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Abstract: Dysregulation of histone deacetylases (HDACs) is closely associated with cancer develop-
ment and progression. Here, we comprehensively analyzed the association between all HDAC family
members and several clinicopathological and molecular traits of solid tumors across 22 distinct tumor
types, focusing primarily on cancer stemness and immunity. To this end, we used publicly available
TCGA data and several bioinformatic tools (i.e., GEPIA2, TISIDB, GSCA, Enrichr, GSEA). Our analy-
ses revealed that class I and class II HDAC proteins are associated with distinct cancer phenotypes.
The transcriptomic profiling indicated that class I HDAC members, including HDAC2, are positively
associated with cancer stemness, while class IIA HDAC proteins, represented by HDAC7, show a
negative correlation to cancer stem cell-like phenotypes in solid tumors. In contrast to tumors with
high amounts of HDAC7 proteins, the transcriptome signatures of HDAC2-overexpressing cancers
are significantly enriched with biological terms previously determined as stemness-associated genes.
Moreover, high HDAC2-expressing tumors are depleted with immune-related processes, and HDAC2
expression correlates with tumor immunosuppressive microenvironments. On the contrary, HDAC7
upregulation is significantly associated with enhanced immune responses, followed by enriched
infiltration of CD4+ and CD8+ T cells. This is the first comprehensive report demonstrating robust
and versatile associations between specific HDAC family members, cancer dedifferentiation, and
anti-tumor immune statuses in solid tumors.
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1. Introduction

Solid tumors are biologically complex structures with substantial intratumor het-
erogeneity that contain transformed cancer cells, supportive cells, and tumor-infiltrating
cells [1]. Also, tumor cells significantly differ in the potency to initiate and maintain tumor
growth, with stem-like cancer cells exhibiting the highest self-renewal potency, respond-
ing rapidly and flexibly to environmental challenges and becoming a primary source of
drug-resistant tumor cells [2]. Stem cell-associated molecular features of cancer cells might
be acquired by the bulk tumor cells, i.e., in response to exogenous stimuli. Later on, those
cells may experience phases of transitions between stem-like and non-stem-like states
without any additional genetic perturbations. This phenomenon of stemness acquisition
and maintenance robustly contributes to cancer cell heterogeneity, ultimately warranting
drug resistance and tumor relapse [3].

Previous studies aimed to characterize the populations of cancer cells with stem-like
properties (known as cancer stem cells, CSCs) in diverse tumor types, including breast [4],
lung [5], liver [6], pancreatic [7], gliomas [8], melanomas [9], and many other tumors [10].
The stem cell-associated molecular features of solid tumors, also known as cancer stem-
ness, are essential for cancer progression [11]. Hopefully, targeting factors that mediate
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cancer stemness might help overcome therapy resistance and improve clinical outcomes
for cancer patients [12]. The negative association of cancer stemness with antitumor
immunity is an essential concern in designing therapeutic approaches. As reported by
Miranda A. et al. [13], solid tumors that exhibit high stem cell-like molecular traits are
significantly abrogated with immune cells, and cancer stemness confers immunosuppres-
sive properties on tumors. Accordingly, immunologically cold microenvironments can
arise due to the presence of stem cell-like cancer cells, suggesting that by inducing cancer
cell differentiation (irreversibly disrupting cancer stemness), tumors might become more
susceptible to immunotherapy [13].

Epigenetic perturbations have a grounded role in mediating cancer development and
progression, and at least partially, the dysregulation of epigenetic mechanisms facilitates
the self-renewal of cancer cells [14]. Our recent reports highlighted the involvement of
several epigenetic factors in the acquisition of cancer dedifferentiation [15,16]. As epigenetic
mechanisms are highly reversible, they appear significantly responsible for cancer stemness
acquisition or maintenance [17]. Among other epigenetic factors, the components of histone-
modifying machinery are potent therapeutic targets due to their enzymatic activity that
could be blocked with specific small molecule inhibitors [18].

Histone deacetylases (HDACs), a class of enzymes that remove acetyl groups from
ε-N-acetylated lysine residues on target proteins—being either histones or non-histone
targets—act primarily as epigenetic regulators of gene expression by modulating chromatin
compaction [19]. Contrary to histone acetyltransferases (HATs), HDACs’ activity tightens
the associations of histone tails with DNA and prevents the binding of transcription
cofactors to DNA, resulting in gene repression.

There are 18 mammalian HDACs grouped into four distinct classes based on their
sequence similarity, chemical structure, and cofactor dependency (Table 1) [20,21]. The
class I HDAC group, which comprises HDAC1/2/3 8, is primarily localized in the nucleus
and is ubiquitously expressed. On the other hand, class II (HDAC4/5/6/7/9/10) and class
IV HDACs (HDAC11) can shuttle between the nucleus and cytoplasm and exhibit greater
tissue-specific expression. All members of class I, II, and IV HDACs are zinc-dependent
enzymes in contrast to class III HDACs (sirtuins), which constitute a structurally distinct
subfamily that requires NAD+ to catalyze its activity [20,21]. Class I HDACs show the
most robust histone deacetylase activity, while the remaining classes prefer other substrates.
The specificity of HDACs for regulating distinct expression profiles depends on the cell
type and the different partner proteins typically expressed in that cell, in addition to the
signaling context of the cell. Specifically, HDAC1 and HDAC2 are catalytic subunits of the
Sin3, Mi-2/NurD, and CoREST complexes, whereas HDAC3 is mainly recruited by the
N-CoR/SMRT complex (characterized in detail in [20]). HDAC8 has not been described as
a member of any protein complex so far. As for class II HDAC proteins, the recruitment
into the multi-protein corepressor complexes does not promote their deacetylase activity
but, instead, seems to have a protein scaffold role [20,21]. HDAC11, the only member of
class IV HDACs, is the most recently discovered HDAC enzyme with a very short half-life
(approx. 4 h), and a very efficient long-chain fatty acid deacylase activity [22].

Table 1. Histone deacetylase superfamily hierarchy [23].

Subgroup Group Genes

HDAC class I HDAC1, HDAC2, HDAC3, HDAC8
HDAC class IIA HDAC4, HDAC5, HDAC7, HDAC9
HDAC class IIB HDAC6, HDAC10

HDAC class III/sirtuins SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, SIRT7
HDAC class IV HDAC11

Existing studies on the role of HDACs in facilitating cancer stem cell-like properties
primarily focus on designating the involvement of one/several HDAC member(s) in one
tested tumor type and do not allow for a broader perspective and a direct comparison
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of HDACs’ relation to tumor dedifferentiation. Here, we investigated the relationship
between the expression of all HDACs and cancer stemness across various solid tumor
types. We utilized data primarily from TCGA along with several free and open-access
bioinformatic tools such as GEPIA2, TISIDB, GSCA, Enrichr, and GSEA, leveraging the
idea of deriving new meaningful findings only from already existing tools and publicly
available datasets.

Our findings represent the first comprehensive analysis, revealing robust and versatile
associations between specific members of the HDAC family, cancer dedifferentiation, and
the anti-tumor immune status within solid tumors. Our data strongly suggest that by
targeting specific HDAC members, we may be able to render stem cell-like cancer cells
more susceptible to immunotherapy.

