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Simple Summary: Spermatogenesis, which is regulated by many different genes, is a conserved
process across species to produce mature sperm for animal reproduction. Fox transcription factors
can bind to DNA sequences in the promoters to regulate gene expression. FoxD subfamily members
are mainly involved in metabolism and early organ development. In Drosophila melanogaster, FoxD
subfamily member Fd59a may regulate the development of the nervous system and control the
egg-laying behavior of females. However, the functions of insect FoxD members are still largely
unknown. In this study, we investigated the role of Fd59a in the spermatogenesis of Drosophila. We
found that mutations in Fd59a caused swelling of the apical region in the testis, resulting in fewer
mature sperm in the seminal vesicle and significantly lower fertility of Fd59a mutant males compared
to the control flies. We also found that the homeostasis of the testis stem cell niche in Fd59a mutant
and RNAi flies was disrupted, causing increased apoptosis of sperm bundles. RNA sequencing and
qRT-PCR results suggested that Fd59a can regulate the expression of genes related to reproductive
process and cell death. Our collective results indicated that Fd59a plays a key role in Drosophila
spermatogenesis, which will help to understand the role of FoxD members in insect spermatogenesis.

Abstract: Spermatogenesis is critical for insect reproduction and is regulated by many different
genes. In this study, we found that Forkhead transcription factor Fd59a functions as a key factor
in the spermatogenesis of Drosophila melanogaster. Fd59a contains a conversed Forkhead domain,
and it is clustered to the FoxD subfamily with other FoxD members from some insect and vertebrate
species. Mutations in Fd59a caused swelling in the apical region of the testis. More importantly,
fewer mature sperm were present in the seminal vesicle of Fd59a mutant flies compared to the control
flies, and the fertility of Fd59a2/2 mutant males was significantly lower than that of the control flies.
Immunofluorescence staining showed that the homeostasis of the testis stem cell niche in Fd59a2/2

mutant and Fd59a RNAi flies was disrupted and the apoptosis of sperm bundles was increased.
Furthermore, results from RNA sequencing and qRT-PCR suggested that Fd59a can regulate the
expression of genes related to reproductive process and cell death. Taken together, our results
indicated that Fd59a plays a key role in the spermatogenesis of Drosophila.

Keywords: spermatogenesis; Forkhead; FoxD; testis; apoptosis

1. Introduction

The Forkhead box (Fox) transcription factor, which contains a highly conserved DNA
binding domain of ~100 amino acids consisting of three α helices, three β folds, and two
ring connections, plays critical roles in organ development, innate immunity, and other
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processes [1]. Based on phylogenetic analysis, Fox proteins are assigned to different sub-
classes and named “Fox, subclass N, member X” [2]. FoxD subfamily members are mainly
involved in metabolism and early organ development [3]. In mammals, FoxD1 regulates
human early embryonic development and is associated with various diseases. For example,
FoxD1 can promote SLC2A1 (Solute carrier family 2 member 1) transcription and inhibit the
degradation of SLC2A1 to facilitate the proliferation, invasion, and metastasis of pancreatic
cancer cells [4–6]. In planarian, FoxD gene expression was induced by wound signaling,
and it was involved in head regeneration [7]. In Drosophila melanogaster, Fd59a/FoxD
may regulate the development of the nervous system and control the egg-laying behav-
ior of females [8]. However, the functions of insect FoxD subfamily members are still
largely unknown.

Spermatogenesis is a process to produce mature sperm for reproduction. The process
of spermatogenesis is conserved from insects to vertebrates; thus, insect testis is an ideal
model for studying the mechanisms of spermatogenesis [9]. In D. melanogaster, germ stem
cells (GSCs) differentiate into goniablasts under the control of the stem cell niche; then,
goniablasts develop into spermatids through mitosis and meiosis. After nuclear elongation
and individualization processes, round spermatids finally become mature sperm [10].

Spermatogenesis is regulated by multiple signaling pathways, such as TGF-β (Trans-
forming Growth Factor β), Notch, JAK-STAT (Janus kinase-signal transducer and activator
of transcription), BMP (Bone morphogenetic protein), and Hedgehog (Hh) pathways [11],
and by many genes [12,13]. Recent studies showed that different genes are involved in
the spermatogenesis of insects. For example, knockdown expression of ribosomal protein
S3 (RpS3) strongly disrupted spermatid elongation and individualization processes in D.
melanogaster [14]. The knockdown or mutation of the cytochrome c1-like (cyt-c1L) gene in
early germ cells resulted in male sterility of D. melanogaster [15]. Moreover, BmHen1, a gene
in Bombyx mori encoding methyltransferase that modifies piRNAs, was found to regulate
eupyrene sperm development [16]. These results indicate that the molecular mechanism of
insect spermatogenesis is much more complicated than what we have already known about.

