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Abstract: Synthetic polymer surfaces provide an excellent opportunity for developing materials
with inherent antimicrobial and/or biocidal activity, therefore representing an answer to the in-
creasing demand for antimicrobial active medical devices. So far, biologists and material scientists
have identified a few features of bacterial cells that can be strategically exploited to make polymers
inherently antimicrobial. One of these is represented by the introduction of cationic charges that
act by killing or deactivating bacteria by interaction with the negatively charged parts of their cell
envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). Among the possible cationic
functionalities, the antimicrobial activity of polymers with quaternary ammonium centers (QACs)
has been widely used for both soluble macromolecules and non-soluble materials. Unfortunately,
most information is still unknown on the biological mechanism of action of QACs, a fundamental
requirement for designing polymers with higher antimicrobial efficiency and possibly very low toxic-
ity. This mini-review focuses on surfaces based on synthetic polymers with inherently antimicrobial
activity due to QACs. It will discuss their synthesis, their antimicrobial activity, and studies carried
out so far on their mechanism of action.

Keywords: antimicrobial surfaces; antimicrobial polymers; quaternary ammonium centers;
antimicrobial mechanism

1. Introduction

One of the routes for pathogen dissemination is via contaminated surfaces, as most
bacteria can survive for a long time even on the surface of objects. Nosocomial infections
generated by contaminated surfaces are a great concern all over the world. Once the human
body and a medical device or implant come into contact, a door opens for bacteria to enter.
For example, patients with a urinary catheter present an infection risk of 50% after 10 days,
and 100% after 30 days [1]. However, common disinfectants used in routine cleansing,
generally based on quaternary ammonium compounds, halogen releasing agents, and phe-
nolics, are in some cases ineffective at killing pathogenic bacteria, as their activity depends
on several factors, including the surface contact period, pH, temperature, and amount and
nature of the microorganisms [2]. In the past two decades, to obtain decontamination sys-
tems, different antimicrobial substances have been incorporated in the bulk or as a coating
of surfaces. They can be added during the phase of production, a posteriori absorbed,
or covalently bound to functionalized materials, e.g., polymers [3,4]. The storage of anti-
pathogens in bulk materials is one of the approaches used for gradually releasing biocides,
which provides sustained delivery able to kill pathogens over time. However, at least three
disadvantages can be glimpsed in such an approach: (i) an excessive use of antibiotics that
can lead to the development of antibiotic resistance; (ii) the end of antimicrobial activity
once the leaching component is exhausted, which may foster bacterial resistance when the
drug doses become sub-lethal; and (iii) the environmental contamination and accumulation
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of non-degradable leaching components that may generate resistance in environmental
bacteria [5]. To this end, it is worth noting that over the last few decades, leading health
organizations have warned about the globally increasing numbers of antibiotic-resistant
bacteria among pathogens, in both hospitals and communities [6–9].

Non-releasing polymeric surfaces allow for the overcoming of issues related to the use
of releasing systems, provided that the polymer is inherently antimicrobial.

Most of the surface-forming polymers are cationic and contact-killing and, most im-
portantly, they do not induce serious microbial drug resistance as they produce physical
damage to bacterial cells or exert non-specific oxidative stress instead of addressing spe-
cific targets such as ribosomes [10], while the presence of cationic moieties facilitates the
interaction with the surface of the microbial membrane. Among the cationic groups, the
use of quaternary ammonium centers (QACs) as antiseptics and disinfectants dates to
the 1930s [11]. Structurally, QACs are positively charged organic molecules containing
hydrogens and/or alkyl groups covalently attached to a central nitrogen atom. QACs may
be generated by protonation of primary, secondary, or tertiary amine groups, so that the
extent of the quaternarization is pH-dependent (according to the pKb of the amine) or they
possess a permanent charge deriving from the nitrogen attached to four groups by covalent
bonds such as in alkyl pyridiniums, quaternized amines, and N-chloroamines (Figure 1).
Polymers bearing primary, secondary, and tertiary protonated amines usually have low
hemolytic activity compared with those containing QACs with a permanent charge [12,13].
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Figure 1. General formulas of quaternary ammonium centers (QACs) and structure of 2-
(dimethylamino ethyl) methacrylate (DMAEMA).

In this contribution, recent developments in the field of antimicrobial polymer surfaces
are reviewed, with a particular focus on those containing protonated or quaternized amines
and alkyl pyridinium as QACs. Several important aspects will be addressed, such as the
synthesis of the most used QAC-based materials, in terms of both coated surfaces and
intrinsically antimicrobial surfaces, and the proposed mechanism of action depending on
the QAC-containing polymer structures.

2. Antimicrobial Polymer Surfaces Containing QA Moieties

A large variety of polymers and copolymers have been studied with the aim of
enhancing their antimicrobial activity by the density of charges, hydrophobicity, molecular
weights, and other parameters, and several techniques have been used to create polymeric
antimicrobial surfaces. A few of such surfaces consist of a coating exhibiting organic or
inorganic substrates with antimicrobial polymers. Others are related to the formation of
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films deriving from thermoplastic antimicrobial polymers that are non-soluble in water
(Scheme 1) [14].
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Scheme 1. Representation of possible antimicrobial systems based on polymers.

In both cases, most of the surfaces that use QA moieties as antimicrobial groups are
acrylic- or methacrylic-based polymers, and generally contain 2-(dimethylamino ethyl)
methacrylate (DMAEMA) as the monomer (Figure 1).

In this review, we discuss the formation of antimicrobial polymer surfaces, considering
two categories: polymer coatings generated by covalently immobilizing polymer chains to
existing surfaces, and the formation of films from inherently antimicrobial polymers.