2. Results
2.1. The Expression of HDAC Family Members in Tumor and Normal Adjacent Tissues and the
Association with Cancer Patients’ Survival

Firstly, we analyzed the differential expression of all histone deacetylase (HDAC) gene
family members in malignant tissues of selected solid tumors (Table 2), relative to adjacent
normal tissues using the TCGA [24] and GTEx data [25], respectively (Figure 1). We
observed a significant upregulation of class I HDACs (HDAC1/2/3/8) in malignant tissues
regardless of the tumor type. On the other hand, class IIA and IIB HDACs (HDAC4/5/7/9
and HDAC6/10, respectively) exhibit both up- and downregulation in tumors depending
on the tumor type. Similarly, class III HDACs (sirtuins) and the only member of class IV
(HDAC11) are differentially expressed in malignant tissues with prevalent upregulation
across TCGA tumor types.

Table 2. Tumor abbreviations of TCGA studies used in the analysis.

Study Abbreviation Study Name N Samples [TCGA]

BLCA Bladder urothelial carcinoma 408
BRCA Breast invasive carcinoma 1100

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma 306

COAD Colon adenocarcinoma 470 1

COADREAD Colon and rectum adenocarcinoma 382
ESCA Esophageal carcinoma 185
GBM Glioblastoma multiforme 166

HNSC Head and neck squamous cell carcinoma 522
KIRC Kidney renal clear cell carcinoma 534
KIRP Kidney renal papillary cell carcinoma 291
LGG Low-grade glioma 530
LIHC Liver hepatocellular carcinoma 373
LUAD Lung adenocarcinoma 517
LUSC Lung squamous cell carcinoma 501

OV Ovarian serous cystadenocarcinoma 307
PAAD Pancreatic adenocarcinoma 179
PRAD Prostate adenocarcinoma 498
READ Rectum adenocarcinoma 92 1

SARC Sarcoma 263
SKCM Skin cutaneous melanoma 472
STAD Stomach adenocarcinoma 415
TGCT Testicular germ cell tumors 156
THCA Thyroid carcinoma 509
UCEC Uterine corpus endometrial carcinoma 177

1 Accessed from the XENA Browser, separate COAD and READ samples are not directly available through the
cBioportal database.
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As shown in Figure S1, mutations of HDAC family members occur occasionally in 
selected studies when combined. They ranged from 1% up to 3% of total profiled samples 
for each gene, with the highest fraction of altered samples present in KIRC for HDAC3 
(amplification in 13.94% of cases) and in PRAD for HDAC2 (deep deletion in 13.03% of 
cases). The expression of HDAC genes differs across solid tumors (Figure S2A) and does 
not exhibit particular co-expression patterns (Figure S2B). 

Also, the expression of HDAC family members is scarcely correlated with patients’ 
outcomes in TCGA data, and few significant associations are strictly tumor-dependent 
and do not exhibit any consistent pattern within HDAC classes (Figure 2). The expression 
of HDAC members in tumors like KIRC and PAAD is correlated with only better 
prognosis wherever the trend is statistically significant for either overall survival (OS) or 
disease-free survival (DFS). On the other hand, tumors like LIHC, LUSC, PRAD, CEST, 
and STAD present opposite trends, being correlated with only worse prognoses. 
However, when using the Prognoscan platform [26]—an extensive collection of publicly 
available cancer microarray datasets with clinical annotation—we observed that when 
statistically significant, the higher expression of class I HDAC members is predominantly 
associated with worse survival. In contrast, the upregulation of class IIA HDAC proteins 
correlates with better prognosis (Figure S3 and Table S1). As for class IIA, class III, and 

Figure 1. Differences in expression of HDAC family members in tumor tissues relative to normal
adjacent tissues. Color on the heatmap denotes either upregulated (orange) or downregulated
(purple) expression in tumor tissues. Welch’s t-test. Benjamin–Hochberg was used for multiple
testing corrections. Tumor abbreviations are explained in Table 2.

As shown in Figure S1, mutations of HDAC family members occur occasionally in
selected studies when combined. They ranged from 1% up to 3% of total profiled samples
for each gene, with the highest fraction of altered samples present in KIRC for HDAC3
(amplification in 13.94% of cases) and in PRAD for HDAC2 (deep deletion in 13.03% of
cases). The expression of HDAC genes differs across solid tumors (Figure S2A) and does
not exhibit particular co-expression patterns (Figure S2B).

Also, the expression of HDAC family members is scarcely correlated with patients’
outcomes in TCGA data, and few significant associations are strictly tumor-dependent and
do not exhibit any consistent pattern within HDAC classes (Figure 2). The expression of
HDAC members in tumors like KIRC and PAAD is correlated with only better prognosis
wherever the trend is statistically significant for either overall survival (OS) or disease-free
survival (DFS). On the other hand, tumors like LIHC, LUSC, PRAD, CEST, and STAD
present opposite trends, being correlated with only worse prognoses. However, when
using the Prognoscan platform [26]—an extensive collection of publicly available cancer
microarray datasets with clinical annotation—we observed that when statistically signifi-
cant, the higher expression of class I HDAC members is predominantly associated with
worse survival. In contrast, the upregulation of class IIA HDAC proteins correlates with
better prognosis (Figure S3 and Table S1). As for class IIA, class III, and class IV HDACs’
expression, the associations with overall survival are gene-specific and do not follow any
particular trend.
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Figure 2. Patients’ survival analysis related to the expression of HDAC family genes across TCGA
tumors. Hazard ratios (log10[HR]) of death for patients with high (Q3, 75th percentile) relative to
low (Q1, 25th percentile) expression of specific HDAC family members for (A) overall survival and
(B) disease-free survival. Red and green denote higher or lower hazard ratios, respectively, for the
patients with a high expression of a given HDAC. Benjamin–Hochberg was used for multiple testing
corrections.

2.2. The Expression of HDAC Family Members Is Associated with Clinicopathological Features of
TCGA Solid Tumors in a Cancer-Dependent and Gene-Specific Manner

Next, we studied correlations between the expression of each HDAC family member
and clinical features like staging and grading for every solid tumor, wherever such data
were available in the TCGA database. As presented in Figure 3, HDAC family members’
expressions correlate with tumor stage or tumor grade in a cancer-dependent and gene-
specific manner and do not follow any specific trends, even within each HDAC family class.
It is worth noticing that the expression of HDAC1, HDAC2, and HDAC3 (all members of
class I) significantly correlates with TGCT’s staging most robustly among all correlations in
a positive manner (Figure 3B).

We further explored the associations between HDAC family gene expression and
clinicopathological features by comparing patients with low and high expressions of specific
genes (with 25th and 75th percentiles as cut-offs, respectively). We found statistically
significant associations between the expression of multiple HDAC family members and
TNM classifiers (i.e., tumor size, lymph node, and metastasis status) in several solid tumors
(Figure S4). For example, the expression of HDAC2/3/7/10 and SIRT2/3/6/7 associates
with tumor size in BRCA, the level of HDAC4/5/8/10/11 and SIRT1/5/7 associates with
tumor size in KIRC, and the upregulation of HDAC2/4/6/7 and SIRT1/2/6 associates
with tumor size in LUAD.