In our previous study, we showed that B. mori FoxA participated in the development
of wing disc [17]. Microarray data showed that Fox genes were expressed in B. mori testis,
and BmFoxD was expressed at a high level [18]. In Drosophila, the expression of Fd59a/FoxD
was also about 2-fold higher in the testis than in the ovary [19], suggesting that Fd59a
may play a role in testis development or spermatogenesis. In this study, we found that the
mutation and knockdown expression of Fd59a caused swelling in the apical region of the
testis and decreased male fertility. More importantly, the loss of function of Fd59a disrupted
the homeostasis of the testis stem cell niche and induced the apoptosis of sperm bundles,
resulting in fewer mature sperm in the seminal vesicle. By analyzing RNA sequencing
from the testis of Fd59a2/2 mutants, we found that Fd59a may regulate the expression of
genes related to reproductive and metabolic processes. Our findings suggest that Fd59a
plays a role in Drosophila spermatogenesis.

2. Materials and Methods
2.1. Fly Lines

The wild-type w1118 line was maintained in the laboratory [20]. Nos-Gal4 (TB00040) and
UAS-GFP dsRNA (BDSC9331) fly lines were obtained from Tsinghua Fly Center in Beijing,
China. Fd59a1/CyO (BDSC56819), Fd59a2/CyO (BDSC56820), Df(2R)BSC864 (BDSC29987),
and UAS-Fd59a RNAi (BDSC31937) flies were purchased from the Bloomington Drosophila
Stock Center (BDSC) in Indiana, USA. The Bam-Gal4 fly line was a gift from the laboratory
of Professor Yufeng Wang at the School of Life Science, Central China Normal University,
Wuhan, China.

To analyze the functions of Fd59a, Fd59a1/CyO males were crossed with Fd59a1/CyO
females to generate Fd59a1/1 loss-of-function flies, while Fd59a2/CyO males were crossed
with Fd59a2/CyO females to generate Fd59a2/2 loss-of-function flies. To knock down the
expression of Fd59a, Nos-Gal4 and Bam-Gal4 flies were crossed with UAS-Fd59a RNAi flies.
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All flies were reared on a fresh cornmeal/yeast/brown sugar diet with p-hydroxybenzoic
acid methylester as a mold inhibitor at 25 ◦C with a photoperiod of approximately 12 L/
12 D (light/dark) [21].

2.2. Bioinformatics Analysis

The amino acid sequences of Fd59a and its homologous proteins were obtained using
protein BLAST at the National Center for Biotechnology Information (NCBI, https://blast.
ncbi.nlm.nih.gov, accessed on 29 February 2024). Sequence alignment was performed by
Cluster W. The construction of a phylogenetic tree was achieved by using RAxML (Random
Axelerated Maximum Likelihood), approached with 1000 bootstrap replications [22]. The
identification of functional protein domains in Fd59a and its homologous proteins was
performed by SMART (https://smart.embl.de/, accessed on 29 February 2024). The
prediction of potential Fox binding sites in the promoter sequences of selected genes was
accomplished using the JASPAR program (https://jaspar.genereg.net/, accessed on 29
February 2024).

2.3. RNA Isolation and Quantitative RT-PCR

To investigate the expression profile of the Fd59a gene from the embryo to adult stages,
approximately 50 adult w1118 flies (male/female ratio ~2:1) were collected in a cage for
mating. Then, the flies were relocated to a fresh cage at 2 h intervals. Embryos at 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 22, and 24 h after egg laying; the 1st, 2nd, and 3rd instar larvae;
pupae at the early, middle, and late stages; and 1-, 3-, and 5-day-old adults were collected.
All samples were collected in RNAex Pro reagent (1000 µL) (Accurate Biology, Changsha,
China) and stored in a −80 ◦C freezer for subsequent RNA isolation.

Total RNA was isolated from the above samples using a method described previ-
ously [20]. The first-strand complementary DNA (cDNA) was synthesized from 1 µg of
total RNA using the HiFiScript gDNA removal cDNA Synthesis Kit (cwbiotech, Taizhou,
China). To analyze the expression of target genes, gene-specific primers (Table 1) were
designed based on the sequences available in the Flybase. All primers were synthesized by
Tsingke Biotechnology (Beijing, China).

Table 1. Primers used in this study.

