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Abstract: Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved
in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated
responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid
synthesis. Previous studies have shown that FABP4, a member of this family of proteins that
are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various
cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since
significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been
identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology,
our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were
substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic
retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as
significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in
both retinal physiology and pathogenesis, and the results of these studies have suggested potential
molecular targets for retinal diseases that might lead to future new therapeutic strategies.

Keywords: fatty acid-binding protein 4 (FABP4); fatty acid-binding protein 5 (FABP5); vascular
endothelial growth factor A (VEGFA); retinal vascular disease (RVD); proliferative diabetic
retinopathy (PDR); retinal vein occlusion (RVO)

1. Introduction

Fatty acid-binding proteins (FABPs) are structurally conservative water-soluble cyto-
plasmic proteins with a relatively small molecular weight of around 15,000 Da. They are
involved in various lipid-related biological functions including oxidation, signaling, regu-
lation of gene transcription, and storage by transporting fatty acids (FAs) to intracellular
compartments [1–4]. So far, 12 FABP family members have been identified and two of them
(FABP 10 and FABP 11) are not expressed in humans [5]. The spatial structure of these
FABPs share a common so-called β-barrel structure composed of a central hydrophobic core
surrounding 10 antiparallel chains in two vertical directions [6], and diversity in protein
sequences contributes to the distinguishability of binding ligands to induce specific biologi-
cal ability among the individual members [1–4]. In addition to the physiological roles of
FABPs, numerous studies have shown that FABPs are also involved in the development
and progression of the pathogenesis of various diseases, including cardiovascular, renal,
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endocrine and metabolic diseases, cancers, and neurodegenerative diseases [2–4]. As mem-
bers of the human FABP family of proteins, the following ten isoforms have been identified:
liver (L-FABP/FABP1), intestinal (I-FABP/FABP2), heart (H-FABP/FABP3), adipocyte
(A-FABP/FABP4/aP2), epidermal (E-FABP/FAPB5/mal1), ileal (Il-FABP/FABP6), brain
(B-FABP/FABP7), myelin (M-FABP/FABP8), testis (T-FABP/FABP9) [2–4], and FABP12 [7]
(Table 1). As for ocular FABPs, a recent single-cell transcriptomic investigation showed that
several FABPs are expressed among various cell components within the human retina [8],
suggesting that FABPs may also have significant roles in the physiology, as well as the
pathology, of the retina. Furthermore, our research group revealed that FABP4 is a main
subspecies of intraocular FABPs (ioFABPs) and is involved in both the physiology and
pathogenesis of intraocular tissues, especially the retina [9–12]. Therefore, in this review,
we present recent findings, with a focus on the biological significance of ioFABPs, especially
ioFABP4, as well as their substrates, intraocular FFAs (ioFAs), and their contribution to
retinal pathophysiology.

Table 1. Localization and pathophysiological aspects of mammalian FABP family.

Common Name Aliases Expressed
Tissues and Cells Biological Roles

Expression
Levels of

Pathologenic
Conditions

Number of Amino
Acids/Chromosomal

Location

FABP1 Liver FABP
(L-FABP)

hepatic FABP, Z
protein,

heme-binding
protein

Liver, alveolar
epithelium cells,
small intestine,

colon, duodenum,
kidney

bind FA, bile acids, and
exogenous substrates for

lipid metabolism and
energy homeostasis

liver damage
(serum↑) 127/2p11

FABP2 Intestinal FABP
(I-FABP)

gut FABP
(gFABP)

small intestine,
duodenum, colon

transport of exogenous FA
to modulate cell growth
and proliferation during
dietary lipid absorption

colon cancer↑ 132/4q28-q31

FABP3 Heart FABP
(H-FABP)

O-FABP,
mammary-

derived growth
inhibitor (MDGI)

heart, neurons,
glia, kidney,

prostate,
mammary gland,
placenta, ovary,
brown adipose

tissue

transport of FA and other
lipophilic substrates to

modulate cell growth and
proliferation of muscle

and heart

heart failure
(serum↑) 133/1p33-p31

FABP4 Adipocyte FABP
(A-FABP) aP2

fat, macrophage,
liver, limb, whole

brain, placenta

transport of FA in
intracellular compartment,

export of FA in plasma,
and regulation of lipid

metabolism

obesity and
metabolic
syndrome
(plasma↑)

132/8q21

FABP5 Epidermal FABP
(E-EABP)

keratinocyte-type
FABP (K-FABP),

psoriasis-
associated

FABP(PA-FABP)

esophagus, fat,
colon, skin, colon,
lung, limp node,
heart, placenta,
neurons, lens,

and glia

transport of FA to adjust
cellular fatty acid

movement of skin and
blood circulation

breast and
prostate
cancers↑

135/8q21.13

FABP6 Ileal FABP
(IL-FABP)

ileal lipid-binding
protein (ILLBP),

intestinal bile
acid-binding

protein (I-BABP),
gastrophin

small intestine
transport of FA to correct
absorption and transport

of bile acids
colon cancer↑ 128/5q23-q35

FABP7 Brain FABP
(B-FABP)

brain
lipid-binding

protein (PLBP),
MRG

brain, neurons,
glia, skin, salivary
gland, fat, retina

transport of FA plays a
fundamental role in
neurogenesis and

astrocyte proliferation

breast cancer,
melanoma,

renal
carcinoma,

cystic
carcinoma,

and invasive
glioma↑

132/5q22-q23
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Table 1. Cont.

