
nucleus of vagus, pontine reticular nucleus, nucleus of the solitary tract, nucleus ambiguus,
paraventricular thalamus, and the central amygdaloid nucleus. These hypothalamic nuclei,
which interface with the liver, are labeled with abbreviations in Table 2. Neurons that
compose these nuclei are sensitive to either signals from the peripheral nervous system or
circulating stimuli, such as fluctuations in nutrients and hormone levels. They collectively
establish an appetite set point, a baseline for food intake, to modulate hepatic glucolipid
metabolism [178].

Table 2. The subdivisions of the hypothalamus and the functions of the nuclei associated with
liver metabolism.

From Medial
to Lateral

From Anterior
to Posterior Hypothalamic Nuclei Abbreviation Functions on Liver Metabolism

Periventricular
zone

Periventricular nucleus

Suprachiasmatic nucleus SCN SCN manipulates the circadian
clock of hepatic glucose secretion.

Arcuate nucleus ARC

ARC receives integrated
information from the VMH and
LH about food intake. AgRP
neurons and POMC neurons
control fat accumulation and
hepatic glucose production in
opposite ways.

Intermediate zone

Preoptic area
Periventricular nucleus
Medial preoptic nucleus
Lateral preoptic nucleus

Supraoptic area
(anterior area)

Suprachiasmatic nucleus SCN /
Supraoptic nucleus

Paraventricular nucleus PVN

PVN integrates multiple signals
from different brain areas
including ARC, VMH, SCN
and LH.

Anterior hypothalamic nucleus

Lateral hypothalamic nucleus LH
LH serves as a “feeding center”
and is involved in modulating
feeding behavior.

Tuberal area
(middle area)

Arcuate nucleus ARC /

Dorsomedial nucleus DMH DMH integrates feeding behavior
with circadian activity.

Ventromedial nucleus VMH
VMH is involved in feeding
behavior and is said to be a
“satiety center”.

Lateral tuberal nucleus

Mammillary area
(posterior area)

Mammillary nucleus
Posterior hypothalamic nucleus
Lateral hypothalamic nucleus LH /

Latera zone
Lateral preoptic nucleus
Lateral tuberal nucleus
Lateral hypothalamic nucleus LH /
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5.1.2. ARC and Liver Metabolism

There are two groups of best-studied intermingled neurons in the ARC, the agouti-
related peptide (AgRP) neurons and the pro-opiomelanocortin (POMC) neurons, both of
which control fat accumulation and hepatic glucose production in opposite ways. POMC
is a precursor protein of the anorexigenic α-melanocyte-stimulating hormone (α-MSH),
which reduces food intake by activating the MC4R expressed by target neurons [179]. AgRP
neurons release two orexigenic neuropeptides, AgRP and neuropeptide (NPY) [180], gener-
ally promoting feeding. Hormones, including insulin, ghrelin, leptin, and cholecystokinin,
alter the activity of these neurons to affect glucose metabolism [181,182]. Subsets of POMC
and AgRP neurons are also excited or inhibited by plasma glucose levels [183]. POMC
activation improves hepatic insulin sensitivity. Conversely, AgRP activation decreases
hepatic insulin sensitivity.

5.1.3. PVN and Liver Metabolism

PVN resides in the center of the hypothalamus and integrates a variety of signals from
different brain regions, including ARC, VMH, SCN, and LH [184]. Then, the preganglionic
neurons receive information from the PVN to adjust the metabolic activity of the autonomic
pathway [184]. Gao et al. discovered that in animal models of type 2 diabetes, there is
a general shift towards excitation in hypothalamic nuclei associated with the liver [185].
Among these shifts, alterations in autonomic circuits in PVN are key factors in the imbalance
of the brain–liver autonomic nerve pathway, which contributes to dysregulated liver
functions [185].

5.1.4. VMH and Liver Metabolism

The VMH was initially identified as a key hypothalamic site for energy homeostasis.
Steroidogenic factor-1 (SF-1) neurons, a population of VMH glutamatergic neurons, are vital
for peripheral metabolic homeostasis [186]. The optogenetic stimulation of SF-1 neurons
raises hepatic glucose production [187] and simultaneously enhances hepatic insulin
sensitivity. The calcium channel subunit and thrombospondin receptor alpha2delta-1
(α2δ-1) regulate the activity of SF-1 neurons through non-canonical mechanisms [188].
SF-1 neurons exert concomitant effects on sympathetic output by projecting to the anterior
bed nucleus of the stria terminalis, thus affecting blood glucose levels [189].

5.2. Nerve Fiber Connections between the CNS and the Liver

The hypothalamic control of feeding behavior and liver metabolism relies on the
autonomic nervous system (ANS) (Figure 4). The route of nerve impulses between the
brain and the liver is categorized into efferent and afferent nerves.