Name Forward Primer (5′–3′) Reverse Primer (5′–3′)

Fd59a-qRT CAGGGAAGTCAGTCGGGGGA GTCGCCACATCGAAGGCGTA
Rp49-qRT GCCCAAGGGTATCGACAACA ACCTCCAGCTCGCGCACGTT
Spd-2-qRT GTGACCCACACGACCCTCTG GCCGAATGACCAGCCGTTTG
Fz2-qRT TCGCGAGTCACAATTGCACC GGACGCCACTCTACGGTGTT
Tasp1-qRT CGGCATGCGAGTCTGTTCGG ACACAAGGCAGCGCAAGTCTA
Debcl-qRT ATCGACAACGGCGGATGGTT ACGCGATCCCAAGCGAATCT
Ptp52F-qRT TGTCCGACGATCTTTGCGCT GGCGTAGGGGGAAAGTGGAC
Atg7-qRT TACAACTGCTGGCCGATGAGG GCACGGAAAGGCGAACCAAT
RnrS-qRT GGACCGTTTGCTCGTGGAGT GAAATCCGCGTCCAGGGTGA
CG10700-qRT TGTGGAGGCTACGGCCAATC TCACCACGGCTGTTTCCCAA
CG12917-qRT CAGGGGCTTCCTTCAGTCGG AAATAGCCAGACACGGGGGC
Nbs-qRT ATTCCCAAAAGCCGCGCAAG TGGGTCACCTGCCAAATGCT
Lola-qRT CTGCTGAGATATGCGAGCCAGA GTTCACAATGGCCTCCGCCT
Cal1-qRT GGTGGTGGACGAGGAAACACT TCCACAGCCTCCTTTGCCAC
Dnah3-qRT AGAGCTGGCAAGAGCGGAAA ACATTGCGAGACGTGGCACC
Blanks-qRT ACGGGCCAGGAAAGAGCTTG ACGGCTTCTTTGGCTCGACA
En-qRT CCAACGACGAGAAGCGTCCA CTCCGCTCGGTCAGATAGCG
Tsc1-qRT GGTTGGCATGACTGGCTCCT CACGTCCCGGCTGCTTGATA
CG32817-qRT AATCAAGTGTCTAACCCTGAACTGG GTTGCGCCATCGAAAAGCAT
Moe-qRT GCCTGCGAGAGGTTTGGTTCTT TCACGTCCTGGTTCATCACCTT
Past1-qRT ACACCCGATCACACAGCCTC CGCCTGCACTGTGTGGCTAA
Zpg-qRT GGGGCCTATGTGAGCGACAA CCGCCCTCCCAAATCTTCCA

Quantitative reverse transcription—polymerase chain reaction (qRT-PCR) was con-
ducted by using QuantStudio™ 6 Flex (Thermo Fisher Scientific, Waltham, MA, USA) and
ChamQ SYBR qPCR Master Mix (Vazyme, Nanjing, China), following the manufacturer’s

https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov
https://smart.embl.de/
https://jaspar.genereg.net/
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instructions. The qPCR cycling program was set as 95 ◦C for 30 s, succeeded by 40 cycles
of 95 ◦C for 10 s and 60 ◦C for 30 s. Relative gene expression was normalized to the
endogenous reference gene Rp49 by using the comparative CT (2−∆∆Ct) method [23].

2.4. Male Fertility Test

To evaluate the reproductive ability of male Fd59a mutant flies, a male fertility test was
conducted. Ten 1-day-old virgin w1118 females were housed with fifteen 3-day-old w1118 or
Fd59a2/2 males in vials containing egg collection plates to collect eggs. The egg collection
plates were replaced every 24 h, and the number of embryos and larvae in the plates was
counted as described previously [24].

2.5. Immunofluorescence Staining

Testes of 3-day-old adult flies were dissected in 10 mM phosphate-buffered saline
(PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) and fixed
in 4% paraformaldehyde (PFA) prepared in PBS for 40 min at room temperature. Testis
samples were washed in 3‰ PBT (10 mM PBS with 0.3% Triton X-100) at least 3 times (each
for 15 min) and treated with blocking buffer (3‰ PBT with 5% normal goat serum) for 1 h
at room temperature. Then, samples were incubated at 4 ◦C overnight with primary anti-
bodies diluted in dilution buffer (3‰ PBT with 3% normal goat serum), washed three times
in 3‰ PBT to remove unbound antibodies, and subsequently incubated with secondary an-
tibodies diluted in a dilution buffer at room temperature for 3 h in darkness. Samples were
washed at least three times with 3‰ PBT and mounted using VECTASHIELD® antifade
Mounting Medium containing 1.5 µg/mL DAPI (Vector Laboratories, Newark, NJ, USA).