Common Name Aliases Expressed
Tissues and Cells Biological Roles

Expression
Levels of

Pathologenic
Conditions

Number of Amino
Acids/Chromosomal

Location

FABP8 Myelin FABP
(M-FABP)

peripheral myelin
protein2 (PMP2)

brain, myelin
sheaths of the

peripheral
nervous system

transport of FA to regulate
the structural and

functional integrity of
myelin

dominant de-
myelinating

Charcot-
Marie-Tooth
neuropathy↓

132/8q21.3-q22.1

FABP9 Testis FABP
(T-FABP)

testis
lipid-binding

protein (TLBP),
PERF15

testis, spleen, fat,
brain,

endometrium

transport of FA to
stabilize spermatogenesis

and fertilization

prostate
cancer↑ 132/8q21.13

FABP12 none none

retinoblastoma
cell, rodent retina,
rodent testicular

germ cells, rodent
cerebral cortex,
rodent kidney,

rodent
epididymis

germinal lipid metabolism not reported 140/8q21.13

References: FABP1 [13,14], FABP2 [14], FABP3 [15], FABP4 [2,16], FABP5 [17], FABP6 [18], FABP7 [19], FABP8 [19],
FABP9 [20], FABP12 [21].

2. Intraocular Free Fatty Acids (ioFFAs)

Physiologically, FFAs are essential elements for almost all living organisms because
they serve not only as a source of energy but also as a component of all cellular membranes
in the form of phospholipids [22]. In vertebrates, including humans, redundant FFAs are
stored in the form of triglycerides and cholesterol esters in adipocytes and intracellular
lipid droplets and can be used on demand to maintain lipid-related homeostasis [22]. On
the other hand, excess FFAs are also involved in several pathological states such as obesity,
DM, fatty liver, and dyslipidemia [23,24]. Thus, FFAs need to be tightly regulated at both
the intracellular and extracellular levels.

FAs are generally ingested in the form of phospholipids and triglycerides, and in turn,
Triglycerides are hydrolyzed into mono- and diglycerides and FFAs during digestion [25,26].
This type of FA metabolism occurs in most cells and is particularly important in adipocytes,
in which FAs are re-esterified to form triglycerides that are then stored in the form of fat
droplets [27]. However, when triglycerides in chylomicrons are cleaved, the resulting FAs
are not always directly taken up by nearby cells and some are transported through the
circulation to other cells as forms that are bound to serum albumin [28]. Alternatively,
another source of plasma FAs is the so-called de novo lipogenesis, that is, their endogenous
synthesis from carbohydrates [26,27]. This de novo lipogenesis can also occur in most cells,
particularly in the liver and adipose tissue, as well as in mammary glands. After the FAs are
absorbed into cells or undergo de novo lipogenesis, most of the FAs are then transported by
intracellular FABPs to mitochondria, where they undergo β-oxidation to produce energy in
the form of ATP [27,29]. On the other hand, FAs can also be converted into phospholipids
or sphingolipids, which function as major components of cellular membranes and have
important intracellular signaling roles [30–35]. Among the FA subspecies, it is shown that
saturated FAs (SFAs) have a clearly different origin, metabolism, and function than those
of polyunsaturated fatty acids (PUFAs). In fact, brain SFAs, such as palmitate (16:0) or
stearic (18:0), are known to be generated in situ, as well as being imported into the brain,
whereas PUFAs, which are elongated and further unsaturated mainly in the liver, are then
transported through the blood circulation and imported into neural tissue as non-esterified
FAs [36–38]. Thus, both endogenous and blood-derived PUFAs accumulate preferentially
in neurons in the form of phospholipids.
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2.1. Contribution of ioFFA to Retinal Pathogenesis

Within intraocular tissues, it has been shown that photoreceptor outer segments
contain abundant lipids including phospholipids (90–95%) and cholesterols (4–6%) [39,
40], although there are no evident fatty tissues and cells. Furthermore, it is known that
the human retina contains five major types of FFAs: palmitic acid (C16:0), stearic acid
(C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) [41]. Those
studies suggest that lipid metabolisms, especially FFAs, may be an important regulatory
mechanism of intraocular physiology. In our recent study, we detected SFAs (C16:0 and
C18:0), monounsaturated fatty acids (MUFA) (C18:1), and PUFAs (C18:2 and C20:4) as
major vitreous FA subspecies of ioFFAs in vitreous specimens obtained from patients with
retinal vascular diseases (RVDs) and non-RVDs [12]. Interestingly, the levels of ioFFAs and
intraocular FABP4 (ioFABP4) were significantly, but independently, elevated in patients
with RVDs compared with levels of non-RVD patients [12]. As of this writing, the origins
of ioFFAs have not been elucidated yet. However, no significant correlation between
plasma (p FFAs and ioFFAs (Table 2) in our recent study suggested that ioFFAs may be
generated locally in addition to leaking from the bloodstream during the pathogenesis of
RVD. In fact, it has been reported that an increase in vascular permeability and breakdown
of the blood-retinal barrier (BRB) occur during the progression of these diseases [42].
Furthermore, FABP4, which is primarily regarded as an adipocyte- and macrophage-
specific protein [2,16,17], is also expressed in capillaries and veins [43], and our recent study
also showed that the levels of ioFABP4 and ioFFAs were closely correlated, either with or
without RVD.

Table 2. Correlations of plasma (p-) and intraocular (io-) FFA subspecies.

ioFFA
(µg/mL)

ioC16:0
(µg/mL)

ioC18:0
(µg/mL)

ioC18:1
(µg/mL)

ioC18:2
(µg/mL)

ioC20:4
(µg/mL)

ioFFA (µg/mL) −0.388
ioC16:0 (µg/mL) −0.395
ioC18:0 (µg/mL) −0.131
ioC18:1 (µg/mL) −0.276
ioC18:2 (µg/mL) −0.424
ioC20:4 (µg/mL) 0.394

Levels of p-FFA and ioFFA were determined by gas-chromatography, as shown in our recent studies [9–12].