While tumor size differs between high- and low-expression groups for many HDAC
members in many tumors, KIRC is the only one in which the expression of nine HDAC
family members, HDAC1/5/8/10/11 and SIRT1/5/6/7, is associated with metastasis.
Interestingly, a low expression of HDAC11 was associated with advanced disease status in
KIRP, which complies with a statistically significant negative correlation between HDAC11
expression and both staging and grading in this tumor.
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HDAC family genes and tumors’ (A) grading and (B) staging. Spearman’s test with asymptotic t-test
for p-values. Benjamin–Hochberg was used for multiple testing corrections. COAD stands here as a
double abbreviation for COADREAD.

2.3. Class I HDAC Family Members Correlate Positively, While Class IIA HDAC Genes Correlate
Negatively with Cancer Stemness across TCGA Solid Tumors

As previously reported, solid tumors display distinct levels of cancer stemness [11].
Here, we analyzed the association between the expression of HDAC family members and
the level of tumor stemness, quantified with the transcriptome-based stemness index-
mRNA-SI, as previously defined by Malta T. et al. [11]. We further validated our results
with additional stem cell-derived gene signatures [27–30]. As presented in Figures 4 and 5A,
class I HDAC family members correlate positively, while class IIA HDAC genes correlate
negatively with cancer stemness across TCGA solid tumors, with the most robust and most
consistent associations observed for BLCA, BRCA, COAD (or effectively COADREAD),
HNSC, LIHC, LUAD, LUSC, OV, PRAD, and STAD (Figure 4 and Figure S5). Specifically,
HDAC2 (member of class I) and HDAC7 (member of class IIA) genes show the highest
correlations across studied solid tumors, exhibiting statistically significant opposite trends
for all the applied stemness indices. We observed only minor exceptions for HDAC7 in
HNSC, LUAD, LUSC, and OV, where correlation is statistically significant for at least one
of the applied stemness indices (Figure 4 and Figure S5). For HDAC2 and HDAC7 genes,
the opposite statistically significant correlation trend is not observable in the case of LIHC,
PRAD, and SARC.

Previously, Malta et al. [11] have found a strong association between the mRNA-SI and
known clinical and molecular features of TCGA BRCA tumors, demonstrating that the basal
subtype, known to exhibit an aggressive phenotype associated with an undifferentiated
state, displays the highest levels of mRNA-SI. Therefore, we analyzed the expression of
class I and class IIA HDAC members in individual TCGA BRCA samples stratified by
molecular subtype (PAM50). We observed a significant upregulation of HDAC2 in highly
dedifferentiated basal and HER2+ subtypes, in contrast to other class I HDAC members,
which exhibit equable expression patterns across BRCA subtypes. On the other hand,
HDAC7 was significantly overexpressed in less aggressive luminal A and luminal B BRCA
subtypes (Figure 5B,C), distinguishing from the expression profiles of other class IIA HDAC
members. When testing the level of individual pluripotency markers’ expressions (namely
OCT4 (POU5F1), SOX2, NANOG, and MYC) in highly stem cell-like TGCT tumors, we
observed significant positive associations with class I HDAC members, with the most robust
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ones for HDAC2 (Figure 5D and Figure S6). This further supports our first observation that
HDAC2 is strongly associated with cancer stemness.
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Figure 4. Class I HDACs and class IIA HDACs represent universal and opposite patterns of asso-
ciations with cancer stemness across distinct types of solid tumors. (A) Correlations between the
expression of HDAC family genes and mRNA stemness index (mRNAsi) across 22 TCGA solid
tumors. Spearman’s test with asymptotic t-test for p-values. Benjamin–Hochberg was used for
multiple testing corrections. (B) The number of TCGA cohorts that exhibit either positive (red) or
negative (blue) correlation between the expression of specific HDAC family members and tumor
dedifferentiation status defined by mRNAsi. The number of statistically insignificant associations is
marked with gray.

As HDAC2 and HDAC7 genes are observed to present the purest correlation trends
with stemness indices in previously selected tumors, they were used as representative
members of class I and class IIA for the subsequent analyses.

We used the GSEA [31] to compare the HDAC2 and HDAC7-associated transcriptome
profiles with a priori-defined stemness-associated gene signatures like Muller Plurinet,
Wong ESC, Kim Myc, and Assou ESC, as previously described [27,29,30,32]. We confirmed
significant enrichment of HDAC2-associated transcriptome profiles (Figure 6A–E) followed
by significant depletion of HDAC7-related transcriptome profiles (Figure 6F–J) with stem-
ness markers in all tested tumors. This strongly supports our first observation that HDAC2
is positively and HDAC7 is negatively correlated with tumor stemness.



Int. J. Mol. Sci. 2024, 25, 7841 8 of 25
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 5. Class I HDACs are positively associated with cancer stemness, while class IIA HDACs are 
negatively associated with cancer stemness. (A) The association between the cohort mean 
mRNA-SI level and the cohort mean expression (log2-normalized) of class I and class IIA HDAC 
genes across 22 TCGA cohorts. Each cancer type is color coded in the dot plots. (B) Class I and class 
IIA HDAC genes are differentially expressed between molecular (PAM50) BRCA subtypes. 
Statistical significance (−log10(adj. p-value)) of comparisons between basal vs. luminal A and basal 
vs. luminal B BRCA subtypes calculated with the Kruskal–Wallis test followed by Dunn’s multiple 
comparisons test are denoted in the lollipop plots and color coded accordingly: red—HDAC 
expression higher in basal vs. luminal A or basal vs. luminal B; light blue—HDAC expression 
lower in basal vs. luminal A; dark blue—HDAC expression lower in basal vs. luminal B (B < Lb); 

Figure 5. Class I HDACs are positively associated with cancer stemness, while class IIA HDACs are
negatively associated with cancer stemness. (A) The association between the cohort mean mRNA-SI
level and the cohort mean expression (log2-normalized) of class I and class IIA HDAC genes across
22 TCGA cohorts. Each cancer type is color coded in the dot plots. (B) Class I and class IIA HDAC
genes are differentially expressed between molecular (PAM50) BRCA subtypes. −log10(adj. p-value))
of comparisons between basal vs. luminal A and basal vs. luminal B BRCA subtypes calculated with
the Kruskal–Wallis test followed by Dunn’s multiple comparisons test are denoted in the lollipop
plots and color coded accordingly: red—HDAC expression higher in basal vs. luminal A or basal
vs. luminal B; light blue—HDAC expression lower in basal vs. luminal A; Statistical significance
(dark blue—HDAC expression lower in basal vs. luminal B (B < Lb); (C) The expression of HDAC2
and HDAC7 genes in TCGA BRCA samples stratified by molecular subtypes (PAM50) into 5 sub-
groups: basal (red), HER2-positive (magenta), luminal A (dark blue), gray—no statistical significance.
luminal B (light blue), and normal-like (green). The mean value with standard deviation (SD) is
plotted. (D) Class I HDAC members correlate positively, and class IIA HDAC genes correlate neg-
atively with the expression of several well-known pluripotency markers (OCT4, NANOG, SOX2,
MYC) in stem cell-like testicular germ cell tumors (TGCT, n = 156). Spearman correlation coefficient
and statistical significance (−log10(p-val)) is denoted.
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Figure 6. Stemness gene signatures in HDAC2- and HDAC7-associated transcriptome profiles.
(A–E) The GSEA of stemness gene sets (Muller Plurinet, Wong ESC, Kim Myc, Assou ESC) correlated
to HDAC2 revealed significant enrichment for most gene sets (p < 0.01) (not including Kim_Myc) in
(A) BLCA, (B) BRCA, (C) LUAD, (D) LUSC, and (E) STAD. The normalized enrichment score (NES)
for each gene signature is plotted in the bar graph. (F–J) Similarly, the GSEA of the same gene sets
correlated to HDAC7 showed significant depletion (p < 0.0001) in (F) BLCA, (G) BRCA, (H) LUAD,
(I) LUSC, and (J) STAD. The normalized enrichment score (NES) for each gene signature is plotted in
the bar graph; ns—not significant.
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Further, using the Enrichr tool [33], we performed the enrichment analysis to detect
potential targets for known transcription factors in the HDAC2-related (Figure S7A) or
HDAC7-related (Figure S7B) gene expression profiles. We identified BMI1, MYC, NANOG,
and OCT3/4 (POU5F1 gene) pluripotency markers as the most prominent transcription
factors associated with HDAC2 gene expression, highly supporting HDAC2’s association
with cancer stemness.