The primary antibodies used in this study were as follows: rat anti-Vasa (1:50, Devel-
opmental Studies Hybridoma Bank, Iowa, IA, USA), mouse anti-Fasciclin III (Fas III) (1:100,
Developmental Studies Hybridoma Bank, 7G10, Iowa, IA, USA), and mouse anti-αSpectrin
(1:50, Developmental Studies Hybridoma Bank, 3A9, Iowa, IA, USA). The secondary an-
tibodies used were Alexa Fluor-conjugated goat anti-mouse 568 and goat anti-rat 488
antibodies (1:500, Invitrogen, Carlsbad, CA, USA). Fluorescent images were captured using
an FV3000 confocal microscope (Olympus, Tokyo, Japan).

2.6. TUNEL Assay

To analyze whether loss of function of Fd59a could induce cell death in sperm bundles,
testes from 3-day-old adults of Fd59a2/2 and Fd59a RNAi flies were dissected. The collected
testes were fixed in 4% paraformaldehyde and rinsed in 3‰ PBT, as described above.

A terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling
(TUNEL) assay was conducted using the TUNEL assay kit (C1088 and C1090, Beyotime
Biotechnology, Shanghai, China). Testis samples prepared as above were incubated with
a TUNEL reaction mixture containing 5 µL of TdT enzyme, 45 µL of fluorescent labeling
solution, and a moderate enzyme dilution buffer at 4 ◦C overnight and then washed three
times in 3‰ PBT. DAPI staining was performed as described above.

2.7. RNA Sequencing

Testes from 3-day-old Fd59a2/2 and w1118 flies were dissected in DEPC-treated PBS (10 mM,
pH7.4). Total RNA was extracted, and RNA sequencing was conducted by Shanghai Majorbio
Biotech (Shanghai, China) using Illumina HiSeq 2000 (Illumina, San Diego, CA, USA).

2.8. Bioinformatics Analysis of RNA-seq Data

The transcript expression levels were quantified by Fragments Per Kilobase per Million
mapped (FPKM) read values, and differentially expressed genes (DEGs) were identified
based on a |log2 fold-change| > 1.5 along with a p-value adjustment below 0.05 across
three biological replicates. The gene ontology (GO) enrichment of DEGs was analyzed
using the GOseq R package (version 3.9).
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2.9. Statistical Analysis

The size of the apical region from Fd59a2/2 and w1118 testes was quantitated by ImageJ
(version 1.54j). For each sample, three biological replicates and at least three technical repli-
cates for each biological sample were performed. Data were presented as the mean ± S.E.
(standard error); significant differences were analyzed by the Student’s t-test (for comparison
between two groups) or by one-way analysis of variance followed by a least significant
difference test (for multiple comparisons among groups) using GraphPad Prism version 9.0.

3. Results
3.1. Expression Profile of Fd59a in Drosophila

To understand the functions of Fd59a, we first determined the expression profile of
Fd59a at different developmental stages of Drosophila by qRT-PCR. The results showed
that the expression of Fd59a mRNA peaked twice during development from embryo to
adult stages, with the first peak around the mid-embryonic stage and then a plateau
with a relatively high level from the late embryonic stage to the first instar larval stage
and the second peak just at the metamorphosis period, maintaining at a relatively high
level until the mid-pupal stage (Figure 1A), indicating that Fd59a may be involved in
Drosophila development.
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Figure 1. Expression of Fd59a at different developmental stages and in adult ovary and testis.
(A) Expression of Fd59a at different developmental stages. Drosophila embryos at 2, 4, 6, 8, 10, 12,
14, 16, 18, 20, 22, and 24 h after egg laying; first (L1), second (L2), and third (L3) instar larvae; early,
middle, and late pupae; and 1-, 3-, and 5-day-old adult flies were collected to prepare total RNAs
for the analysis of the transcriptional expression of Fd59a by qRT-PCR. (B) Expression of Fd59a in
the testis and ovary of 3-day-old adult flies. Data were presented as means ± S.E., and significant
differences were determined by the Student’s t-test and indicated by asterisks. ** p < 0.01.

It has been reported that the loss of function of Fd59a affected the egg laying of
Drosophila females [8]. Interestingly, FlyAtlas anatomical expression data from the Flybase
showed that the expression level of Fd59a was about 2-fold higher in the testis than in
the ovary [19]. We performed qRT-PCR and confirmed that mRNA levels of Fd59a were
significantly higher in the testis than in the ovary of 3-day-old w1118 flies (Figure 1B),
suggesting that Fd59a may also have a function in the testis of Drosophila.

3.2. Sequence and Phylogenetic Analyses of Fd59a

The Fd59a gene is in the second chromosome. The full-length cDNA of Fd59a is 1371 bp
long, encoding a protein of 456 amino acid residues, with a calculated molecular weight of
49.1 kDa and pI of 5.19.