2.1. Antimicrobial Polymer Coating Covalently Attached to Surfaces

Along with the possibility of coating surfaces from either organic solvents or aqueous
solutions, to produce an antimicrobial polymer-based coating on existing surfaces, either the
“grafting from” or the “grafting onto” technique may be used, both displaying advantages
and disadvantages (Scheme 2) [15].
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Generally, the “grafting onto” method is preferred when the surface already possesses
functional groups able to anchor the preformed polymers, or when polymers with different
architectures or chemical compositions need to be attached to the surface. However,
surfaces with high grafting density are not generally obtained, due to the increasing steric
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hindrance of the chains that are gradually attached to the surface. As a matter of fact,
the mushroom-like structure formed after the reaction of the first polymers renders less
accessible the remaining reactive sites on the surface to the incoming chains [16]. In addition,
the electronic repulsion between the chains already containing QACs has a detrimental
effect on the grafting efficiency. Finally, the “grafting onto” technique is not really applicable
to high-molecular-weight polymers because of the scarce reactivity of their active termini
with the sites on the surface [17]. On the other hand, the “grafting from” method is largely
used to achieve a more uniform coating of the surface, and a good density and thickness
of polymer distribution. However, it can be applied after a chemical modification of the
surfaces to introduce functional groups acting as initiators of the polymerization processes.

Kugler and coworkers reported on the application of both methods to obtain glass
surfaces grafted with quaternized poly(vinylpyridine) [18]. It was found that the charge
density of the organic layer spanned from 1012 to 1016 charges/cm2, with the highest charge
densities provided by the “grafting from” approach. The existence of a charge-density
threshold depending on the bacterial strain and growth state (hence on their metabolism),
and above which cell death occurs quickly upon adsorption on substrates, underline the
importance of the method applied to obtain efficient antimicrobial surfaces.

Matyjaszewski et al. found as well that the “grafting from” approach produced
surfaces containing quaternized DMAEMA with a higher charge density than the “grafting
onto” technique (1016 charges/cm2 and 1014 charges/cm2, respectively) and consequently
with a higher biocidal efficacy [19].

The “grafting from” approach is therefore largely used to obtain antimicrobial polymer-
coated surfaces, and for this technique both free (FRP) and controlled radical polymeriza-
tions (CRP) are applied. Among the latter, atom transfer radical polymerization (ATRP)
and its derived techniques have found large appeal in the synthesis of QAC-containing
polymers on surfaces because of their tolerance towards monomers with polar functional
groups and, in the case of its variant ARGET (Activators ReGenerated by Electron Transfer),
also to adventitious oxygen present in the reaction systems [20]. This is due to the use
of catalyst systems in which the metal is introduced in its higher (more stable) oxidation
state and because of the presence of a reducing agent able to reactivate the catalyst after
undesired termination processes. However, ATRP lets off large amounts of catalyst ashes
that can compromise the safety of the final material when applied in biomedical fields.

In spite of this, the polymerization of DMAEMA via ATRP on filter papers followed by
the quaternization of the amino groups, affording an antimicrobial material active against
Escherichia coli and Bacillus subtilis, was reported by Matyjaszewski and coworkers. The
antimicrobial activity was enhanced by increasing the density of polymer chains on the sur-
face and consequently the QAC concentration [21]. After this seminal work, ATRP was used
to polymerize DMAEMA on different surfaces such as silicon wafers [22,23], glass [19,24],
stainless steel [25,26], Fe3O4 magnetite nanoparticles, silicon nanowire arrays [27], silicon
catheters [28], and PVDF membranes [29].

Another controlled radical technique used for the surface-initiated polymerization by
the “grafting from” method is Reversible Addition Fragmentation chain Transfer (RAFT).
RAFT can be easily used to polymerize both polar and nonpolar monomers under mild
experimental conditions; in spite of the several advantages related to such a technique, it
is somewhat limited by the choice of an appropriate chain transfer agent (CTA) specific
for each monomer; indeed, in the absence of suitable commercially available CTAs, their
design and synthesis are required. Roy and coworkers modified cellulose papers with
PDMAEMA via RAFT, and quaternized the amino-pedant group of DMAEMA with alkyl
bromides of different chain lengths (C8−C16) [30]. The antibacterial activity was affected
both by the alkyl chain length and by the degree of quaternization: the higher the degree of
quaternization and the shorter the alkyl chain, the higher the antimicrobial activity against
E. coli (Figure 2).
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coated cellulose and the chain length of the bromoalkene employed in the functionalization [30].

RAFT was also applied to obtain a reversibly switchable bactericidal and antifoul-
ing surface combining the thermally responsive N-isopropylacrylamide (NIPAAm) and
bactericidal quaternary ammonium salts of DMAEMA [31]. The copolymer coating was
able to switch by phase transition between a hydrophobic capturing surface at 37 ◦C and a
relatively hydrophilic antifouling surface at 4 ◦C. The bactericidal efficiency was proved
against both E. coli and S. aureus. In particular, the bacteria were stained with live–dead two-
color fluorescent dye, and the distribution of the dead/viable cells was investigated using
fluorescence microscopy (FM) images. The presence of a large number of red-stained (dead)
bacteria on the QAC-bearing material indicated the efficiency of the antimicrobial function;
on the other hand, only living cells were observed on the negative control (glass) surface.