2.4. HDAC2-Associated Transcriptome Profiles Are Significantly Enriched with Stemness-Related
Hallmarks of Cancer, While HDAC7-Associated Transcriptome Profiles Are Enriched with
Immune-Related Terms

Cancer stemness is significantly negatively associated with tumor immunity, with
high stem cell-like tumors exhibiting low infiltration levels and significant immunosuppres-
sive microenvironments [13]. It was unsurprising that HDAC2-associated transcriptome
profiles were significantly depleted with immune-related signaling pathways or terms as
determined with the GSEA using Hallmark’s collection of gene signatures (from MSigDB
Hallmark 2020). As shown in Figure 7, the transcription profile associated with HDAC2 is
highly enriched, while associated with HDAC7 is highly depleted with stemness-related
terms like MYC targets, G2/M checkpoint, and E2F targets. These terms are statistically
significant in all 11 selected solid tumors. On the other hand, the HDAC7 transcrip-
tion profile is highly enriched with immune-related Hallmark terms, especially in SARC
and HNSC.

Enrichment of systematically selected gene sets from GO Biological Process ontology
collection (C5:BP, see Section 4.5) further confirmed our findings. As shown in Figure S8,
ontology processes having immune-related ancestors are significantly enriched in HDAC7-
related transcriptome profiles in SARC and HNSC, and to a lesser extent in STAD. Albeit
with no statistical significance, these processes also exhibit enrichment in other tumors:
PRAD, LUSC, LIHC, OV, or BLCA. On the other hand, for HDAC2-associated transcriptome
profiles, we observed a significant depletion of immune-related terms, which complies with
previous findings. Processes with ancestors related to cell cycle, cell division, and DNA
repair were highly enriched for HDAC2 while depleted for HDAC7. These processes were
previously reported as associated with stem cell features [11].

We performed additional validation through GSEA using curated gene sets from
chemical and genetic perturbations collection (C2:CGP). We observed that HDAC2-related
transcriptome profiles are significantly enriched across studied tumors with terms like
DREAM targets, upregulation of epithelial–mesenchymal transition, G2/M cell cycle,
E2F targets, EZH2 targets, and proliferation (Figure S9). In contrast, HDAC7-related
transcriptome profiles are significantly depleted within these terms in the same tumors. In
BRCA, LUAD, PRAD, and SARC, HDAC2—contrary to HDAC7—is associated with the
enrichment of SOX2 and OCT4 targets. Conversely, the HDAC7 profile is enriched with
immune-related terms like IL-4 signaling, differentiating of T cells, Th1 cell cytotoxicity, IFN-
β targets, and IFN-γ response in HNSC and SARC. These observations support previous
findings that HDAC2-associated transcriptome profiles are significantly enriched with
stemness-related hallmarks of cancer, while HDAC7-associated transcriptome profiles are
enriched with immune-related terms.
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Figure 7. MSigDB Hallmark Gene Set Enrichment (GSEA) preranked analysis of HDAC2 and HDAC7
gene expression across selected TCGA studies. The high-expression group (Q3, 75th percentile)
relative to the low-expression group (Q1, 25th percentile). Negative and positive NES values indicate
the enrichment of selected hallmark gene sets at the bottom or the top of the ranked dataset. Gray
cells indicate no available data. Benjamin–Hochberg was used for multiple testing corrections.
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2.5. HDAC Expression Correlates with the Infiltration of Selected Immune Cell Subtypes, and
HDAC7-High Expressing Tumors Exhibit Significant Upregulation of Distinct Chemoattractants

Next, we evaluated the tumor microenvironment concerning HDAC2 or HDAC7
expression in all tested tumor types. As presented in Figure 8A and Figure S10, the
expression of HDAC2 correlates negatively with the leukocyte fraction [34] and immune
checkpoint molecules in most tumors, while HDAC7 is mostly positively associated.
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Figure 8. HDAC2 and HDAC7 expression levels exhibit opposite associations with the tumor
microenvironment. (A) HDAC2 and HDAC7 expression in the context of tumor microenvironment.
Each panel shows the Spearman correlation between the HDAC2 (left) or HDAC7 (right) level and
PD-L1 protein expression plotted against the Spearman correlation between the same HDAC and total
leukocyte fraction (LF). (B) Correlations of HDAC2 and HDAC7 gene expression with infiltrating
immune subpopulation levels across selected TCGA studies. The analysis is based on the XCELL
algorithm (in the TIMER2.0 database), besides MDSC (myeloid-derived suppressor cells), which is
based on the TIDE algorithm. Gray cells indicate no available data. Benjamin–Hochberg was used for
multiple testing corrections.

To validate the observation of HDAC-dependent tumor microenvironment, we em-
ployed the ESTIMATE tool [35] and observed that the purity, immune, and stromal scores
correlate highly positively with HDAC7 gene expression in selected solid tumors, except
for OV and BLCA (Figure S11A). On the other hand, we observed the opposite statistically
significant correlation trend for HDAC2 expression in studied tumors, apart from LIHC.
This confirms high immune infiltration and stroma presence in the tumor tissues associated
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with HDAC7-high and HDAC2-low expression. Low–high HDAC2/7 expression levels
significantly differentiate the immune and stromal scores between patients in these groups
(Figure S11B–E). In other words, HDAC7-high and HDAC2-low patients have significantly
higher tumor immune and stromal infiltration levels in many tumors.