Fd59a belongs to the FoxD subfamily. To reveal the evolutionary relationship of
Fd59a, Fd59a/FoxD homologous sequences from some insect and vertebrate species were
blasted and downloaded from NCBI (Table 2), sequence alignment was performed, and a
phylogenetic tree was constructed. The results showed that all the selected Fd59a/FoxD
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homologous proteins contained a conserved Forkhead box domain (Figure 2A). Drosophila
Fd59a was the closest to FoxD3-A of Papilio Xuthus and FoxD3-like of Blattella germanica
(Figure 2B) and they contained similar functional domains (Figure 2C). These results
suggest that Drosophila Fd59a is evolutionarily close to insect FoxD members.

Table 2. Fd59a homologous protein sequences used in the phylogenetic tree.

Proteins Species Accession Number

Forkhead box protein D5 Bombyx mori XP_004922516.1
Uncharacterized protein LOC5564025 Aedes aegypti XP_001648348.3
Forkhead box protein D3 Manduca sexta XP_030032680.1
Forkhead box protein D3-B Plutella xylostella XP_037961710.1
Forkhead box protein D3-like Spodoptera frugiperda XP_035435321.1
Forkhead box protein D5-like Spodoptera litura XP_022815528.1
Forkhead box protein D3-like Nilaparvata lugens XP_039277739.1
Forkhead box protein D3-like Ceratosolen solmsi marchali XP_011504225.1
Forkhead domain-containing protein FD3 Papilio xuthus KPJ03207.1
Forkhead box protein D3-like Bemisia tabac XP_018914635.1
Forkhead box protein D3-A Blattella germanica PSN41724.1
Forkhead box protein D5 Helicoverpa armigera XP_021187147.2
Forkhead box protein D3 Danio rerio NP_571365.2
Forkhead box protein unc-130 Caenorhabditis elegans NP_496411.1
Forkhead box protein D4 Homo sapiens NP_997188.2
Forkhead box protein D3 Mus musculus NP_034555.3
Forkhead box protein D5-A Xenopus laevis NP_001081998.1
Forkhead box protein D3 isoform X1 Manis javanica XP_036880296.1
Forkhead box protein D3 Caretta caretta XP_048718258.1
Forkhead box protein B1-like Octopus sinensis XP_029653697.1
Forkhead box protein D3-like Branchiostoma floridae XP_035698942.1
Forkhead box protein D3 Rattus norvegicus NP_542952.1
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3.3. Loss of Function of Fd59a Affects Testis Development and Male Fertility

To determine the role of Fd59a in testis development in D. melanogaster, testes from
Fd59a1/1 and Fd59a2/2 loss-of-function mutant flies as well as w1118 flies were dissected.
Fd59a1 and Fd59a2 were two mutant types of Fd59a, with Fd59a1 as a hypomorphic mutation
and Fd59a2 as a null allele [8]. We found that the apical region of testes from the Fd59a1/1

and Fd59a2/2 mutant flies was swelled (Figure 3A(a1,b1,c1),B), with fewer mature sperm
in the seminal vesicle of Fd59a2/2 mutant testis compared to many mature sperm in the
w1118 flies (Figure 3A(a2,a3,b2,b3,c2,c3)). As Fd59a2 was derived from EMS-based genetic
screening, it may have contained unmapped mutations in the second chromosome. To
exclude the possibility that the observed phenotypes were derived from other mutations
in the second chromosome, we generated the hemizygous flies by crossing Fd59a2 flies
with Df(2R) BSC864 flies, which contained a deletion encompassing the Fd59a locus, and
similar results were observed (Figure 3A(d1–d3,e1–e3)). As the phenotype of Fa59a2/2 flies
was more significant than that of Fa59a1/1 flies, we carried out the following studies in the
Fa59a2/2 mutant flies. When Fd59a2/2 males were crossed with w1118 females, the hatching
rate of F1 flies was significantly decreased compared to the control (Figure 3C). Together,
these results suggest that Fd59a plays a critical role in the development of the testis and/or
spermatogenesis of D. melanogaster.
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3.4. Loss of Function of Fd59a Affects Spermatogenesis