5.2.1. Afferent Sensory Nerves

Macronutrients absorbed from gastrointestinal digestion enter the liver through the
portal vein. For a long time, the liver’s metabolic sensing was deemed the primary source
of metabolic signals to the brain, since the hepatoportal system contains a large number
of chemoreceptors. The sensory receptors in the portal vein and liver transmit hepatic
metabolic feedback to the brain via the vagus nerve [190]. Feeding increases the level of
glucose in both the portal vein and intrahepatic blood; concurrently, the excitement of the
vagus nerve fosters higher hepatic glucose absorption and facilitates glycogen synthesis.
When the hepatic branch of the vagus nerve is severed, glucose and glycogen metabolism
regulation gets impaired [191]. Currently, the liver’s metabolic sensing role is being reeval-
uated as hormone receptors in the brain, such as insulin [192], leptin and ghrelin, which
allow the brain to sense blood-borne metabolic information from peripheral organs.
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5.2.2. Efferent Nerve Pathways

The efferent nerve pathways from the brain to liver are composed of two branches
of the ANS, namely the sympathetic and parasympathetic systems. The divisions of
parasympathetic and sympathetic nerves are the yin and yang of the ANS [193]. For
hepatic metabolism, the activation of sympathetic aminergic and peptidergic innervation
in the liver results in gluconeogenesis. Meanwhile, parasympathetic activity increases
carbohydrate storage and lowers hepatic glucose output [194], even though the presence of
parasympathetic nerve endings in the liver is challenged.

For the sympathetic hepatic nerve, the pre-autonomic neurons in the hypothalamus
emit hypothalamomedullary fibers [195] that ultimately terminate in the intermediolateral
column (IML) of the spinal cord. These fibers go through the periaqueductal gray and
adjacent reticular formation of the brainstem before reaching the IML [196]. In addition, the
hypothalamus also sends direct projects to the sympathetic preganglionic neurons of the

smart.servier.com
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IML [197] via the hypothalamospinal fibers [198]. Preganglionic neurons originating from
IML in the lateral horn of the thoracolumbar spinal cord extend their axons into the celiac
ganglion (postganglionic neurons), which innervate the liver. Postsynaptic sympathetic
hepatic nerve bundles penetrate into the liver to varying degrees, accompanied by portal
hepatic vessels [196].

The efferent parasympathetic autonomic signals are transmitted through preganglionic
cells in the dorsal motor nucleus of the vagus (DMV) of the brainstem and nearby medullary
reticulocyte clusters. DMV is directly connected to postganglionic ganglion cells via the
vagus nerve, without involving the spinal cord. The postganglion cells are presumably
located in the vicinity of the liver. How intrahepatic nerve fibers connect to exogenous
nerves remains unclear so far [199], and the presence of parasympathetic intrahepatic
fibers is debatable. Recently, a team demonstrated the presence of only symmetric nerves
and no parasympathetic neurons in different mammalian liver tissue substances through
systematic observations of the three-dimensional distribution of nerves in mice, monkeys,
and human liver [200]. Subsequently, sympathetic neurodegenerative lesions were found
in the liver in different mouse obesity models. For this reason, it is sympathetic rather than
parasympathetic nerves in the liver that affect the process of metabolic disorders.

5.2.3. Neurohormone and the Liver

Although the liver is not the primary site of action for most neurohormones, it plays a
significant role in the inactivation of neurohormones. This part of the evidence is slightly
old, and for the completeness of the review, it will be briefly described here. Neurohor-
mones known to be effectively inactivated in the liver include neurohypophyseal antidi-
uretic hormone (ADH), prolactin (PRL) [201], growth hormone (GH), gonadotropins (Gn),
and melanocyte-stimulating hormone (MSH). In instances of experimental liver damage or
human liver pathology, water retention is frequently reported, which is often attributed to
impaired ADH inactivation by the liver [202].

6. Advanced Techniques for Tracing and Transmitting along the Liver–Brain Axis

The delineation of the molecular mechanisms of metabolic crosstalk along the liver–
brain axis remains in its early stages. The development of tracing and delivery techniques
is essential for accelerating discoveries in this area. This part will cover molecular tracing
in systemic circulation, viruses for retrograde neuronal circuits, and organ-specific drug
carriers targeting the liver or brain (Figure 5).

6.1. Molecular Tracing

Most of the humoral factors from liver to brain are small-molecule metabolites and
proteins. The metabolomics of the liver and the brain reflect their static metabolite abun-
dance. Metabolic flux analysis (MFA) can also reveal the turnover flux of metabolites
in the circulatory system [203] and the origin of intermediate metabolites in different
tissues [204], facilitating the identification of interorgan metabolic exchange. In vivo iso-
tope tracing combined with metabolic flow analysis offers dynamic insight into metabolic
processes [205–207].