Click chemistry, a facile synthetic technique developed to covalently attach specific
molecules to a substrate [32], has often been used in the “grafting onto” approach. Among
the suitable organic reactions fulfilling such an approach, the copper-mediated cycload-
dition of azides and alkynes (CuAAC) was used for the click grafting of azide-terminated
PDMAEMA onto alkyne functionalized graphene oxide (GO-PDMAEMA). The attached
PDMAEMA was then quaternized in the presence of ethyl bromide and the resulting
functionalized graphene oxide showed excellent antibacterial activity, reducing nonspe-
cific protein adsorption and cellular adhesion [33]. To avoid the use of potentially toxic
metal catalysts, a Cu-free click chemistry approach [34] was adopted by Wang [35] to graft
quaternized PDMAEMA (QPDMAEMA), modified with azide, to quantum dots (QDs), the
latter derived from dibenzocyclooctynes (DBCOs). The QPDMAEMA-modified QDs were
biocompatible and exhibited the ability of selective recognition and killing of bacterial cells
of E. coli and S. aureus. The high negative charge density of the bacterial cell surface, in
contrast with the near-neutrality of mammalian cells, represented the electrostatic driving
force to bind selectively to bacteria but not mammalian cells for the positively charged QDs.

The thiol groups can react with C=C bonds through a click chemistry reaction under
mild conditions, according to the thiol–ene Michael addition mechanism [36]. A quat-
ernized dimer of DMAEMA, obtained by the addition of the tertiary amines to organo
halides, was used by Tian et al. to make antimicrobic wool fabric via a thiol–ene reaction,
involving the C=C bonds of the DMAEMA dimer and the thiol groups of the wool fabric
after reduction of the disulfide bonds. The authors found that the antibacterial efficiencies
of the modified wool fabric were 94.2% and 90.1% against E. coli and S. aureus, respec-
tively. Furthermore, the thiol–ene reaction, having produced crosslinks for the presence of
two reactive alkene groups for each DMAEMA dimer, increased the strength of the wool
fabric [37].

Although both ATRP and RAFT polymerization techniques exhibit drawbacks (i.e., use
of a metal catalyst that potentially leaches into the final material or weak bonds between
the surface and the polymer), compared to other radical polymerization approaches, they
allow for an even distribution of the polymer on the surface as well as for a higher control
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over the molecular weight and the polydispersity of the macromolecules, permitting a more
homogeneous behavior of the biocidal materials, since all of the polymer chains exhibit
similar natures [38].

2.2. Antimicrobial Surfaces Made of Inherently Antimicrobial Polymers

Compared to the plethora of soluble antimicrobial polymers containing QACs reported
in the literature [39], examples of insoluble, self-consistent materials are scant. This could
be due to the loss of antimicrobial activity sometimes observed when soluble polymers are
post-functionalized (i.e., crosslinked), resulting in insoluble materials [40]. On the other
hand, it has been shown that biocidal potential can still be preserved due to mechanisms
that destabilize the bacterial membranes by contact (vide infra) [41].

Inherently antimicrobial polymers or copolymers can be classified as materials that
(i) exhibit antimicrobial activity by themselves; (ii) are antimicrobial upon chemical mod-
ification; and (iii) incorporate antimicrobial organic compounds or active inorganic sys-
tems [42]. In this mini-review, we report on the first two classes of antimicrobial materials
that form surfaces, meaning polymers that are not soluble in water.

One of the most common routes to obtain antimicrobial, non-soluble polymer surfaces
consists in introducing antimicrobial functionalities in inactive polymers. This is because
monomers containing QACs generally produce polymers soluble in water.

Punyani and coworkers reported a copolymer based on a quaternary amine methacrylate
(QAMA) and 2-hydroxyethyl methacrylate (HEMA), produced by free radical bulk poly-
merization. The novel monomer QAMA was synthesized by amination of di(methacrylate)
with piperazine followed by its quaternization with an alkyl iodide. The antibacterial
activity against Escherichia coli and Staphylococcus aureus was studied by the zone of in-
hibition and colony count methods and the authors found that the QAMA copolymer
showed broad-spectrum contact-killing antimicrobial properties without the release of
any bioactive residue. Furthermore, the antimicrobial activity increased with increasing
QAMA concentration in the copolymers [43]. QAMA was also used as a comonomer in
copolymerization of methyl methacrylate (MMA) via partial substitution of the MMA
monomer in commercial bone cements and by using the redox initiator activator system
for curing. The presence of QAMA conferred antibacterial properties to the cements, while
iodine imparted radiopacity. The antimicrobial tests evidenced no growth of E. coli onto
the modified PMMA bone cement with 15% QAMA content, and a cytotoxicity test using
a human cell model had a negative result [44,45]. Grafting polymerization of DMAEMA
was used by Chung et al. [46] to confer hydrophilicity to the hydrophobic polyurethane
(PU) surfaces. The grafted PDMAEMA affected PU properties such as thermal transition,
shape memory, and flexibility at a very low temperature, while its hydrophilicity and its
positive charge due to the protonated ammonium groups conferred antifungal effectiveness
towards a mixture of fungi (Aspergillus niger, Aureobasidium pullulans, Chaetomium globo-
sum, Gliocladium virens, and Penicillium pinophilum), provoking, in the case of the material
prepared with 20 mol% of DMAEMA, the complete suppression of fungal growth.