At the apical region of testis, about 10 hub cells cluster together and are surrounded by
GSCs and CySCs to form the stem cell niche, which governs the proliferation and differen-
tiation of GSCs and CySCs. The disruption of niche homeostasis can lead to swelling of the
testis and defects in spermatogenesis [25]. To clarify the role of Fd59a in spermatogenesis,
Fas III and Vasa antibodies were used to specifically mark the hub cells and germ cells,
respectively, and αSpectrin antibody was employed to identify spectrosomes and fusomes,
which are crucial for the early development of germ cells. As a result, the distribution
of GSCs and CySCs was scattered in the Fd59a2/2 testis compared to the control testis
(Figure 4A(a4,b4)), and a strong pattern of spectrosome and fusome formation was dis-
played in the control testis, while fewer spectrosomes and fusomes were observed in the
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Fd59a2/2 mutant testis (Figure 4A(a2,a3,b2,b3),B,C). These results suggest that Fd59a may
play a role in maintaining the homeostasis of the testis stem cell niche.
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Figure 4. Loss of function of Fd59a in the testis disrupts the homeostasis of the testis stem cell
niche. (A) Immunostaining of testis. Testes from the w1118, Fd59a2/2, Nos-Gal4>GFP RNAi, and
Nos-Gal4>Fd59a RNAi flies were labeled with anti-Vasa (green), anti-FasIII (red), and anti-αSpectrin
(red) antibodies, and nuclei were stained with DAPI (blue). (a1–a3,b1–b3,c1–c3,d1–d3) The apical
region of the testis and (a4,b4,c4,d4) the enlarged part of the apical tip showing the stem cell niche.
In the testis of Fd59a2/2 and Nos-Gal4>Fd59a RNAi flies, the distribution of germ cells labeled with
anti-Vasa (green) antibody was disrupted, and fewer fusomes and spectrosomes labeled with anti-
αSpectrin (red) antibody were observed. Scale bar is 50 µm in (a1–a3,b1–b3,c1–c3,d1–d3) and 10 µm
in (a4,b4,c4,d4). (B,C) The numbers of spectrosomes (B) and fusomes (C) in the testes of w1118,
Fd59a2/2, Nos-Gal4>GFP RNAi, and Nos-Gal4>Fd59a flies. (D) Expression of Fd59a in the testis of
Nos-Gal4 RNAi flies. Data are presented as means ± S.E. Significant differences were determined by
the Student’s t-test and are indicated by asterisks. * p < 0.05, ** p < 0.01, and *** p < 0.001.

Mammalian FoxD1 is related to apoptosis, as the knockdown expression of FoxD1
facilitates apoptosis in HNSCC (head and neck squamous cell carcinoma) cells [26]. To
determine whether the loss of function of Fd59a could induce apoptosis in the testis, a
TUNEL assay was performed. TUNEL positive signals were detected in sperm bundles of
the Fd59a2/2 mutant flies but not in the w1118 flies (Figure 5A(a1–a4,b1–b4)), suggesting that
the loss of function of Fd59a induced the apoptosis of spermatid.

To further confirm the role of Fd59a in the testis, the expression of Fd59a in GSCs was
knocked down by Nos-Gal4 (Figure 4D), and similar phenotypes, such as swelling in the api-
cal region of the testis, fewer mature sperm in the seminal vesicle, and the apoptosis of sperm
bundles, were observed in the Nos-Gal4>Fd59a RNAi flies (Figures 4A(c1–c3,d1–d3),B,C and
5A(c1–c4,d1–d4)). The knockdown expression of Fd59a in the 4–16 stages of spermatogonia
by Bam-Gal4 (Figure 5C) also induced the apoptosis of sperm bundles (Figure 5A(e1–e4,f1–f4)).
Moreover, only a few mature sperm were observed in the seminal vesicles of the Nos-
Gal4>Fd59a RNAi and Bam-Gal4>Fd59a RNAi flies, while the control flies were filled with
mature sperm (Figure 5B). These combined results suggest that the loss of function of Fd59a
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in the testis resulted in the disruption of the stem cell niche during spermatogenesis and
increased the apoptosis of sperm bundles, finally leading to fewer mature sperm in the
seminal vesicle.
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Figure 5. Loss of function of Fd59a in the testis induces apoptosis of sperm bundles. (A) Detection of
apoptotic cells in the testis. Testes from the w1118, Fd59a2/2, Nos-Gal4>GFP RNAi, Nos-Gal4>Fd59a
RNAi, Bam-Gal4>GFP RNAi, and Bam-Gal4>Fd59a RNAi flies were stained with TUNEL assay for
apoptotic cells (red), and nuclei were stained with DAPI (blue). (a1–a3,b1–b3,c1–c3,d1–d3,e1–e3,
f1–f3) The basal region of testis and (a4,b4,c4,d4,e4,f4) the enlarged part of the basal region showing
the sperm bundles. In the testis of Fd59a2/2, Nos-Gal4>Fd59a RNAi, and Bam-Gal4>Fd59a RNAi
flies, many TUNEL signals (red) were detected in the sperm bundles; only a few TUNEL signals
were detected in the basal region of w1118, Nos-Gal4>GFP RNAi, and Bam-Gal4>GFP RNAi flies,
but not in the sperm bundles. Scale bar is 50 µm in (a1–a3,b1–b3,c1–c3,d1–d3,e1–e3,f1–f3), 10 µm
in (a4,b4,e4,f4), and 20 µm in (c4,d4). (B) DAPI staining of seminal vesicle. Seminal vesicles from
Nos-Gal4>GFP RNAi, Nos-Gal4>Fd59a RNAi, Bam-Gal4>GFP RNAi, and Bam-Gal4>Fd59a RNAi flies
were stained with DAPI. Scale bar is 50 µm in (a1,b1,c1,d1) and 10 µm in (a2,b2,c2,d2). Numbers
below the images indicate the pairs of testes with similar phenotypes in the images. (C) Expression of
Fd59a in the testis of Bam-Gal4 RNAi flies. Data are presented as means ± S.E. Significant differences
were determined by the Student’s t-test and are indicated by asterisks. * p < 0.05.
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3.5. Fd59a Regulates Gene Expression in the Testis