To further examine immune infiltration, we used the TIMER2.0 database [36] and
employed the xCELL algorithm of cell type quantification [37]. Compared to the expres-
sion of HDAC2 in many studied tumors, we observed a greater number of significant
positive correlations between HDAC7 expression and different immune subpopulation
levels (Figure 8B). This may suggest a strong positive relationship between HDAC7 and
tumor infiltrating cells (TILs), especially considering CD4+ T cell populations whose lev-
els generally correlate positively with HDAC7 expression and negatively with HDAC2
expression. Interestingly, myeloid-derived suppressor cells (whose level was evaluated
through the TIDE algorithm [38]) strongly correlate with HDAC2 expression in all studied
solid tumors, which is not observed for HDAC7. Furthermore, we looked at the levels
of chemoattractants in all tested tumor types regarding HDAC2 (Figure S12) or HDAC7
(Figure 9) expression and observed that HDAC7 upregulation significantly associates with
elevation of chemokines and their recognizing receptors. Moreover, HDAC7 expression
is significantly associated with the promotion of inflammatory factors in all 11 tumors
(Figure S13). In the case of HDAC2, we observed such an elevation in only BRCA, LIHC,
and PRAD, while depletion in COAD and LUSC.
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Figure 9. HDAC7 expression is associated significantly with the elevation of chemokines and
their respective receptors in tested solid tumors. (A,B) Expression correlations of HDAC7 with
(A) chemokines and (B) chemokine receptors across distinct tumor types. Spearman’s test with
asymptotic t-test for p-values. Benjamin–Hochberg was used for multiple testing corrections.

Finally, we compared the expression levels of HDAC2 and HDAC7 in studied tumors
between patients with different transcriptome-based immune subtypes [34]. As shown in
Figure S14, the median HDAC2 expression is generally lower in patients with immune
subtypes C3 (inflammatory type) and C6 (TGF-b dominant type) relative to other subtypes
in all tumors of interest besides (1) SARC, where the TGF-b dominant subtype features
the highest relative expression of HDAC2 among all tumors, and (2) wherever no samples
were classified as C6 subtype (OV, PRAD, READ, and LIHC). As shown in Figure S15,
differences in HDAC7 expression between patients with different immune subtypes are
statistically significant for all tumors (except OV and COAD) and p-values are generally
lower in comparison to HDAC2 differences in the same cancers. Interestingly, C3 and
C6 subtypes are associated with higher HDAC7 expression than other immune subtypes in
LUSC and STAD.
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2.6. HDAC2/7 as Potential Biomarkers of Immunotherapy Response in Solid Tumors

We searched the TIGER database [39] to explore the differential expression of class I and
class IIA HDACs between responders and non-responders to immunotherapy in different
tumors (Figure 10 and Figure S16). Among available studies, the only statistically signifi-
cant difference between such patients was found in SKCM, where responders to combined
anti-CTLA4+anti-PD1 therapy were characterized with lower HDAC2 expression than non-
responders (Figure 10A). Although differences are not statistically significant for other available
studies, preliminary yet no definitive results suggest the possible potential of HDAC2 and
HDAC7 as immunotherapy response biomarkers, which can be confirmed only if more samples
are available. In the case of HDAC2, this regards anti-PD1 therapy against KIRC and STAD
(Figure 10B,E) and anti-CTLA-4 therapy against SKCM (Figure 10C). HDAC7 could eventu-
ally become a potential response biomarker in the case of KIRC anti-PD1 immunotherapy
(Figure 10J). As patient cohorts in this analysis are too small, we underline that these findings are
only suggestive, indicating the possible and promising direction of further research. Additional
analyses should also be included to definitely prove the HDAC2/7 associations with immune
response. In particular, HDAC2/7 activity and protein levels should be measured, alongside
their chromatin accessibility.
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 Figure 10. Differential expression of HDAC2 and HDAC7 between responders and non-responders
to immunotherapy in different tumors. (A–E) HDAC2 expression in responders and non-responders
in different studies: (A) Melanoma-PRJEB23709, (B) STAD-PRJEB25780, (C) Melanoma-GSE100797,
(D) Melanoma-GSE100797, and (E) RCC-GSE67501 (renal cell carcinoma). (F–J) HDAC7 expression
in responders and non-responders in different studies: (F) Melanoma-PRJEB23709, (G) STAD-PRJEB25780,
(H) Melanoma-GSE100797, (I) Melanoma-GSE100797, and (J) RCC-GSE67501. Panels were taken directly
from the TIGER database.
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3. Discussion

This is the first comprehensive report revealing the associations between HDAC family
members, cancer stemness, and anti-tumor immune response across more than 20 types of
solid tumors. Here, based on the transcriptomic, genomic, and clinical data from the TCGA
database [24], Prognoscan platform [26], and TIGER database [39], and using several other
bioinformatic tools [31,35,36,39–41], we demonstrated that the expression levels of class I
and class II HDAC genes are related to cancer stemness and immunity, however, in a distinct
manner. While class I HDAC family members (HDAC1/2/3/8) were positively associated
with cancer stemness across most of the tested tumor types, class IIA HDAC members
(HDAC4/5/7/9) exhibited an inverse correlation. In support of these observations, we
found that the most robust and stringent positive associations with cancer stemness were
evidenced for HDAC2 expression, whereas a negative association was demonstrated for
HDAC7 expression. Importantly, our data clearly highlighted the enrichment of stemness-
associated “Hallmarks” terms in HDAC2-related transcriptome profiles and significant
depletion of those terms in HDAC7-high expressing tumors. Furthermore, our analyses
demonstrated that high HDAC2 levels are linked to the immune cell infiltration status
resembling the immunosuppressive environment. In contrast, HDAC7 expression level
positively correlates with increased immune cells’ abundance, suggesting an augmented
cancer immunogenicity. In line with these data, we noted a very strong and versatile
positive association between HDAC7 level and the expression of chemokines or chemokine
receptors. Finally, our analyses suggest that HDAC2 expression may have a potential value
as a biomarker of immunotherapy.

The involvement of HDAC family members in cancerogenesis has been studied for
several decades, identifying specific HDACs’ roles in distinct cellular and molecular events,
including cell cycle and cellular proliferation, apoptosis, DNA damage response, autophagy,
EMT, or angiogenesis [42,43]—all crucial players in cancer development and progression.
Also, the total pan-HDAC activity, including all family members, was determined as
essential for proper cell differentiation and regulation of pluripotency of normal stem
cells [44–46]. However, the role of specific HDAC members in facilitating the acquisition
or maintenance of cancer stem cell-like phenotype has not been fully explored. Also,
the involvement of most HDAC members in regulating anti-tumor immune response
remains elusive.

Here, using transcriptomic, genomic, and clinical data for diverse solid tumors, we in-
vestigated the association of HDAC expression, cancer stemness, and anti-tumor immunity.
Previous studies demonstrated the overexpression of class I HDAC members in different
cancer types, including gastric, esophagus, colorectal, prostate, glioma, melanoma, lung,
and breast cancers (reviewed in [42]). Also, their upregulation is frequently associated with
poor prognosis, especially in lung [47], gastric [48], liver [49], colorectal [50], ovarian [51],
bladder [52], and breast carcinomas [53]. Here, we show a consistent upregulation of all
class I HDACs in tumor tissues in contrast to other classes, especially IIA and IIB HDAC
members, whose expression pattern is more divergent and tumor type specific. Using
clinical data from the TCGA and Prognoscan databases, we demonstrated that high class
I HDAC members’ expression corresponds with worse survival of patients, especially
in BRCA, LUAD, and GBM. Our results are in line with the previously reported worse
survival rate of cancer patients with overexpressing class I HDACs, especially HDAC1 and
HDAC3 in lung cancers [47], HDAC2 in liver [49] or breast cancers [54], and HDAC1/2/3
in ovarian cancers [55], gastric cancers [56], or sarcomas [57].