Another polymer widely used in medical applications for the production of implants,
namely polyether ether ketone (PEEK), has been modified by the self-initiated photoin-
duced graft polymerization of DMAEMA [47]. After grafting, the pedant amino groups
of DMAEMA were quaternized using various bromoalkanes with different lengths of the
alkyl chain (BrC4, BrC8, BrC12, and BrC16) to obtain Q-PDMA-g-PEEK [48]. A compari-
son between the relative antibacterial rates of the PDMA-g-PEEK and Q-PDMA-g-PEEK
showed that the quaternization of the DMAEMA increased the antibacterial activity with
the latter depending on the number of carbon atoms of the bromoalkanes. In particular,
the antibacterial rate against E. coli of polymers quaternized with BrC8 was significantly
different than that obtained using BrC4, BrC12, and BrC16. The authors concluded that the
bactericidal properties of the materials were driven by their ζ-potential, a parameter that,
along with the volume of the Q-PDMA layer grafted onto PEEK, is strictly related to the
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positive charge density of the surface; hence, the higher the ζ-potential, the greater the
biocidal effect [49].

Poly(ethylene terephthalate) (PET) sheets were modified to introduce functions act-
ing as the initiators for the ARGET-ATRP of DMAEMA. PET was treated first with
dopamine, and then with 2-bromoisobutyryl bromide (BIBB). ARGET-ATRP was carried
out using a catalyst system based on CuBr2 and N,N,N′,N′′,N′′-pentamethyl diethylene-
triamine (PMDETA) and ascorbic acid as a reducing agent; finally, the terminal amino-
pedant groups of the PDMAEMA-grafted PET sheets were quaternized by a reaction
with 1,3-propiolactone and 1,3-propanesultone, affording polycarboxybetaine and poly-
sulfobetaine brushes [50]. The authors demonstrated that with the increasing number of
polyzwitterions, the E. coli cell adhesion decreased greatly. These results were mostly at-
tributed to the antifouling property of polyzwitterions. Moreover, the cationic PDMAEMA
chains and ammonium groups of polyzwitterions allegedly interacted with the negatively
charged bacterial cell membrane, resulting in bacterial cytoplasmic membrane disruption
and cell lysis [51]. The authors concluded that the synergistic weak positively charged
and neutral zwitterionic surface would endow the surface with dual antifouling and
antibacterial properties.

In 2006, Kenawy and coworkers reported on the synthesis via free radical polymer-
ization of a series of crosslinked copolymers of vinylbenzyl chloride either with MMA or
2-chloroethylvinyl ether in the presence of divinylbenzene as the crosslinking agent [52].
Further reaction of such products with triethylamine afforded quaternized polymers dis-
playing antimicrobial activity against fungi (C. albicans SC5314, A. flavus, and F. oxysporum)
and bacteria (B. subtilis, E. coli, and S. aureus). Due to the insolubility of the materials, the
antimicrobial potential was assessed by means of the cut plug method.

Biodegradable aliphatic polyesters displaying permanent biocidal activity have been
recently described by Lecomte and coworkers [53]. The polymers were synthesized by
tin-catalyzed ring opening copolymerization of ε-caprolactone and α-cloro-ε-caprolactone
followed by the conversion of the pendant halides into azide groups. The latter functions
were exploited in the Cu-catalyzed cycloaddition of N,N-dimethyl-N-prop-2-yn-1-yloctan-
1-ammonium bromide for the introduction of the quaternized ammonium groups onto the
polymer chain. These water-insoluble materials proved to be effective against E. coli, as as-
sessed by the shake flask method. Interestingly, the parental ammonium salt, albeit soluble
in the medium, displayed lower biocidal efficiency than the functionalized copolymers.

The bactericidal activity of films obtained from water-insoluble branched polymers
containing non-quaternized DMAEMA was recently tested against E. coli, S. aureus, Pseu-
domonas sp., and Dechlorosoma sp. [54]. The materials were synthesized by the ATRP copoly-
merization of MMA and DMAEMA employing a polyethylene glycol-monomethylether
(mPEG)-based macroinitiator. Such an approach afforded copolymers with architectures
of the type A(BC)n, in which A and (BC) represented the mPEG and the MMA-random-
DMAEMA blocks, respectively, and n the number of arms (1, 2, and 4). The structure
of the copolymers proved to greatly influence their biocidal efficiency; indeed, for the
gram-negative bacteria, the activity trend was found to be A(BC)2 ≥ A(BC)4 >> A(BC). The
two-armed polymer also proved active against gram-positive species. The dependency of
the antimicrobial activity on the polymer architecture was attributed to the formation of
strong hydrogen bonds between proximal amino groups in the A(BC)2 films, while such
interaction was rather disfavored in the case of the linear material.

Later, the antimicrobial activity of films made from branched A(BC)n copolymers
(n = 1, 2 or 4) bearing mPEG (A) and random copolymeric chains formed by MMA and
N-alkyl aminoethyl methacrylates (AAEMAs) was studied [55]. N-alkyl substituents with
progressively increasing hydrophobicity (Me, Et, i-Pr, t-Bu) were selected and series of
copolymers with different AAEMA molar ratios (40 and 15%) were synthesized in order to
vary, along with the molecular architecture, the hydrophobic/charge-density balance. For
the polymers with a higher AAEMA fraction, the A(BC)2 structures displayed the highest
charge density, and the DMAEMA-based material proved the most effective copolymer
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of the series against E. coli. On the other hand, the antimicrobial activity of the copolymer
containing 15% of the AAEMA was found to be more dependent on the basicity of the
pendant amino groups rather than on the molecular architecture; in fact, the DMAEMA-
containing films exhibited lower antimicrobial activity with respect to those materials
displaying amines with lower pKb values.