It has been shown that lipids account for approximately one-third of the retina dry
weight, and 87%, 11%, and 1.7% of the total lipids in the human retina are phospholipid, free
cholesterol, and cholesterol esters, respectively [40]. The retinal pigment epithelium (RPE)
and ocular choroid also contain many lipids, including 58% phospholipid, 19% cholesterol
ester, 15% free cholesterol, 4% triglycerides, and 4% FFAs. DHA, stearic acid, and palmitic
acid have been identified as the most prevalent FFA subspecies in the retina [40,44]. Despite
such abundant FFAs within the intraocular environment, the biological roles of the FFAs
have not been elucidated, although some of those species, including DHA, have been
extensively studied [45,46]. For instance, it was shown that DHA in disc membranes of the
photoreceptor outer segment greatly influences the phototransduction pathway by optimiz-
ing the conformational states of rhodopsin molecules during light absorption. Therefore,
DHA in the photoreceptor disc membrane may precisely maintain the FFA compositions
in the retina so that they are not influenced by dietary fluctuations [47–49]. However, in
the case of a decrease in retinal DHA levels following chronic DHA deficiency, there are
functional deficits in an electroretinogram (ERG) [49] and loss of vision [48], presumably
due to morphological changes of the photoreceptor outer segment disc membranes [50].
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2.2. Possible Effects of ioFFA on the Outer Blood-Retinal Barrier (oBRB)

In addition to photoreceptor cells, it has been shown that RPE cells maintain lipid
metabolism homeostasis in the retina through the use of lipid metabolism-related enzymes,
with mitochondrial fatty acid β-oxidation being a major pathway for fatty acid degrada-
tion [51], and lipid metabolism regulation in the RPE has therefore been suggested to be
a possible therapeutic strategy for various retinal diseases such as age-related macular
degeneration (AMD) [52]. However, among these lipid metabolism regulations in the
RPE, the effects of ioFFAs have not yet been elucidated. It is known that the oBRB is
composed of the ocular choroid, Bruch’s membrane (BM), and RPE [53], and rigid inter-
cellular binding by tight junctions (TJs) in the RPE monolayer sheet of the oBRB mainly
functions as a biological barrier to regulate trafficking of nutrients, wastes, and inflamma-
tory cells between the ocular choroid and outer retina [54–57]. In addition, TJs of the RPE
are located at the apical surface and thus contribute to the maintenance of interepithelial
junctional integrity and permeability [58–61]. A previous study using human intestinal
epithelial Caco-2 cells showed that heat stress after pre-incubation with EPA, DHA, or
arachidonic acid effectively attenuated the decrease in trans-epithelial electric resistance
(TEER) and significantly increased the expression levels of occludin and ZO-1 [62], and
another study showed that DHA- and EPA-enriched phosphatidylcholine enhanced the
permeability across monolayers of Caco-2 cells [63], suggesting that ioFFA may also affect
oBRB functions.

3. FABP4 Is a Main Isoform of the FABP Family, among ioFABPs

Sellner and Phillips first showed the fatty acid preferences of ocular FABP isoforms
and the effects of the FABP isoforms by measuring the acylation of 1-palmitoyl-sn-glycero-
phosphocholine (1-16:0-GPC) or 1-palmitoyl-sn-glycerophosphoethanolamine (1-16:0-GPE)
using microsomal fractions prepared from the retinas of 14–15-day-old chick embryos [64].
Thereafter, Sellner showed by immunohistochemistry that a retinal FABP homologous
to mammalian H-FABP (FABP3) is localized in photoreceptor inner segments, the outer
nuclear layer (ONL), the ganglion cell layer (GCL), and the inner limiting membrane in
the embryonic chick retina [65,66]. Therefore, they suggested that this retinal FABP may
play an important role in FA-related regulations during the development of the retina.
Another study using in situ hybridization showed the presence of FABP12 in the reti-
nal ganglion and inner nuclear layer cells in addition to the testis of rats and in human
retinoblastoma cell lines [7]. In another immunohistochemical study, immunolabeling was
detected in amacrine/bipolar/horizontal interneurons, microglia, ganglion cells, and cone
photoreceptor cells by anti-H-FABP (FABP3), anti-A-FABP (FABP), anti-E-FABP (FABP5),
and anti-B-FABP (FABP7), respectively, in a healthy mouse retina [67]. Interestingly, im-
munoreactivity by anti-E-FABP (FABP5) was recognized in invasive macrophages in a
photopic-damaged mouse retina [67], suggesting that E-FABP (FABP5) may be involved in
retinal pathogenesis. In support of these results, a recent study using a single-cell transcrip-
tomic analysis also showed that several FABP isoforms, including FABP3, FABP4, FABP5,
FABP7, FABP8, and FABP12, are diversely expressed in human retinal cells [8]. Collectively,
these findings suggest that various FABP isoforms are indeed present within vertebrate
retinas and may be differently involved in some biological roles in the retina. To study this
issue further, our group independently performed immunohistochemistry using healthy
human retinas and rodent retinas from wild-type (WT) and disease models of diabetic
retinopathy (DR) or retinitis pigmentosa (RP) by using antibodies against FABP3, FABP4,
FABP5, FABP7, FABP8, and FABP12 [12]. As shown in Table 3, immunohistochemistry
revealed that positive labeling profiles in the healthy human retinas were exclusively differ-
ent among FABP isoforms. All retinal layers, those except the photoreceptor outer segment
(OS), or those except the OS and RPE were immunolabelled by anti-FABP3 antibody, anti-
FABP4 antibody (Figure 1), or anti-FABP7 antibody, respectively, and anti-FABP8 antibody
reacted with the nerve fiber layer (NFL), inner plexiform layer (IPL) and RPE. On the other
hand, in rodent retinas, only immunoreactivities against FABP4 and FABP12 were detected,
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and retinal immunolabeling patterns by anti-FABP4 were different among WT, DR, and RP
rodent retinas. Therefore, these collective data suggest that FABP4 is a major retinal FABP
isoform and FABP4 may have a pivotal role in retinal pathophysiology.