Eukaryotic metabolism is characterized by tissue and cell heterogeneity, but single-
cell and single-organelle metabolomics have not yet been established. After oral, intra-
venous, or intraperitoneal injection of isotope tracers, liver tissue, portal blood, brain
tissue, and cerebrospinal fluid were obtained. To compensate for the low resolution of
current metabolomics techniques, prior to metabolic quenching and metabolite extraction,
fluorescence-activated cell sorting or mass spectrometry imaging spatial metabolomics
can be used to characterize metabolite levels and isotope labeling patterns at subcellular
resolution. The current method, based on mass spectrometry imaging (MSI), needs a
necessary trade-off in spatial resolution, metabolite coverage, and sensitivity. However,
these methods only represent the average value of metabolic intermediate labeling within
the tissue [203]. Neither isotope tracing nor MFA can track individual molecules.



Int. J. Mol. Sci. 2024, 25, 7621 18 of 30Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 19 of 33 
 

 

 
Figure 5. Strategies to observe crosstalk between liver and brain, including tracing strategies to neu-
ral circuits and hormonal molecules, and some molecular delivery techniques from liver to brain. 
SORT-LNPs, selective organ targeting-lipid nanoparticles; GalNAc, N-acetylgalactosamine cou-
pling; ASGPR, Asialoglycoprotein receptor. Part of this figure was drawn using materials from 
https://www.figdraw.com/#/, accessed on 20 May 2024.  

6.1. Molecular Tracing 
Most of the humoral factors from liver to brain are small-molecule metabolites and 

proteins. The metabolomics of the liver and the brain reflect their static metabolite abun-
dance. Metabolic flux analysis (MFA) can also reveal the turnover flux of metabolites in 
the circulatory system [203] and the origin of intermediate metabolites in different tissues 
[204], facilitating the identification of interorgan metabolic exchange. In vivo isotope trac-
ing combined with metabolic flow analysis offers dynamic insight into metabolic pro-
cesses [205–207]. 

Eukaryotic metabolism is characterized by tissue and cell heterogeneity, but single-
cell and single-organelle metabolomics have not yet been established. After oral, intrave-
nous, or intraperitoneal injection of isotope tracers, liver tissue, portal blood, brain tissue, 
and cerebrospinal fluid were obtained. To compensate for the low resolution of current 
metabolomics techniques, prior to metabolic quenching and metabolite extraction, 

Figure 5. Strategies to observe crosstalk between liver and brain, including tracing strategies to
neural circuits and hormonal molecules, and some molecular delivery techniques from liver to
brain. SORT-LNPs, selective organ targeting-lipid nanoparticles; GalNAc, N-acetylgalactosamine
coupling; ASGPR, Asialoglycoprotein receptor. Part of this figure was drawn using materials from
https://www.figdraw.com/#/, accessed on 20 May 2024.

Single-molecule tracking allows for studying the ins and outs of metabolic molecules
in the liver–brain axis. A certain degree of single-molecule tracking can be achieved by
photoactivatable or photoconvertible fluorescent fusion proteins, inorganic fluorescence
probes, and membrane-permeable dyes, which are integrated with in vivo imaging tech-
nology [208,209]. Although DNA transfection is already widely used, the direct delivery
of proteins into cells will be more effective at tracking single molecular metabolic path-
ways [210]. The nanopore electroporation technique holds great potential in the field of
intracellular single-molecule imaging to deliver proteins labeled with organic dyes into
living cells. For example, in in vitro experiments, hepato-intestinal metabolites can be de-
livered into neurons using nano-electroporation technology; in these in vivo experiments,
the target hepatogenic protein is labeled by tail vein injection, and the expression of the
label is observed by radiographic techniques or in brain sections.

https://www.figdraw.com/#/
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6.2. Neural Tracing

Before the advent of modern neuroanatomy, scientists studied neural projections be-
tween the CNS and visceral tissues by stimulating specific brain areas or ablating autonomic
nerves. This expands our knowledge of how the central site controls liver metabolism.
Limitations include the inability to visualize neural connections and the risk of damaging
the surrounding regions [211].