Recently, the efficiency of copolymeric materials as additives for a commercial den-
tal adhesive (AdheSE One F) conferring antimicrobial and collagenase-inhibiting prop-
erties was investigated by Tiller and coworkers [56]. The main backbone of the poly-
mers was based on poly(2-methyloxazoline), while the terminals featured a polymer-
izable group (methacrylamide) on one side and a biocidal function (N-dodecyl-N,N-
dimethylxylylammonium bromide) on the other. Upon employing 2.5 wt% of the additive,
the material exhibited antimicrobial activity against S. mutans cells even after prolonged
washing with water; in addition, higher concentrations (5 wt%) allowed for the killing of
the bacteria remaining in the tubuli below the cured adhesive as well as for the complete
inhibition of the human collagenase MMPs bound to dentin.

Copolymers of 3-(methacrylamidomethyl)-pyridine (MAMP) and N-isopropylacrylamide
(NIPAAm) with different compositions, namely 50:50 and 90:10 MAMP:NIPAAm, were
synthesized by free radical polymerization and further quaternized by a reaction of bro-
moalkanes with different chain lengths (C12, C14, and C16) [57]. While the water-soluble
90:10 composition copolymers exhibited antimicrobial activity against E. coli and S. Aureus,
the insoluble materials obtained from the 50:50 analogues proved completely ineffective.
In particular, the highest biocidal effect was exhibited by the 90/10 copolymer quaternized
with the C14 bromoalkene, displaying Minimum Bactericidal Concentration (MBC) values
of 320 and 160 µg/mL against S. aureus and E. coli, respectively, while the copolymers
functionalized with C12 and C16 chains proved less active (MBCs of 640 and 320 µg/mL for
S. aureus and E. coli, respectively).

The hydrophilicity of the polymers proved to have a profound effect on the bactericidal
activity. Indeed, copolymers of 4-vinyl pyridine with either hydroxythylmethacrylate
(HEMA) or polyethylene glycol methyl ether methacrylate (PEGMA), further quaternized
with hexylbromide, proved to be ca. 20 times more active against E. coli than the parental
quaternized homo poly(vinylpyridine) (PVP) [58]. This was attributed to the increased
surface wettability of the copolymers containing a lower fraction of PVP.

Insoluble crosslinked poly-(vinylpyridium halide)-based resins were successfully
employed in the removal of bacteria [59] and viruses [60,61] from water and air [62]. Never-
theless, in all cases the microorganisms were found to be only retained by the resins, which
hence displayed poor biocidal activity. This was in stark contrast with the actual killing
effect exhibited by previously reported tetraalkylammonium-type anion-exchange resins.

Cationic polymers containing positive nitrogen atoms in the main chain, namely
ionene polymers, also possess antimicrobial properties due to the presence of QACs within
the main chain [63]. In this scenario, polyelectrolytes obtained by condensation of benzyl
amine and epichlorohydrin exhibited antimicrobial activity against bacteria (P. aeruginosa,
K. pneumoniae, E. feacalis, M. luteus, and B. subtilis var. niger), yeast (C. albicans), and
fungi (P. digitatum and A. niger) [64]. Interestingly, the extent of the biocidal potential was
found to be dependent on the length of the polymer chains. An ionene-based, fast-swelling
antimicrobial superabsorber able to kill the bacterial cells of the nosocomial strains S. aureus,
E. coli, and P. aeruginosa has been recently reported by Tiller and coworkers [65].

Finally, in the field of modified polymers exhibiting antimicrobial activity, the use of
polysaccharides has been very recently reviewed [66].

A summary of the contributions reviewed in this section is reported in Table 1.
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Table 1. Summary of the water-insoluble antimicrobial polymers discussed in Section 2.2.

Type of Polymer Tested Species References

poly-(Quaternary amine methacrylate)-co-(2-hydroxyethyl
methacrylate)

E. coli
S. aureus [43–45]

DMAEMA E. coli [46]

polyether ether keton
A. niger, A. pullulans,
C. globosum, G. virens,

P. pinophilum
[47–49]

polyethylene terephthalate E. coli [50,51]

poly-(vinylbenzyl
chloride)-co-(methylmethacrylate)/(2-chloroethylvinyl ether)

C. albicans SC5314,
A. flavus, F. oxysporum;

B. subtilis, E. coli, S. aureus
[52]

poly-(ε-caprolactone)-co-(α-cloro-ε-caprolactone E. coli [53]

(PEG)-MMA-ran-DMAEMA E. coli, S. aureus, Pseudomonas sp.,
Dechlorosoma sp. [54,55]

(methacrylamide) -poly-(2-methyloxazoline)-
(N-dodecyl-N,N-dimethylxylylammonium bromide) S. mutans [56]

poly-(3-(Methacrylamidomethyl)-pyridine)-ran-(N-
isopropylacrylamide) E. coli, S. Aureus [57]

poly-(4-vinyl pyridine)-ran-(HEMA)/(PEGMA) E. coli [58]

poly-(vinylpyridium halide)-based resins various bacteria and viruses [59–62]

ionene polymers

P. aeruginosa,
K. pneumoniae, E. feacalis, M. luteus,

B. subtilis var. niger, C. albicans,
P. digitatum, A. niger

[63–65]

modified polysaccharides various bacteria [66]