Table 3. Retinal distribution of FABP family in human and rodent retinas.

FABP3 FABP4 FABP5 FABP7 FABP8 FABP12

Human Rodent Human Rodent Human Rodent Human Rodent Human Rodent Human Rodent

NFL + − + + − − + − ± − − −
GCL + − + + − − + − − − − ±
IPL + − + + − − + − ± − − −
INL + − + + − − + − − − − +
OPL + − + + − − + − − − − −
ONL + − + + − − + − − − − +
OS ± − − − − − ± − − − − −

RPE + − + + − − − − + − − −
Retinal distribution of FABP isoforms of healthy human retinas and rodent retinas was determined by immunohis-
tochemistry using specific antibodies against FABP isoforms, as shown in our recent study [12]. NFL; nerve fiber
layer, RGC; retinal ganglion cell layer, IPL; inner plexiform layer, INL; inner nuclear layer, OPL; outer plexiform
layer, ONL; outer nuclear layer, OS; photoreceptor outer segments, RPE; retinal pigment epithelium.
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Figure 1. Retinal distribution of fatty acid-binding protein 4 (FABP4) of healthy human retina.
Retinal distribution of FABP4 in a healthy human eye was determined by immunohistochemistry
using anti-FABP4 antibody (red) and DAPI (blue). Representative hematoxylin and eosin stain and
immunolabeling images are recreated using images in our recent study [12]. NFL: nerve fiber layer,
RGC: retinal ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer, 0PL: outer
plexiform layer, ONL: outer nuclear layer, OS: photoreceptor outer segments, RPE: retinal pigment
epithelium, CHOL: ocular choroid. Scale bar; 100 µm.

4. Roles of ioFABP4 in Retinal Pathogenesis

FABP4 was initially known as an adipocyte-derived protein that functionally plays an
important role in the maintenance of glucose and lipid homeostasis [1,68]. However, recent
observations have suggested that FABP4 is more widely expressed than initially thought,
and FABP4 has been shown to be expressed in capillary and venous cells, rather than in
arterial, endothelial cells under physiological conditions [2,17]. In addition, among FABP
proteins, FABP4 is also expressed in macrophages, in addition to adipocytes, and plays a
pivotal role in the pathogenesis of cardiovascular diseases, HT, DM, and cancer [69–74].
Furthermore, FABP4 can be secreted into various bodily fluids such as plasma and, in
fact, significant increases in the serum levels of FABP4 have been detected in patients with
cardiovascular and metabolic diseases [1,68,75–82]. Since several of these diseases related
to FABP4 are also well-known as key risk factors for various RVDs including proliferative
DR (PDR), retinal vein occlusion (RVO), and AMD, it has been rationally suggested that
FABP4 is involved in the pathogenesis of RVDs.
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4.1. Proliferative Diabetic Retinopathy (PDR)

PDR is known as an advanced stage of DR with serious retinal complications, which
can induce vision loss among relatively young DR patients worldwide [83]. As the underly-
ing mechanism for the pathogenesis of PDR, it has been shown that numerous biochemical
and inflammatory processes in response to long-term exposure to hyperglycemia simul-
taneously induce vascular endothelial dysfunction, pericyte loss, and neurodegeneration,
which lead to the development of hypoxia and neovascularization [84]. During the course
of disease progression, the expression of various cytokines including vascular endothelial
growth factor (VEGF), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide
synthase is locally induced in the diabetic retina in response to hypoxia [85]. In addition
to the accumulation of chemokines, adhesion molecules such as intercellular adhesion
molecule-1 are also induced to facilitate the migration of leukocytes into the retinal endothe-
lium, and thereby vascular permeability increases and the inner blood-retinal barrier is
broken down [42]. Therefore, this VEGF-related signaling is known as the main mechanism
of the pathogenesis of PDR and provides a rationale therapeutic strategy to use anti-VEGF
drugs [86] in addition to traditional anti-angiogenic agents [87], intravitreal injections of
corticosteroids, and/or laser photocoagulation therapy [88]. Nevertheless, these single or
combined therapies have only provided limited success in the treatment of PDR [86–88],
and additional target molecules other than VEGF are required for therapy for PDR.

In our recent study, we focused on ioFABP4 as an additional candidate of a pathogenic
target molecule for PDR and examined the concentrations of ioFABP4 and intraocular
VEGFA (ioVEGFA) in vitreous specimens surgically obtained from patients with PDR
(n = 20) [10–12]. As non-PDR controls (n = 20), vitreous specimens were also collected
from non-DR patients with epiretinal membrane (ERM). As expected, both vitreous concen-
trations of ioFABP4 and ioVEGFA determined by enzyme-linked immunosorbent assays
were substantially increased in eyes with PDR, and a strong positive correlation (r = 0.72,
p < 0.001) was observed between levels of ioFABP4 and ioVEGFA (Tables 4 and 5). Further-
more, both factors were negatively correlated with ocular blood flow in the optic nerve
head, and the correlation was stronger for ioFABP4 (Table 6). However, correlation analyses
with various clinical factors and stepwise multiple regression analyses suggested that
ioFABP4 and ioVEGFA were independently regulated. Levels of ioFABP4 were not corre-
lated with the presence of vitreous hemorrhaging or plasma levels [10–12]. Collectively,
the results suggested that ioFABP4 originates from some intraocularly originating cells,
not from peripheral blood circulation, and that ioFABP4 may be an additional key target
molecule involved in the pathogenesis of PDR by affecting ocular blood circulation.

Table 4. Correlations of intraocular (io-) FABP4, VEGFA, FFA subspecies, and ocular blood flow levels.