In comparison, high class IIA HDAC members’ expression is associated with better
survival of BRCA, COAD, LUAD, and GBM patients. Our results align with a previously
demonstrated better outcome for high-expressing patients of specific class IIA HDAC
members, specifically in non-small cell lung carcinomas [58], HDAC7 in triple-negative
breast cancers [59], and HDAC4/5 in gliomas [60].

Also, HDACs are differentially associated with tumor stage and grade, however, in a
cancer-dependent and gene-specific manner, and do not follow any specific trends, even
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within each HDAC family class. We observed several distinct HDACs associated with tu-
mor grade in LGG, KIRC, and BLCA, while significant associations with stage are primarily
observed in KIRC, KIRP, BLCA, and TGCT. Previously, higher expression of class I HDACs
was observed in higher stages of colon cancer [61]. In childhood neuroblastoma, upregula-
tion of HDAC8 was associated with advanced stage, poor prognosis, and poor survival [62].
Elevated expression of class I HDACs was also shown in higher-grade prostate cancers [63].
Higher-grade ovarian tumors are characterized by upregulation of HDAC2 [64]. Also,
HDAC2 overexpression was associated with more aggressive stage III breast cancers, which
significantly correlated with a worse prognosis [65]. HDAC2 overexpression showed a
statistically significant correlation with increased lymphatic spreading of the tumor (N
stage) and lower tumor differentiation (higher grade) in esophageal adenocarcinomas [66].
In lung cancer, HDAC1 levels were substantially lower in patients with well-differentiated
adenocarcinoma than in those with a lower differentiation grade [47]. Both HDAC1 and
HDAC2 were significantly associated with higher tumor grades of urothelial bladder carci-
noma [52]. Together, highly expressed class I HDACs are usually associated with terminal
illness and inferior outcomes in cancer patients.

Class II HDACs (HDAC5/7/9) downregulation was observed in glioblastomas com-
pared to grade I–II astrocytomas [67]. Higher-grade ovarian tumors exhibit downregulation
of HDAC4 [64]. Li H. et al. [68] demonstrated that HDAC9 expression is negatively associ-
ated with both T and N stages (albeit not correlated with clinical stages) in PDAC tissues.
Also, HDAC6 expression was significantly associated with earlier histopathological stages
of pancreatic adenocarcinoma [69]. Taken together, class II HDACs are usually associated
with less progressed disease and superior outcomes in cancer patients.

Next, we demonstrated very robust and positive associations of class I HDACs’ ex-
pression and cancer stemness followed by a negative association of class IIA HDACs levels
and tumor dedifferentiation status as measured with previously reported stemness quanti-
fiers: the mRNA-stemness index (mRNA-SI) and other stem cell-derived gene signatures:
Ben-Porath ES2, Wong ESC, and Ben-Porath ES core [11,27,28]. The mRNA-SI was devel-
oped by a one-class logistic regression algorithm on transcriptomic data extracted from
distinct stem cell populations and their differentiated progeny, creating a comprehensive
stemness signature that allows for the quantification of tumor dedifferentiation in almost
12,000 samples across 33 tumor types.

Ben-Porath I. et al. [28] have found that histologically poorly differentiated tumors
show preferential overexpression of genes typically enriched in embryonic stem (ES) cells.
They demonstrated that this ES-like signature was associated with high-grade estrogen
receptor (ER)-negative tumors, often of the basal-like subtype, and with poor clinical out-
comes. Moreover, the ES signature was present in poorly differentiated glioblastomas and
bladder carcinomas, suggesting its versatility in the acquisition of cancer dedifferentiation
status regardless of the tumor type. Furthermore, Wong DJ. et al. [27] have recognized the
embryonic stem cell (ESC) transcriptional program that is frequently activated in diverse
human epithelial cancers and strongly predicts metastasis and death. They also identified
that the c-Myc oncogene is sufficient to reactivate cancer cells’ ESC-like program. Using
these independent transcriptome signatures, we quantified the level of cancer stemness
in diverse solid tumors. We demonstrated that class I HDAC members’ expression was
positively associated with the strongest correlations for HDAC2 regardless of the stemness
score or signature. In contrast, the level of class IIA HDACs correlates negatively with the
most robust and consistent associations observed for HDAC7.

Previously, Saunders A. et al. [70] demonstrated that HDAC2 is critical for the
reprogramming-promoting function of the SIN3A complex, facilitating the acquisition
of pluripotency by non-transformed cells in NANOG-driven reprogramming. The
SIN3A/HDAC2 complex and NANOG transcription factor are required to directly in-
duce a synergistic transcriptional program, encompassing the activation of pluripotency
genes and repression of differentiating genes. In light of cancer stemness acquisition sig-
nificantly resembling somatic cell reprogramming, the abovementioned results strongly
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suggest that HDAC2 could contribute to the stem cell-like properties of cancer cells.
Furthermore, both HDAC1 and HDAC2 were identified as proteins present in com-
plexes with SOX2 transcription factor [71], further supporting the stem cell-associated
roles for those class I HDACs. Also, the oncogenic activity of MYC is significantly
induced by HDAC2, suggesting the potential benefits of applying HDAC inhibitors in
the prevention and treatment of Myc-driven cancers. Recently, Bahia RK. et al. [72] have
identified HDAC2 as the most relevant histone deacetylase that facilitates stem cell-like
properties in brain tumor cells. HDAC2 activity regulates chromatin compaction that
impacts the expression of SMAD3 and SOX2 and is, thus, critical for the self-renewal of
brain cancer cells. Also, the inhibition of HDAC2 activity disrupted the interaction with
SMAD3, resulting in the loss of stem cell-like characteristics of brain tumor cells.

In our data, class I HDAC expression, especially HDAC2, correlates with the level
of selected pluripotency markers, including BMI1, OCT4, MYC, and SOX2. Also, the
associations were the strongest in testicular germ cell tumors, which exhibit the most
pronounced stem cell-like phenotype of all tested solid tumors. On the other hand, class
II HDACs, particularly HDAC7, are associated negatively with pluripotency markers’
expression in most tumor types, except for OCT4 (encoded by POU5F1), and NANOG in
KIRC, KIRP, LGG, LUAD, LUSC, PRAD, and THCA. This suggests that class I HDACs may
occur as attractive targets for anti-cancer treatment, especially for dedifferentiated (stem
cell-like) solid tumors.

When defining their transcriptome-based stemness score, Malta T. et al. [11] have revealed
an unanticipated negative correlation of cancer stemness with immune checkpoint expres-
sion and infiltrating immune cells. This was further supported by Miranda A. et al. [13], who
observed that cancer stemness is associated with suppressed immune response, higher intratu-
moral heterogeneity, and dramatically worse outcomes for most TCGA cancers. The persistent
interaction of cancer stem cells with the tumor microenvironment (TME) provides the ability to
avoid recognition and elimination by immune cells, facilitating CSC’s survival and tumor pro-
gression [73]. Cancer stem cells protect themselves against immune surveillance through several
distinct mechanisms, including suppression of T cell activation, aberrant MHC class I expres-
sion, repression of tumor-associated antigens (TAAs), or by exploiting the immunosuppressive
function of multiple immune checkpoint (IC) molecules [74]. As cancer stemness maintenance
relies significantly on epigenetic mechanisms, restoring dysregulated histone modifications to
overcome cancer resistance to immunotherapy is a promising anticancer strategy.