3. Mechanism of Action

Antimicrobial activity of polymers is influenced by multiple factors related to their
physico-chemical properties, such as molecular mass, polymer charge, hydrophilicity, and
external stimuli such as temperature and pH. Polymer surfaces, however, principally act via
a contact-killing mechanism and consequently the charge density and the hydrophobicity
of surfaces play a predominant role, while layer thickness and molecular weight might
influence the activity when prompted by different surface charge densities. Nevertheless,
the mechanism of the contact-killing action is still under debate, and it has to be mentioned
that the biocidal release mechanism cannot be simply ruled out by inhibition zone tests.
Indeed, the presence of an inhibition zone indicates a large extent of release without
proving the mechanism. The occurrence of a contact-killing pathway can be confirmed
upon assessing the biocidal efficiency of the material after long washing cycles. Polymer
surfaces containing QACs are positively charged while, as is known, the external envelope
of bacteria exhibits a net negative charge generally stabilized by divalent cations such
as Ca2+ and Mg2+. The negative charge derives from the chemical composition of the
external envelope in both gram-positive and -negative bacteria: the former possess teichoic
or lipothecoic acids in the cell wall (CW), while lipopolysaccharides and phospholipids can
be found in gram-negative bacteria’s outer membrane (OM). The cytoplasmic membrane
(CM) is also negatively charged, being composed of phospholipids and embedded proteins
(Figure 3) [67].
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It is generally accepted that positively charged water-soluble antimicrobial polymers
must possess some level of hydrophobicity to allow initial polymer adhesion to negatively
charged cell surfaces and further membrane penetration and permeabilization, although
biocidal hydrophilic polycations capable of penetrating bacterial cells without disrupting
the membrane have been very recently described [68]. In 1986, Ikeda et al. [69] reported
that the lysis of protoplasts of Bacillus subtilis showed that polymers containing QACs were
able to damage the CM of cells with release of cytoplasmic constituents such as K+, DNA,
and RNA. These results were confirmed by more recent studies carried out with techniques
aiming at monitoring the loss of cell constituents and demonstrating that QACs of synthetic
polymers provoked cell lysis and consequently cell death by damaging the OM as well as
the CM [70–76].

A similar mechanism of action has been hypothesized for polymeric surfaces, even
if the hydrophobic contribution is not clear in this case. Furthermore, with respect to
soluble chains, the antimicrobial biocidal surfaces present the charged groups tethered to
the surface, hence they cannot be released to completely penetrate the envelope to reach the
CM; for this reason, the most invoked mechanism of action involves the contact between
the cell and the charged surface, as first established by Isquith in 1972 [77]. In this respect,
Tiller introduced the “Polymeric Spacer Effect” mechanism based on the presence of a spacer
between the surface and the biocidal function, long enough to penetrate the OM and kill
bacteria. For instance, long spacers of almost 19 nm (160,000 g mol−1) between the surface
and the bactericidal function have been found to be crucial for penetrating the CW of
gram-positive bacteria [41,78,79]. Similarly, a study on woven textile fabrics with cova-
lently attached alkylated polyethyleneimines (PEIs) showed that the antibacterial activity
depended on the length and thus on the molecular weight of PEIs and N-alkylation [80]. In
fact, high-molecular-weight chains (750,000 Da, with a length of ca. 6 mm) rendered the
textile highly bactericidal because of their ability to perforate the whole cell membrane of S.
aureus; on the contrary, shorter chains (0.02–0.007 mm in length with average molecular
weights spanning from 2000 to 800 Da) were ineffective as they were unable to penetrate
and damage the bacteria. Nevertheless, surfaces bearing chains shorter than 800 Da could
still exhibit antimicrobial activity depending on the nature of the polymer. In fact, sur-
faces grafted with fatty alkyl chains attached through quaternary amine anchors proved
some bactericidal effect [77,81], which occurred according to the so-called “hole-poking”
mechanism [78,82–85].

Indeed, the hypothesis based on the need for a polymeric spacer long enough to
penetrate the CW or the OM of bacteria to make surfaces work as antimicrobial has been
questioned in a few studies. In 2008, Matyjaszewski and coworkers [19] found that the
biocidal activity of a glass surface grafted with quaternized poly(2-(dimethylamino)ethyl
methacrylate) was not influenced by the length of polymer chains but rather by the surface
charge density (vide supra). Similarly, other studies did not correlate the antimicrobial
activity of polymeric surfaces to the extension of the polymer chains, as the antimicrobial
surfaces described did not contain a polymeric spacer [86–88].

In this scenario, an alternative mechanism of contact killing was proposed by Kugler,
who hypothesized the removal of the divalent stabilizing cations Mg2+ and Ca2+ from the
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OM of bacteria when they enter in contact with positively charged surfaces, the so-called
“Ion-Exchange mechanism” [18]. Nevertheless, cell lysis, deriving from disruption of OM, is
probably still working, as evidenced by the presence of cell constituents in a solution when
coated materials [10,21,89] or polymer microbeads [90] containing QACs were mixed with
a suspension of bacteria. For optimal biocidal efficiency of cationic surfaces, a minimum
surface charge density is required [22,57,91], either to foster adhesion of bacterial cells on
the surfaces or to cause leaching of Ca2+ and Mg2+.

To demonstrate that a key component of the “Ion-Exchange mechanism” was the loss of
stabilizing ions, copolymers containing crown ether pedants and no biocidal functions were
synthesized to introduce sequestering alkali-earth ions (Figure 4a); then, films produced
from such copolymers were introduced in bacterial suspensions. The surfaces exhibited
biocidal activity against E. coli [92], indirectly confirming the presence of a mechanism
of action that starts by leaching or complexing the envelope-stabilizing cations. The
complexing capacity of copolymers towards such alkali-earth cations was also proved
by immersing a film in a solution containing Ca2+ and Mg2+ ions that were partially
sequestered by the copolymer.