ERM PDR RVO

ioFABP4 (ng/mg protein) 0.30 (0.26–0.35) 1.14 (0.65–3.03) * 0.36 (0.30–0.61) †
ioFABP5 (ng/mg protein) 0.24 (0.11–0.32) 0.84 (0.47–1.14) * 1.38 (0.77–3.29) *,†

ioVEGFA (mg/mg protein) 6.8 (5.8–8.4) 166.4 (50.3–295.1) * 12.9 (3.6–35.2)
ioFFA (µg/mL) 1.37 (0.52–4.18) 15.2 (8.3–30.2) * 8.8 (1.9–14.1)

ioC16:0 (µg/mL) 0.65 (0.23–1.68) 4.3 (2.1–8.0) * 2.1 (0.3–3.7)
ioC18:0 (µg/mL) 0.16 (0.02–1.23) 1.9 (0.4–3.2) * 1.00 (0.02–2.25)
ioC18:1 (µg/mL) 0.02 (0.02–0.60) 3.8 (1.4–7.4) * 2.1 (0.7–3.5) *
ioC18:2 (µg/mL) 0.02 (0.02–0.53) 3.3 (1.5–7.1) * 1.9 (0.4–4.0) *
ioC20:4 (µg/mL) 0.05 (0.05–0.05) 1.20 (0.05–2.50) * 0.60 (0.05–1.15)

* p < 0.05 vs. ERM; † p < 0.05 vs. PDR. Ocular blood flow at the optic disc (OD) at different areas including MBR(A):
all areas of the OD, MBR(V): vascular area of the OD, MBR(T): tissue area of the OD, and 4MBR(V)-MBR(T), which
were measured as described previously [11]. MBR: mean blur rate, an index for laser speckle flowgraphy, FFA: total
fatty acids. C16:0: palmitic acid, C18:0: stearic acid, C18:1: oleic acid, C18:2: linoleic acid, C20:4: arachidonic acid.
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Table 5. Levels of intraocular (io-) FABP4, VEGFA, and FFA subspecies in vitreous specimens obtained
from patients with ERM, PDR, and RVO.

Log ioFABP4 Log ioFABP5 Log ioVEGFA

r p r p r p

Log ioFABP4 - - 0.38 0.008 0.68 <0.001
Log ioFABP5 0.38 0.008 - - 0.35 0.015
Log ioVEGFA 0.68 <0.001 0.35 0.015 - -

ioFFA (µg/mL) 0.50 <0.001 0.18 0.262 0.43 <0.001
ioC16:0 (µg/mL) 0.51 <0.001 0.16 0.312 0.42 0.001
ioC18:0 (µg/mL) 0.57 <0.001 0.12 0.453 0.38 0.003
ioC18:1 (µg/mL) 0.49 <0.001 0.22 0.159 0.45 <0.001
ioC18:2 (µg/mL) 0.48 <0.001 0.19 0.231 0.41 0.001
ioC20:4 (µg/mL) 0.43 <0.001 0.17 0.279 0.40 0.002

MBR(A) −0.43 0.007 −0.57 <0.001 −0.35 0.032
MBR(V) −0.48 0.003 −0.62 <0.001 −0.35 0.035
MBR(T) −0.14 0.399 −0.37 0.026 −0.13 0.438

MBR(V)-MBR(T) −0.53 0.001 −0.62 <0.001 −0.37 0.023
MBR(M) −0.08 0.639 −0.34 0.037 −0.20 0.231

Levels of intraocular (io-) FABP4, VEGFA, and FFA subspecies were determined in our recent study [11,12].
FFA: total fatty acids. C16:0: palmitic acid, C18:0: stearic acid, C18:1: oleic acid, C18:2: linoleic acid, C20:4:
arachidonic acid.

Table 6. Correlations of Log ioFABP4, Log ioFABP5, Log ioVEGFA, Log ioFFA subspecies, and ocular
blood flow levels.

Log
pFABP4

Log
pFABP5

Log
pVEGFA

ioFFA
(µg/mL)

ioC16:0
(µg/mL)

ioC18:0
(µg/mL)

ioC18:1
(µg/mL)

ioC18:2
(µg/mL)

ioC20:4
(µg/mL)

Log ioFABP4 0.16 - - - - - - - -
Log ioFABP5 - n.d. - - - - - -
Log ioVEGFA - - 0.0037 - - - - - -

ioFFA (µg/mL) - - - −0.388 - - - - -
ioC16:0 (µg/mL) - - - - −0.395 - - - -
ioC18:0 (µg/mL) - - - - - −0.131 - - -
ioC18:1 (µg/mL) - - - - - - −0.276 - -
ioC18:2 (µg/mL) - - - - - - - −0.424 -
ioC20:4 (µg/mL) - - - - - - - - 0.394

Correlations of Log ioFABP4, Log ioFABP5, Log ioVEGFA, Log ioFFA subspecies, and ocular blood flow lev-
els were determined in our recent study [11,12]. Ocular blood flow at the optic disc (OD) at different areas
including MBR(A): all areas of the OD, MBR(V): vascular area of the OD, MBR(T): tissue area of the OD, and
4MBR(V)-MBR(T), which were measured as described previously [11]. MBR: mean blur rate, an index for laser
speckle flowgraphy, FFA: total fatty acids. C16:0: palmitic acid, C18:0: stearic acid, C18:1: oleic acid, C18:2: linoleic
acid, C20:4: arachidonic acid.