To further clarify the role of Fd59a in spermatogenesis, RNA sequencing (RNA-
seq) was performed with RNAs isolated from the testes of w1118 (control) and Fd59a2/2

males. In total, 1863 differentially expressed genes (DEGs) with at least a 1.5-fold change
(p-adjust < 0.05) were identified by RNA-seq, with 854 genes upregulated and 1009 genes
downregulated in the testis of Fd59a2/2 flies (Figure 6A). This result suggests that Fd59a
may function as a transcription factor in the testis.
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Figure 6. RNA-seq analysis of RNAs from the testes of Fd59a2/2 and w1118 flies. (A) Heatmap of
differentially expressed genes (DEGs) in the testis of Fd59a2/2 flies relative to w1118 flies. (B) GO
analysis of DEGs in the testes between Fd59a2/2 and w1118 flies. (C) qRT-PCR validation of selected
DEGs from RNA sequencing data. Data are presented as means ± S.E. Significant differences were
determined by the Student’s t-test and are indicated by asterisks * p < 0.05, ** p < 0.01, *** p < 0.001.

Gene ontology (GO) analysis revealed that 120 differentially expressed genes (DEGs)
are associated with the reproductive process and 475 DEGs engage in the metabolic process
(Figure 6B). Within DEGs related to reproduction, several have already been reported to
contribute to gonad development and spermatogenesis, such as Fz2 and Zpg [27,28]. In
addition, 57 DEGs were implicated in cell death, including Rnrs and Ptp52F [29,30].

To confirm the RNA-seq data, 20 DEGs associated with reproductive process and cell
death were chosen for qRT-PCR validation (Table 3). The expression patterns of these DEGs
in the testis were consistent with those of the RNA-seq data (Figure 6C). Then, 2000 bp
promoter sequences upstream of the transcriptional start sites of these selected genes were
downloaded, and the potential Fox binding sites were predicted using the JASPAR database
(the relative profile score threshold was set to 85%). Except for the CG32817 promoter,
several Fox binding sites were predicted in the promoter of each selected gene, with more
than 10 potential Fox binding sites in the promoters of the Spd-2, Cal1, Blanks, Ptp52F, Lola,
and Debcl genes (Table 3). This result further supports that Fd59a is an upstream regulator
of these genes. Taken together, our results suggest that Fd59a serves as a transcription
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factor to regulate the expression of genes involved in reproduction, cell growth, and cell
death in the testis directly or indirectly.

Table 3. Differentially expressed genes selected for qRT-PCR validation and the number of predicted
Fox binding sites in the 2 kb promoter regions.

Gene Symbol Log2 Fold
Difference Relative Expression Biological Functions Forkhead

Binding Sites

GO analysis-related genes
Spd-2 1.08 Upregulated Involved in sperm aster formation 13
Fz2 −1.66 Downregulated Germline stem cell niche homeostasis 6

Tasp1 −1.35 Downregulated Involved in spermatogenesis 7
Cal1 0.61 Upregulated Female meiosis chromosome segregation 10

Dnah3 0.70 Upregulated Involved in sperm competition 6
Blanks −0.72 Downregulated Involved in sperm individualization 11

Tsc1 0.76 Upregulated Negative regulation of developmental
growth 4

Moe 0.67 Upregulated Oocyte anterior/posterior axis specification 10
Past1 −2.62 Downregulated Involved in sperm individualization 3