Although in the “Ion-Exchange mechanism” the effect of a destabilizing action on cellular
membranes was recognized, experimental evidence of the specific cellular response was
investigated in a study focused on the recognition of the possible regulators mediating the
response to the damaging action. The study also permitted understanding of whether the
antimicrobial action was a “passive” event, meaning it was only generated by polymer
properties, or required a cellular response as induction of a death signal. To this end, the au-
thors used a dual strategy, the first part consisting in the analysis of the cell damage caused
by contact with the polymer surface, while the second part was based on the evaluation of
the cell response at a genetic level. E. coli was used as the cell model, while the polymer
surface was made of the monomethyl ether poly(ethylene glycol) (mPEG) covalently linked
to two gradient-copolymeric chains based on MMA and DMAEMA (mPEG-(MMA-ran-
DMAEMA)2, Figure 4b) [93–95] containing 34% in mol of non-quaternized DMAEMA,
with the latter able to generate a charged surface by protonation when in contact with
water. It had already been demonstrated that such a surface was active towards several
gram-negative cells as well as the gram-positive S. aureus [54,55]. Interestingly, the gene
expression study revealed that some key genes in the synthesis and maintenance of the
OM structure along with some regulators of cellular response to oxidative stress were
more expressed in bacteria exposed to a polymer surface [95]. On the other hand, the
lithic effect on protoplasts of E. coli demonstrated that the polymer surface was able to act
on the structure of cytoplasmatic membranes, while experiments on calcein leakage from
unilamellar vesicles at different phospholipid compositions indicated that such action was
present also in the absence of functionally active cells. All together, these results indicated
that, once in contact with a positively charged surface, the increasing permeability of the
OM generated by contact with the surface triggers the over-expression of specific genes in
an attempt to counteract the membrane damage.

Another mechanism alternative to the “Polymeric Spacer Effect” was proposed by Tiller
and Bieser in 2011. The so-called “Phospholipid sponge effect” is based on the adhesion of
negatively charged phospholipids of the cell membrane onto the bactericidal, positively
charged surface [96]. To prove this mechanism, the authors synthesized hydrophobic
cellulose derivatives with a variety of QAC functions and hydrophobic neutral substituents.
In detail, the biocidal surfaces active against the gram-positive S. aureus were made of
N-alkyl-N,N-dimethyldeoxyammonium celluloses, obtained by converting tosyl celluloses
with different degrees of substitution (DSs) [97] with the N,N-dimethyldodecyl-ammonium
(DDA) group as the biocidal function and the N,N-dimethylbutylammonium (DBA) group,
the latter considered non-biocidal by the authors. However, they found that some of
the DBA containing celluloses were antimicrobially active against S. aureus by contact
but, in contrast with the DDA derivatives, a certain number of tosylate groups must
be present in this case, indicating that the tosylate hydrophobic functions support the
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antimicrobial action. The authors rationalized the experimental data by evoking a sort of
balance between the charged and hydrophobic groups. Indeed, the biocidal DDA groups
contain a hydrophobic tail, while DBA functions must be associated with hydrophobic
groups even if distant from the cation. They suggested that this action was driven by the
attraction between the negatively charged phospholipids of the bacteria and the surface, in
stark contrast with the “Polymeric Spacer Effect” mechanism. However, the existence of both
the mechanisms was proposed, along with a strategy indicating which one occurred in the
specific cases. Indeed, while coatings with polymeric spacers between the biocidal group
and the surface cannot be deactivated by chemical treatments, QAC-based antimicrobial
coatings without polymeric spacers can be deactivated by treating the materials with an
anionic surfactant (sodium dodecylsulfate, SDS), or with negatively charged phospholipids.
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A shape-adaptive, contact-killing coating was prepared by Asri et al. by tethering
QACs onto hyperbranched polyurea supported on a silicon substrate to enhance the contact
area between bacteria and coatings [98]. The surface was able to kill adhering bacteria
by partially enveloping them, and the “Phospholipid sponge effect” was proposed as the
mechanism of action. As support for the mechanism, the authors mentioned Gottenbos [86],
who in 2002 had already reported that the strength of bacterial adhesion to a surface may be
a determining factor for their growth, and so-called “stress-induced de-activation” for bacteria
strongly adhering to positively charged surfaces, a term used for the first time by Liu in [99]
to indicate a reduced resistance of bacteria towards antimicrobials. The shape-adaptive
hyperbranched Si-HB-PEI+ coating, due to the positively charged surface, exerted strong
enough electrostatic forces to cause the removal of anionic lipids of the membrane through
the outermost surface of the adhering cells of Staphylococcus epidermidis. Apparently, the
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Staphylococcal adhesion forces on the Si-HB-PEI+ coating exceeded the known forces by
a factor of ca. six [100–102], justifying the electrostatic attraction of the anionic lipids of
the membrane towards the positively charged surface, that induces localized membrane
damage and causes bacterial death [103].