Regarding relationships between FABP4 and VEGFA, previous studies showed that
VEGFA and basic fibroblast growth factor (bFGF) can facilitate the expression of FABP4 in
endothelial cells, and FABP4 thereby stimulates angiogenesis [89]. VEGFA-induced FABP4
expression was inhibited by knockdown of VEGF receptor-2, and knockdown of FABP4
substantially reduced the proliferation of endothelial cells, regardless of the absence or
presence of stimulation by VEGF and bFGF [43]. It was also shown that the expression
of FABP4, but not that of VEGFA, is induced by cellular senescence, oxidative stress, and
injury in microvascular endothelial cells [90] or arterial endothelial cells [91], supporting
the above idea that FABP4 may be related to ocular blood circulation.

It has also been shown that FABP4 levels are significantly influenced by several chemi-
cals and drugs, including a statin [92], eicosatetraenoic acid (EPA)/docosahexaenoic acid
(DHA) agent [93], dipeptidyl peptidase 4 inhibitor [94], and angiotensin II receptor blocker
(ARB) [95]. Interestingly, it has been reported that angiotensin II and components of the
renin-angiotensin system (RAS) are expressed in the retina [96]. In fact, it is thought
that angiotensin II stimulates retinal leukostasis by activation of the angiotensin type 1
receptor signaling pathway, thereby stimulating the production of proinflammatory and
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proliferative mediators, resulting in the development and progression of PDR [97], as well
as choroidal neovascularization (CNV) [98]. Furthermore, selective angiotensin receptor
blockers have been shown to have neuroprotective and anti-inflammatory effects on retinal
angiogenesis and neovascularization in animal models [99–101]. Based on these findings, it
was shown in several clinical trials that inhibiting the RAS by an ARB reduced the incidence
and progression of DR [102]. Therefore, the relationship between ARB and FABP4 could
provide additional proof that FABP4 indeed plays a pivotal role in the pathogenesis of DR,
and FABP4 may be a promising therapeutic key molecule for the treatment of DR progres-
sion. In support of these observations, a recent study using a mouse model of streptozocin
(STZ)-induced DR and high glucose-treated adult retinal pigment epithelium 19 (ARPE-19)
cells showed that inhibition of FABP4 by BMS309403 alleviates lipid peroxidation and
oxidative stress in DR by regulating peroxisome proliferator-activator receptor-mediated
ferroptosis [103].

4.2. Retinal Vascular Occlusion (RVO)

RVO is recognized as a common RVD and is clinically categorized into central reti-
nal vein occlusion (CRVO), hemi-central vein occlusion (hemi-CRVO), and branch retinal
vein occlusion (BRVO). The former and the latter are caused by thrombosis at the lamina
cribrosa, and the second occurs at an intersection of a branched retinal artery and vein,
respectively [104–108]. As in the case of PDR, RVO is often associated with visual deterio-
ration induced by retinal edema, ischemia, and neovascularization [109], in which VEGF is
known to contribute as the possible underlying mechanism [110]. Therefore, intravitreous
anti-VEGF therapy is currently used as the main therapy for vision-threatening patients
with RVO [111–113]. However, although anti-VEGF therapy has remarkable therapeutic
effects, its effects are usually transient and thus this mono-treatment cannot stop the pro-
gression of RVO [114–117], and thus, additional therapeutic target molecules, other than
VEGF, urgently need to be identified.

As in the case of PDR, our group speculated that FABP4 may also be a key target
molecule in the case of RVO and we therefore examined the levels of ioFABP4 and ioVEGFA
using vitreous specimens surgically obtained from patients with RVO or ERM [9]. As
expected, we found significantly increased levels of ioFABP4 and ioVEGFA in patients
with RVO compared with levels in patients with ERM (p < 0.05) [9] and a significantly
positive correlation (r = 0.36, p = 0.045) [9] between ioFABP4 and ioVEGFA (Tables 4 and 5).
Furthermore, several correlation analyses showed that both ioFABP4 and ioVEGFA were
also independently regulated in RVO, as in PDR [10]. Therefore, FABP4 may be involved
in the pathogenesis of both RVO and PDR as an independent key factor, in addition
to VEGFA.

4.3. Age-Related Macular Degeneration (AMD)

AMD has been recognized as the most common cause of permanent visual dete-
rioration in the aged population worldwide, resulting in serious problems in public
health [118,119]. As the main pathogenic process of AMD, choroidal neovasculariza-
tion (CNV) is known to lead to severe vision loss in neovascular AMD due to increased
expression of ioVEGF [120,121], and anti-VEGF therapies have been successfully used to
treat neovascular AMD [122]. However, such anti-VEGF therapies have several limitations,
including the requirement of repeat therapy, development of drug resistance, and large
costs for patients, but, unfortunately, there is currently no alternative and satisfactory treat-
ment for neovascular AMD [123]. Therefore, other options for cost-effective, less invasive,
and more durable therapy for CNV in AMD patients are required. For this purpose, a
therapeutic target molecule that substitutes for VEGF will be needed. As of this writing,
there is no evidence of a contribution to FABP4 on AMD pathogenesis. However, previous
studies have shown a significant contribution of macrophages to CNV formation in animal
models and AMD patients [124–126], and levels of cytokine production and proinflamma-
tory mediators, including TNFα and COX2, were reduced in macrophages isolated from
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fabp4-deficient (fabp4−/−) mice [127], suggesting that FABP4 may be involved in the patho-
genesis of AMD. To support this possibility, a previous study using an oxygen-induced
retinopathy (OIR) model [128] in wild-type (WT) and fabp4−/− mice showed that OIR
induction in fabp4−/− mice caused a significant decrease in neovessel formation and a
significant improvement in physiological revascularization of avascular retinal tissues [129].
Furthermore, it has been shown that FABP4 is an inducible factor for angiogenesis and
vascular smooth muscle cell proliferation and migration, and FABP4 has therefore been
established as a reliable predictive biomarker for cardiovascular disease in specific at-risk
groups [130]. Collectively, the observations suggested that ioFABP4 may be a new risk
factor, as well as a possible therapeutic target for CNV in AMD.