Zpg 1.33 Upregulated Male germline stem cell population
maintenance 5

En −1.40 Downregulated Involved in gonad development 8

Cell death-related genes

Ptp52F 3.44 Upregulated Involved in larval midgut cell-programmed
cell death 15

Atg7 1.60 Upregulated Involved in autophagy 2

RnrS 0.68 Upregulated
Involved in activation of cysteine-type

Endopeptidase activity involved in
apoptotic process

9

CG10700 0.822 Upregulated Involved in execution phase of apoptosis 9
CG12917 −0.62 Downregulated Involved in apoptotic DNA fragmentation 4

Nbs 0.78 Upregulated Involved in intrinsic apoptotic signaling
pathway in response to DNA damage 2

Lola 0.74 Upregulated Involved in nurse cell apoptotic process 14

CG32817 0.78 Upregulated Involved in extrinsic apoptotic signaling
pathway 0

Debcl −1.92 Downregulated Programmed cell death involved in cell
development 11

4. Discussion

Drosophila testis is an ideal system for studying spermatogenesis. In this study, we
found that FoxD transcription factor Fd59a contributes to the spermatogenesis of Drosophila.
So far, little is known about the functions of Drosophila Fd59a/FoxD and other insect
FoxD members. It was reported that the loss of function of Fd59a affects the female egg-
laying behavior of Drosophila [8]. Moreover, Drosophila CHES-1-like/FoxN suppressed the
differentiation of germline stem cells by upregulating Dpp expression, whereas ectopic
expression of CHES-1-like led to a significant decrease in male fertility [31]. In B. mori,
Fox family genes were expressed in the testis, with BmFoxL2-2 and BmFoxD at a higher
level than other BmFox genes [18]. However, the function of BmFoxD in the testis is
still unknown.

In this study, we showed that spermatogenesis was disrupted and the apoptosis
of sperm bundles was induced in Fd59a mutant and RNAi flies. Spermatogenesis is a
complex process regulated by multiple signaling pathways and many different genes.
The over-activation of the JAK-STAT signaling pathway led to the overgrowth of the
testis and the disrupted structure of the testis stem cell niche in Drosophila [25,32]. The
over-activation of the JNK or loss of the Notch signaling caused cell death in the testis of
Drosophila [33,34]. In mammals, the deletion of Stat3 in the Foxd1 cell lineage protected
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mice from kidney fibrosis [35]. Hypoxia-inducible factors (HIFs) regulated genes related
to oxygen homeostasis, and a lack of Hif-p4h-2 (HIF prolyl-4-hydroxylases) in the FoxD1
lineage led to the dysregulation of genes involved in the Notch signaling pathway [36].
These results suggest that there is a genetic interaction between mammalian FoxD subfamily
members and the JAK-STAT and Notch pathways. However, mRNA levels of genes
related to the above three signaling pathways did not change significantly in the Fd59a2/2

testis (RNA-seq data), indicating that Fd59a is not involved in the JAK-STAT, JNK, or
Notch signaling pathway. Therefore, insect FoxD members may function differently from
mammalian FoxD subfamily members.

It has been shown that Fd59a is expressed in octopaminergic neurons and that it
regulates the egg-laying behavior of female Drosophila [8]. In the Chinese mitten crab
(Eriocheir sinensis), the expression of the octopamine receptor changed significantly in the
androgenic gland (AG) between the proliferation and secretion phases [37]. We showed that
the loss of function of Fd59a caused defects in spermatogenesis. These combined results
suggest that octopaminergic neurons and octopamine may play a role in spermatogenesis,
which needs to be determined by further study.

The results from RNA-seq and qRT-PCR showed that many genes related to reproduc-
tion and cell death were differentially expressed in the testis of Fd59a2/2 flies. Among the
reproduction-related DEGs, Fz2 and Zpg have been reported to regulate germ stem cell
development in Drosophila testis [27,28], while Blanks functioned in sperm individualiza-
tion [38]. Among the cell death-related DEGs, Ptp52F enhanced autophagy and apoptosis in
the Drosophila midgut [30]. In addition, several potential Fox binding sites were predicted
in the promoters of selected DEGs. Thus, Fd59a acts as a transcription factor to regulate the
expression of genes involved in spermatogenesis and maintain the survival of sperm cells.

It was reported that octopamine was essential for increasing GSCs in mating Drosophila
females [39], and the β-adrenergic-like octopamine receptor (OctβR) was strongly expressed
in adult testis [40]. In Fd59a2/2 adult testis, Octβ2R expression was downregulated; thus,
it is possible that Fd59a regulates spermatogenesis partly through regulating the expres-
sion of Octβ2R, and Fd59a may be a key factor linking the nervous system to the male
reproduction system.
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