Overall, the last two mechanisms proposed both invoked the adhesion of cells to
surfaces containing QACs as a key step for biocidal action. The “Ion-Exchange mechanism”
considers the adhesion of bacteria as a consequence of the removal of the stabilizing mobile
Ca2+ and Mg2+ cations by the positively charged surface and the following permeabi-
lization of membranes that causes bacterial death; in the “Phospholipid sponge effect”, the
strong electronic field generated by the positively charged surface is responsible for the
surface adhesion by the negatively charged bacteria followed by electrostatic extraction of
phospholipids from cell membranes (Figure 5).
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A contribution to the comprehension of the antimicrobial action of charged surfaces
comes from computational studies. A Monte Carlo simulation and coarse-grained models
were used to evaluate how space restriction and absorption would influence the ioniza-
tion degree, the conformation, and the counterion condensation of confined weak poly-
electrolytes [104,105]. The authors connected their results to the fields of antimicrobial
polymers and, in particular, to the antimicrobial activity of non-quaternized DMAEMA-
based species [54,55,106,107]. The rationalization of the antimicrobial properties of such
a species derives from the formation of strong hydrogen bonds between protonated and
unprotonated amino groups of DMAEMA, (CH3)2NH+---N(CH3)2, enhancing the positive
charge of the surface [108]. It was also found that the negative charge of the bacteria
wall can contribute to increasing the positive charge up to a factor of 10 [109], while it
was depressed when the polymer was confined within a vesicle. The suppression of the
positive charge may have an impact on the number of negatively charged species on the
wall surface migrating towards the polymer to compensate its charge, and hence on the
mechanical resistance of the wall and on its tendency to rupture. Data obtained from the
1D confinement suggested that the ionization induced by the wall charge may be sufficient
to bind DMAEMA oligomers and induce bacterial death. The distribution and density of
charges on the surfaces and in a solution, depending on chemical structure, composition,
and hydrophobicity [110–112], were also approached with simulation methods to better
understand both the bacterial interaction with charged surfaces and the amount of the
surface available for the bacteria [113].

Very recently, films made of non-quaternized mPEG-P(MMA-ran-DMAEMA)2 copoly-
mers were produced by different techniques such as spin-coating, drop-casting, and casting
deposition, obtaining ultrathin (16 ± 3 nm) and thick films (~400 mm) [114]. Their morphol-
ogy was studied to deeply understand the correlation with the biocidal activity previously
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reported for thick films [54]. Drop-casted ultrathin and thick films were found to be mor-
phologically flat, while spin-coated ultrathin films had a morphology dependent on the
substrate. The hardness of the surface was investigated by AM-AMF measuring the Young
modulus and the viscoelastic behavior of the films [115,116] in both air and water, envi-
ronments similar to those used in antimicrobial tests. When in water, the swelling made
the films softer at the surface. In particular, the large reduction in the Young modulus of
the thick samples was suggested as a factor able to promote a conformal contact between
the bacteria and the film, also indicating the role of mechanical properties of surfaces in
antimicrobial activity.

4. Conclusions and Future Perspectives

It is widely reported that contaminated surfaces play a determining role in bacterial
infection processes; thus, the rational design of antimicrobial surfaces represents the key
to reducing or, in some cases, avoiding the spread of microorganisms. Although so far
scientists have made many efforts to understand the correlation between surfaces and the
microorganisms’ response to their exposure, further attempts to improve the effectiveness
or the selectivity of antimicrobial polymer surfaces are still needed. QACs are among
the most powerful antimicrobial functions and hence are used in many industrial prod-
ucts. When immobilized on polymer surfaces, their biocidal activity is preserved. Due
to a generally low hemolytic activity, polymer surfaces containing QACs have potential
applications in widely varying fields, such as surgical, medical implant, or wound dressing
applications [117], and more generally, in industrial equipment [118,119], water purification
systems [120], and food packaging [74,121].

In this review, we focused on the synthesis of polymer coatings on pre-existing surfaces
as well as on water-insoluble, inherently antimicrobial polymers forming surfaces. In both
cases, advanced coating and polymerization techniques along with relevant examples have
been described. Although the biocidal activity of such surfaces occurs by contact with
bacterial cells, the mechanism is still under debate; hence, we discussed those mechanisms
widely accepted by the scientific community.

More generally, advanced synthetic approaches for obtaining antimicrobial polymer
surfaces and a deep comprehension of their mechanism of action represent two sides of
the same coin, hence they are both crucial for the harmonious development of surfaces
with more effective antibacterial activity. To this end, a significant improvement in the field
would derive from a strategy similar to that adopted in nanotherapeutics for infectious
diseases [122], namely to consider the bacterial structures to properly develop targeted
polymers that, increasing the surface affinity towards specific cells, would also improve
adhesion to and selectivity towards bacteria [123]. Another important aspect of the devel-
opment of antimicrobial polymer surfaces is related to the recent SARS-CoV-2 pandemic,
which dramatically increased the demand for antimicrobial treatments of contaminated
surfaces especially in healthcare settings. In this respect, amine-based dendrimers and
polyethyleneimine can be effective as potential inhibitors and for immunization against
coronaviruses [124,125], paving the way to the development of combined antiviral and
antibacterial polymer surfaces.

Finally, a meaningful aspect that could involve the future development of antimicrobial
polymer surfaces is the worldwide increasing attention towards green economy. The
expanding availability of molecules from renewable sources/biomass is inspiring the
synthesis of novel and sustainable polymer-based materials with the aim of replacing
those deriving from fossils. Natural molecules are, however, often multifunctional, and
the additional substituents, other than the polymerizable ones, may be antimicrobial
themselves or, in principle, be advantageously used for post-functionalization to introduce
QACs and produce added-value, bio-based biocidal polymers [126]. In this respect, the
development of increasingly advanced and precise techniques of polymerization [127]
aiming at preserving functional groups of multifunctional natural molecules, as well as the
development of advanced methods of surface functionalization, will allow for the rational
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design and synthesis of novel and more efficient antibacterial surfaces starting from the
knowledge of the biocidal behavior and mechanism of action of the already reported
polymer surfaces containing QACs.

In conclusion, we are convinced that future strategies for the development of advanced
antimicrobial polymer surfaces for modern human healthcare should integrate the mate-
rial’s design, preferably starting from bio-based molecules, and microorganisms’ biology
for the preparation of targeted, selective, and more effective surfaces or, when needed, with
combined antiviral and antibacterial activity.
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