5. Roles of Intraocular FABP4 (ioFABP4) in Retinal Physiology

In addition to the evidence of physiological expression of FABP4 in capillary venous
and endothelial cells [2,17], our recent studies showed that ioFABP4 was present in vitreous
specimens, even from patients without RVDs [9,10,12], suggesting that ioFABP4 may have
some physiological roles. In a recent study, to elucidate the unknown physiological roles
of ioFABP4, electroretinograms (ERGs) of WT and fabp4−/− mice were analyzed and
it was found that both ERG a- and b-waves were larger in fabp4−/− mice than in WT
mice (Figure 2) [12], suggesting that ioFABP4 may be involved in the crucial regulatory
mechanism of the retinal phototransduction pathway. To obtain additional insight into
the physiological significance of ioFABP4, its intraocular origin was investigated using
four representative intraocular tissue-derived cell types including human non-pigmented
ciliary epithelium cells, retinoblastoma cells, ARPE19 cells, and human ocular choroidal
fibroblast (HOCF) cells [131]. Based on the result that, among these cells, gene expression
of FABP4 was only detected in HOCF cells, we suggested that ocular choroidal tissue is one
of the possible producing cells of ioFABP4 within the intraocular environment. However,
since gene expression in these immortalized cell lines may not reflect in vivo expression of
genes in their corresponding cell types in the retina, additional experimental evidence will
be required.
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Figure 2. Representative full-field flash electroretinograms of wild-type (WT) and fabp4−/− mice.
ERG amplitudes (mean ± SEM, n = 5 each): a-wave (WT: 131 mV ± 20.7, fabp4−/−: 215 mV ± 25.3),
b-wave (WT: 250 mV ± 34.1, fabp4−/−: 371 mV ± 75.9).

The ocular choroid is in physical contact with the RPE and supplies various nutrients,
oxygen, and biological factors via blood circulation to the sensory outer retina [132]. The
RPE, a monolayer of polarized epithelial cells, is also in direct contact with OS to maintain
photoreceptor survival and functions related to phototransduction by daily phagocytosis
of the top of OS tips and recycling of11-cis retinal, in addition to its biological role as the
BRB [133]. Since we detected that positive immunoreactivities against FABP4 were detected
in all of the retinal segments except the OS [12], we reasonably speculated that ioFABP4
originated from the ocular choroid and spread toward the sensory retina and vitreous cavity
beyond the RPE. If this speculation is correct, ioFABP4 would affect not only the initial
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phototransduction by the OS but also the following phototransduction by the mid-retina,
which are the origins of the a-wave and b-wave of an ERG, respectively, as observed in
the ERG in fabp−/− mice described above (Figure 2), suggesting that the ocular choroid
may form a putative complex where the ocular choroid and the sensory retina function
together in ocular pathophysiology. In fact, various studies have already advocated the
concept of an RPE/ocular choroid complex [134,135], and that complex has been suggested
to be involved in various ocular diseases including AMD [136] and myopia [137]. More
interestingly, we also found by Seahorse extracellular flux analysis that inhibition of FABP4
by BMS309403 induced so-called pseudohypoxic states (Figure 3). Such pseudohypoxia
states may lead to neovascularization, as was suggested by using an A”D model [138],
and malignant tumors [139,140], and this scenario may strongly support our observations,
indicating that FABP4 is an independent key pathogenic factor for RVDs [12] such as
DR [10] and RVO [9] in addition to intraocular physiology. Previous studies also showed
that FABPs are required for development of the retina and BRB in zebrafish [141,142] and
chickens [143,144], and another study using a Drosophila ninaEG69D mutant showed
that FABP is required for light-induced Rh1 degradation and photoreceptor survival [145].
These collective findings suggest that ioFABP4 originates from the ocular choroid and
may be a critical regulator for cellular homeostasis of non-adipocyte HOCF cells, thereby
importantly contributing to ocular pathophysiology.
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Figure 3. Roles of FABP4 in intraocular metabolism. Panel (A): Effects of an FABP4 inhibitor
(BMS309430) on cellular metabolism in HOCF cells. An energy map of basal metabolism evaluated
by using an extracellular flux analyzer is presented with oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR). Reproduced from Ohguro et al. [131]. Panel (B): A schematic
summary of the metabolic phenotype of FABP4 inhibition in intraocular cells. The illustration was
created with BioRender.com. TCA: tricarboxylic acid.

6. Fatty Acid-Binding Protein 5 (FABP5)

It has been shown that FABP5 is an important coordinator of intracellular FAs and that it
functions to increase the solubility of FAs and reversibly binds with high-affinity hydrophobic
ligands such as saturated and unsaturated long-chain fatty acids (LCFAs) [146,147]. FABP5
also stimulates the transport of FAs to specific intracellular compartments from the cyto-
plasm to organelles [148]. Furthermore, FABP5 can indirectly interact with membranes,
ion channels, receptors, enzymes, or genes, thereby modulating the concentrations of
FAs and related molecules and acting as a mediator in various cellular processes [149].
As an example of the physiological contribution of FABP5, it was reported that FABP5
originating from capillary endothelial cells is involved in the uptake of circulating FAs
into cardiac and skeletal myocytes to maintain enough levels of ATP production [148].
Another study showed that a high affinity of FABP5 for palmitate is physiologically re-
quired to form the major surfactant phospholipid and dipalmitoyl phosphatidylcholine
in lung type II alveolar cells [150,151]. In ocular cells, it was shown that knockdown of
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mRNA of FABP5 in ARPE-19 cells induced various dysregulated FA metabolisms, alter-
ation of cellular lipid composition, and decrease of apolipoprotein B100 levels to maintain
cellular homeostasis [152]. Therefore, FABP5 has essential roles in lipid metabolism by
coordinating FAs, thereby contributing to several physiological functions including signal
transduction, lipid droplet storage, trafficking and membrane synthesis in the endoplasmic
reticulum, oxidation in mitochondria or peroxisomes, regulation of the activity of cytosolic
and other enzymes, and lipid-mediated transcriptional regulation in the nucleus [153].
Furthermore, since FABP5 is also involved in the regulation of systematic glucose levels,
lipid homeostasis, energy metabolism, cell proliferation, and immunological regulations
under pathological conditions, FABP5 plays a crucial role in the pathogenesis of various
diseases and disorders including metabolism disorders such as obesity, insulin resistance,
and type 2 DM [81], skin diseases such as psoriasis [154], neurological diseases such as
Alzheimer’s disease [155], and malignant tumors including prostate cancer, breast cancer,
and cervical cancer tumors [156], suggesting that FABP5 has great potential in clinical
applications. PAX6 is known as the critical transcription factor to be essentially involved in
ocular development in vertebrates including the retina [157] and lens [158], as well as vari-
ous ocular pathogenesis such as aniridia [159,160]. FABP5 is also identified in intraocular
tissue, including the lens [161], suggesting that FABP5 may be related to PAX6. In fact, a
recent study using the siRNA aniridia cell model strongly suggested that FABP5 expression
is regulated by PAX6 [162].