Here, we demonstrated that HDAC2-high expressing tumors that exhibit enriched
stem cell-like phenotypes are significantly depleted with immune cells, while the remain-
ing infiltrating populations are responsible for the formation of an immunosuppressive
microenvironment. On the other hand, solid tumors with HDAC7 upregulation are en-
riched with specific T cell subpopulations, including CD4+ naive and central memory
T cells and CD8+ T cells, and activated dendritic cells, suggesting the formation of T
cell-inflamed tumors [75]. HDAC7 overexpression is associated with the upregulation of
vast chemokine molecules, including the following T cell-attracting chemokines [75,76]:
CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10, which explains their strong immune cell
infiltration. These results further correspond with a significant upregulation of HDAC7
and a robust depletion of HDAC2 in the C3 immune subtype (inflammatory) in most tested
tumors. However, HDAC7 is significantly associated with the upregulation of immune
checkpoint molecules, including PD-1, PD-L1, and CTLA4. These suggest that, despite
HDAC7-high expressing tumors are heavily infiltrated with immune cells that could kill
cancer cells, the effectiveness of immune responses might be significantly abrogated at the
level of immune checkpoint signaling. Therefore, HDAC inhibitors represent an exciting
opportunity to improve the efficacy of immunotherapeutic regimens. Mechanistically, the
tumor microenvironment and specific anti-tumor immune responses might be affected by
HDAC inhibitors at several distinct levels, including the stimulation of cancer antigens’
expression or MHC class I/II expression, the modulation of immunosuppressive signaling
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pathways, the reduction in immunosuppressive cell populations, or the enrichment of
chemokine expression [77,78].

Previously, Wang H-F. et al. have shown significant elimination of MDSC in the
microenvironment of mice breast tumors treated with HDAC inhibitor SAHA (suberoy-
lanilide hydroxamic acid, a potent inhibitor of HDAC1/2/3/6/7/11) that corresponds
with an increased proportion of T cells (particularly that of IFN-γ- or perforin-producing
CD8+ T cells) [79]. Yan M. et al. [53] have demonstrated that class I HDAC members
associate negatively with CD8+ effector T cells, NK, and NKT cells in gynecologic cancers,
including BRCA, CESC, OV, and UCEC tumors. Also, class I HDAC expression signifi-
cantly correlated with the downregulation of specific T cell marker genes and suppressed
inflammatory markers. In their study, the combination of HDAC inhibitor SAHA with
anti-PD-1 in breast tumor-bearing mice suppressed tumor cell proliferation, promoted
inflammatory responses, and increased the numbers of tumor-infiltrating T lymphocytes
in vivo. Furthermore, Yang et al. [80] observed that selective HDAC8 inhibition resulted in
increased CD8+ T cell tumor infiltration in a preclinical model of hepatocellular carcinoma
due to elevated production of T cell-recruiting chemokines. Direct inhibition of HDAC8
coupled with PD-L1 blockade further reinvigorated CD8+ T cells, turning from a functional
exhausted state to IL-2- and IFN-γ-producing TILs.

Nowadays, the involvement of epigenetic dysregulation in accelerating cancer pro-
gression (at least partially by facilitating cancer stemness) is unquestionable. An increasing
number of studies demonstrate the potential of HDAC family members to become drug-
gable targets in solid tumors, albeit those studies do not raise the question of therapeutic
targeting of the stem cell-like compartment. Also, the fact that specific HDACs are essential
players in molecular mechanisms modulating cancer stemness is mainly ignored. Taking
that into consideration and based on our results, we suggest that direct inhibition of class
I HDAC family members (which are significantly overexpressed in stem cell-like, low-
infiltrated solid tumors), together with immune checkpoint inhibitors, might result in a
better outcome of treated patients, presumably by abolishing the self-renewal properties of
cancer cells and by strengthening the anti-tumor immune responses. Our observations stay
in line with previously reported enhanced antitumor immunity in triple-negative breast
cancers achieved by HDAC2 knockout in the breast cancer mice models. As presented by
Xu P. et al. [81], HDAC2 is required for the chromatin remodeling of IFNγ-induced PD-L1
expression in breast tumors, and direct HDAC2 targeting suppresses immune escape of
the tumor. Also, Zheng H. et al. [82] have found that class I HDAC inhibitor romidepsin
induced a strong T cell-dependent antitumor response and enhanced the therapeutic effect
of PD-1 inhibitors in lung adenocarcinoma. Later on, Orillion A. et al. [83] reported the
enhancement of the antitumor effect of PD-1 inhibition by entinostat, another class I HDAC
inhibitor, in murine models of lung and renal cell carcinomas. Recently, Han R. et al. [84]
have elegantly summarized the rationale of targeting HDAC2 and immune checkpoint
inhibitors in hepatocellular carcinomas. This novel tumor treatment strategy is endowed
with great clinical application and research prospects, which provides a new opportu-
nity to improve the overall prognosis of cancer patients further. Therefore, we suggest
that HDAC2-high expressing cancer patients who exhibit stem cell-like tumor phenotype
might benefit from the combination therapy, including both class I HDAC and immune
checkpoint inhibitors.

4. Materials and Methods
4.1. TCGA Solid Tumor Types Selected for the Study

In the current study, we initially selected for the analysis 22 solid TCGA [24,85]
tumor types with more than 100 mRNA-SeqV2 available samples (Table 2). Samples
within individual studies (namely, tumor types) included in the TCGA come from primary
untreated tumor resection fragments which are composed of at least 80% tumor nuclei [85].
All data (including raw mRNA bulk sequencing results and clinical information) are
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available online, and the access is unrestricted and does not require patients’ consent or
other permissions. The use of the data does not violate any personal or institutional rights.

4.2. TCGA Genetic and Clinical Data

The RNA sequencing-based mRNA expression data were directly downloaded from the
cBioportal [86] through web-API (https://www.cbioportal.org/webAPI, accessed on
15 October 2023). RNASeq V2 from TCGA is processed and normalized using RSEM [87]. Specif-
ically, the RNASeq V2 data in cBioPortal corresponds to the rsem.genes.normalized_results
file from TCGA. Expression data of HDAC family members in cancer and normal adjacent
samples for pan-can overviews were taken through the UCSC Xena Browser [88] from GDC [89]
and GTEx [25] datasets, respectively (https://xena.ucsc.edu/, accessed on 22 October 2023).
Specific chemokines and chemokine receptors associated with HDAC2/7 expression were
selected through the TISIDB (Tumor-Immune System Interaction Database) web-based re-
source (http://cis.hku.hk/TISIDB/index.php, accessed on 9 May 2024) [41]. Expression data of
chemokines, chemokine receptors, literature-specific inflammatory genes, transcription factors,
and immune checkpoint genes in selected cancers was directly downloaded from the TCGA
dataset using the UCSC Xena Browser (https://xena.ucsc.edu/, accessed on 9 May 2024) [88].
All clinical data (including grade, stage, tumor detailed subtype, tumor size, lymph nodes, and
metastasis) for each sample was downloaded directly from the cBioPortal. Survival analysis (OS
and DFS) was conducted with the GEPIA2 database (http://gepia2.cancer-pku.cn/, accessed
on 28 October 2023) [90]. The hazard ratio was estimated through the Mantel–Cox test for
patients with high (Q3, 75th percentile) relative to low (Q1, 25th percentile) expression of specific
HDAC family members. Statistical values were extracted from resulting individual plots using
the Selenium WebDriver [91].