Actually, viruses that infect neurons across synapses, particularly the rabies virus,
have been the most common method for retrograde neuronal circuits [212]. It is the advent
of virus tracking that has promoted the study of viscera-specific projections originating
from the brain. In rodent models for functional validation, genetic manipulation techniques
for specific neuronal populations help to delineate the central sites innervating peripheral
organs [213]. The combination of virus tracking and transgenic strategies may facilitate
studies of metabolic coordination of organs that appear anatomically disparate but func-
tionally related [177]. Injecting retrograde viruses into the liver allows us to explore the
neural connections between the liver and the brain. The role of target molecules in the liver
and brain can be explored through the strategy of liver- or brain-specific knockout of target
genes. However, due to their low throughput, genetic manipulation techniques are mainly
employed for confirming connections proposed by other methods.

6.3. Transmitting Techniques

With the rapid development of drug delivery technologies, organ-specific carriers
are just around the corner. SORT-LNPs are reportedly tissue-specific mRNA delivery
platforms that introduce selective organ targeting (SORT) nanoparticles into conventional
lipid nanoparticles (LNPs), which breaks the liver accumulation limit for drug delivery
to extrahepatic tissues [214,215]. On the other hand, N-acetylgalactosamine (GalNAc)
coupling technology has significant advantages in treating liver diseases. GalNAc has
been identified as a targeted ligand with a high affinity for the Asialoglycoprotein receptor
(ASGPR) [216], specifically highly expressed on hepatocyte surfaces. In contrast, the
receptor is expressed much less on other cell surfaces [217]. Therefore, this technology can
exclusively focus on metabolic disorders in the liver and rarely enter other tissues.

In the past few years, extracellular vesicles (EVs), especially exosomes, have attracted
considerable attention as novel delivery vehicles for drugs [218]. Once released in circula-
tion, exosomes can reach any organ where they transmit signals to their recipient cells with
or without direct cell-to-cell contact [219]. Despite exosome-regulated metabolic signaling
across the liver–pancreas [220], liver–fat [221] and fat–brain [222] axes, no studies have
detailed the mechanisms by which exosomes regulate metabolism via the hepatic–brain
axis. EVs are often described as biomarkers and novel delivery systems for therapeutic
agents in metabolic liver diseases [223,224] and neurodegenerative diseases [225]. As natu-
ral nanoparticles in systematic circulation, exosomes may be ideal drug delivery vectors
from the liver to brain due to their lower immunogenicity, their longer circulation time in
body fluids, and their ability to cross the BBB compared to synthetic carriers.

7. Summary and Perspectives

The regulation of physiological activities and the pathology of metabolism-related
diseases in the brain and liver depend on the metabolic signals across the liver–brain axis.
This intricate communication is mediated by the systemic circulation and ANS, which
together orchestrate the metabolic crosstalk between the liver and the brain. Herein, we
encapsulated the current knowledge of metabolic signals across the liver–brain axis from
the perspective of interconnected diseases of liver and brain, hepatokines, metabolites,
nervous connections, and neurohormones. Unraveling the molecular mechanisms linking
humoral factors and neural pathways across the liver–brain axis is of substantial importance
for advancing our understanding of metabolic-related diseases, contributing to a holistic
view of disease pathology.
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Hepatokines and metabolites have emerged as promising targets for drug discovery
aimed at treating liver and brain pathologies. Notably, FGF21 and GDF15 are advancing into
clinical trials, holding potential for the treatment of obesity and its associated comorbidities.
Despite these advances, research into the liver–brain axis remains nascent, with many
questions yet to be resolved. Future research needs to address the following questions:

(1) While certain liver-derived factors are known to be recruited to the CNS, only a few
of these circulating factors have been identified for their central receptors and central
action. It is worth continuing to study the effects of liver factors on the central nervous
system and the sites of action, and trying to find specific drugs that regulate the
central metabolism.

(2) Intestinal flora metabolites mediate liver–brain interactions. The complexity of the gut
microbiome is daunting. Most of the current research is an observational snapshot of
the gut microbiota and has not explored in detail the dynamic evolution of microbial
products in the liver and brain. How to determine the source of intestinal metabolites?
What role does the liver play in these processes? What is the dynamic evolution of
gut microbes in different tissues? These questions are left for future studies.

(3) Though the central location of receptors for several liver factors has been identified,
delivering drugs to specific brain regions and avoiding side effects are still a challenge.
Future studies could explore discovering more hepatogenic molecules with central
receptor and regulatory roles to develop highly selective agonists or antagonists for
the neuroregulation of metabolism.

(4) The hypothalamus–ANS–liver axis has been confirmed, with several hypothalamic
nuclei engaging in hepatic metabolism through ANS outputs. However, the precise
neuroanatomy and the transmission of metabolic information via nerve fibers in the
liver require further refinement.

(5) Cutting-edge techniques such as single-molecule tracking and cell type-specific trans-
genic methods will be instrumental in deciphering how the liver communicates with
the brain. However, the throughput and resolution are low, and we call for the
development of single-cell and single-organelle metabolomics technologies.
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