Our recent studies showed the presence of ioFABP4 in patients with RVDs and sug-
gested that ioFABP4 may be an additional key target factor for the pathogenesis of RVDs
other than ioVEGFA [9,10]. We also found that the FABP family member FABP5 was
present in vitreous specimens surgically obtained from patients with RVDs, including PDR
(n = 20), RVO (n = 10), and ERM (n = 18), and levels of ioFABP5 were also significantly
elevated in patients with RVDs compared with levels in patients with ERM, as is the case
of FABP4 [11,12]. However, interestingly, in RVD patients, the elevated levels of ioFABP5
were different from those of ioFABP4: levels of ioFABP5 in patients with RVO and PDR
were significantly higher than those in patients with ERM, and elevated levels were more
evident in patients with RVO as compared with levels in patients with PDR, but the levels
of ioFABP4 in patients with PDR were much higher than levels in patients with RVO
and ERM, and there were almost no differences among the groups in levels of ioVEGFA
(Table 4) [11]. Furthermore, correlation analyses and multivariable regression analyses
indicated that ioFABP5 may be differently involved in the pathogenesis of RVD with io-
FABP4 and ioVEGFA (Table 5) [11,12]. Collectively, the observations suggested that levels
of ioFABP5 and ioFABP4 might be preferentially influenced by the atherosclerosis-related
retinal pathogenesis of RVO and the DM-related retinal pathogenesis of PDR, respectively.
In support of this idea, a previous study showed that FABP5 is pivotally involved in the
pathogenesis of the early stages of atherosclerosis [72], and FABP5 was also identified
within the blood-brain barrier (BBB), which is known to be similar to the BRB [163], and
was shown to function in the transport of DHA [164,165]. In fact, in our recent study,
Log ioFABP5, but not Log ioFABP4 or Log ioVEGFA, was found to be significantly and
negatively correlated with several indices of ocular blood flow, determined by laser speckle
flowgraphy (Table 5) [11,12]. As of this writing, the mechanisms underlying these differ-
ences between ioFABP4 and ioFABP5 remain to be elucidated, although both FABP4 and
FABP5 are expressed in endothelial cells, as well as in adipocytes and macrophages [2], and
are secreted into bodily fluids, and both factors are thus involved in the pathophysiologi-
cal conditions related to several metabolic and cardiovascular diseases [1,68]. However,
as a possible mechanism, we speculate that ioFABP5 may solely, or in cooperation with
ioVEGFA, be involved in the pathogenesis of RVDs following the inflammatory damage
of retinal endothelial cells. In fact, it was recently revealed that FABP5 upregulates the
expression of VEGF, a key factor that promotes angiogenesis and metastasis, in prostate
cancer [166,167].
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7. Summary of Current Concepts of the Biological Roles of ioFABP4 and ioFFAs

Intraocularly, the adipocyte related-factor FABP4 (ioFABP4) and its substrates, FFAs
(ioFFAs), are present, despite the fact that no adipose tissues are present, and both ioFABP4
and ioFFAs are of intraocular origin and not from peripheral blood circulation. In our
recent studies [9–12], we found that one of the possible producing cells of ioFABP4 was
the ocular choroid. The ioFABP4 produced from the ocular choroid is then secreted and
distributed into the sensory retina and vitreous cavity via oBRB, thereby playing pivotal
roles in retinal physiology and pathogenesis (Figure 4). As one possible scenario, we
advocate that the ocular choroid/sensory retinal complex consisting of the ocular choroid
and the conventional sensory retina (from RPE to NFL) may help a better understanding of
retinal physiology and pathogenesis if the contributions of ioFABP4 and ioFFAs are taken
into consideration. However, a recent single-cell RNA sequencing study (GSE137537 and
GSE137847) [8] showed that: (1) expression profiles of FABP3 and FABP4 or FABP7 and
FABP8 among various retinal cells were similar or different with our immunohistochem-
istry [12]; and (2) positive retinal expression of FABP5 and FABP12 was not detected in our
immunohistochemistry [12]. Therefore, we believe that advances in studies on ioFABP4
and ioFFAs will provide clues for a deeper understanding of intraocular pathophysiology
and new therapeutic strategies for vitreoretinal diseases. Since it is also suggested that other
FABP family proteins are also involved in some pathophysiological roles in the intraocular
environment, additional studies on ioFABPs and ioFFAs will facilitate new research fields
to investigate unidentified roles of FABPs, FFAs, and other lipid-related regulatory factors
in non-adipose tissues.
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