4.3. Prognosis Analysis Using the Prognoscan Database

The PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/, accessed on
8 May 2024) [26] database was used for the meta-analysis of the prognostic value
of various genes. This online platform assists in investigating the relationship between
gene expression and patient prognosis across a large collection of cancer microarray
datasets. The significance threshold of associations between HDAC family members’
expression and patients’ overall survival was adjusted to a Cox p-value < 0.05.

4.4. Stemness-Associated Scores

The mRNA-SI stemness score and other stemness signatures (Ben-Porath ES core, Ben-
Porath ES2, and Wong ESC_core) used in this study were previously described [11,27,28].
Briefly, the mRNA-SI signature was calculated based on a previously built predictive
model using one-class logistic regression (OCLR) on the pluripotent stem cell samples (ESC
and iPSC) from the Progenitor Cell Biology Consortium (PCBC) dataset. The obtained
signature was further applied to score TCGA samples using the Spearman correlations
between the model’s weight vector and the sample’s expression profile. The index was
subsequently mapped to the [0, 1] range. As for Ben-Porat ES core, Ben-Porath ES2, and
Wong ESC core signatures, we used the Gene Set Cancer Analysis (GSCA) platform (https:
//guolab.wchscu.cn/GSCA/, accessed on 20 November 2023) to calculate the enrichment
score of inputted gene sets in each sample of selected cancers with Gene Set Variation
Analysis (GSVA) method [40,92].

4.5. Gene Set Enrichment Analysis

We employed the Enrichr tool (https://maayanlab.cloud/Enrichr/, accessed on
13 January 2024) which is an integrative web-based software application providing various
types of computing gene set enrichment, and visualization summaries of collective func-
tions of single genes or gene lists [33]. We used the top 100 most relevant genes (identified
with ARCHS4 RNA-seq gene–gene co-expression matrix) for a queried gene (HDAC2 or
HDAC7) to determine significantly enriched pathways (MSigDB Hallmark 2020 module)
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or to later on detect potential targets for known transcription factors (Transcription Factor
PPIs module).

The Gene Set Enrichment Analysis (GSEA, https://www.gsea-msigdb.org/, accessed
on 16 February 2024) [31] was performed to detect coordinated expression of a priori-
defined groups of genes within the tested samples. Gene sets are available at the Molecular
Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp, accessed
on 16 February 2024) [93]. All significantly differentially expressed genes were previ-
ously ranked based on their log2FC between analyzed groups: high expression (Q3,
75th percentile) relative to low (Q1, 25th percentile) expression of HDAC2 or HDAC7.
Groups of ranked genes were imported to GSEA, and the GSEAPreranked tool was run
according to the following parameters: Dataset used in the original format (no collapse) and
permutation number = 1000. The FDR <0.05 was used to correct for multiple comparisons
and gene set sizes. For the CP5:BP collection, the resulting lists of terms for separately
HDAC2 and HDAC7 genes were limited to processes for which data are available for all
studied tumor types. We selected processes from the very top and bottom (measured as
sum of NESs in each tumor) of the pre-ranked datasets. Both lists were intersected to obtain
a final list for both genes combined. Resulting processes were manually annotated in an
unbiased manner, based on the most relevant ancestry processes (retrieved from AmiGO2
resource [94], https://amigo.geneontology.org/, accessed on 20 February 2024). This step
resulted in classification into cell cycle, cell division, DNA repair, and immune process
classes. For the CP2:CGP collection, we manually filtered out all terms which are specific
and thus applicable only for individual tumor types and intersected the rest of processes
for both HDAC2 and HDAC7 genes. The hallmarks collection is presented without any
prior filtering.

4.6. Immune and Stromal Infiltration

Immune infiltration was examined using the TIMER2.0 database [36], which allowed
us to calculate correlations of gene expressions with immune infiltration levels in diverse
cancer types using different algorithms. The purity-adjusted Spearman’s rho values across
11 cancer types calculated using the xCELL method [37] were downloaded directly from
TIMER2.0 (http://timer.cistrome.org, accessed 14 February 2024) [36]. Based on single-
sample GSEA, xCELL is a cell-type quantification method that, unlike other commonly used
algorithms like CIBERSORT, is a gene-based marker approach rather than a deconvolutional
approach. It outperforms other methods, allows predicting the highest number of cell
types among available algorithms (up to 64), and is considered more robust for abundance
analysis in contrast to deconvolutional methods [95].

ESTIMATE (estimation of stromal and immune cells in malignant tumor tissues using
expression data) web-based software was employed to predict each tumor purity, level
of stroma cells presence in tumor tissues, and level of tumor immune infiltration, using
gene expression data (https://bioinformatics.mdanderson.org/estimate/, accessed on
5 February 2024) [35].

4.7. Immune Subtypes and Immunotherapy Results

To investigate tumor–immune interactions, we used the TISIDB (tumor–immune
system interaction database) web-based resource (http://cis.hku.hk/TISIDB/index.php,
accessed on 20 February 2024) [41]. We explored relationships between HDAC2 or HDAC7
and five immune subtypes: C1 (wound healing), C2 (IFN-gamma dominant), C3 (inflam-
matory), C4 (lymphocyte depleted), C6 (TGF-b dominant) in 11 cancer types.

Additionally, the TIGER database (http://tiger.canceromics.org/, accessed on
18 January 2024) [39] was employed to explore the potential role of HDAC family members
as biomarkers of immunotherapy response in solid tumors. The immunotherapy response
module provides differential expression analysis, which uses bulk transcriptome data with
immunotherapy clinical information to find differences in the expression of the gene in
question between responders and non-responders to specific immunotherapies [35].
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4.8. Statistical Analysis

Statistical analyses were carried out with GraphPad Prism 8.0 (GraphPad Software,
Inc., La Jolla, CA, USA), R 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria)
with ggplot2 [96] and complexheatmap [97] libraries for visualization, and Python 3.11
(The Python Software Foundation, Wilmington, Delaware) with Selenium [91] library for
data retrieval. Exact applied statistical tests are described in each figure description.

5. Conclusions

Our research uncovered a significant association between cancer stemness and an
elevated expression of class I HDAC family members, especially HDAC2, where the
association was robust and universal regardless of the tested tumor type. On the other
hand, the relation of class IIA HDAC members is significantly negative, with HDAC7
exhibiting the strongest ones. We further demonstrated for the first time the distinct trends
of associations between class I and class IIA HDACs and anti-tumor immunity, with the
expression of class I HDAC2 being negatively correlated and class IIA HDAC7 being
positively correlated.

We suggest that patients with stem cell-like, low-infiltrated solid tumors exhibiting
significant upregulation of HDAC2 might benefit from the treatment with the combination
of HDAC2-specific inhibitors and immunotherapy (i.e., immune checkpoint inhibitors).
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