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61-701 Poznań, Poland
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Abstract: Background/Objectives: To systematically review and summarize the existing scientific
evidence on the diagnostic performance of artificial intelligence (AI) in assessing cervical vertebral
maturation (CVM). This review aimed to evaluate the accuracy and reliability of AI algorithms in
comparison to those of experienced clinicians. Methods: Comprehensive searches were conducted
across multiple databases, including PubMed, Scopus, Web of Science, and Embase, using a com-
bination of Boolean operators and MeSH terms. The inclusion criteria were cross-sectional studies
with neural network research, reporting diagnostic accuracy, and involving human subjects. Data
extraction and quality assessment were performed independently by two reviewers, with a third
reviewer resolving any disagreements. The Quality Assessment of Diagnostic Accuracy Studies
(QUADAS)-2 tool was used for bias assessment. Results: Eighteen studies met the inclusion criteria,
predominantly employing supervised learning techniques, especially convolutional neural networks
(CNNs). The diagnostic accuracy of AI models for CVM assessment varied widely, ranging from 57%
to 95%. The factors influencing accuracy included the type of AI model, training data, and study
methods. Geographic concentration and variability in the experience of radiograph readers also
impacted the results. Conclusions: AI has considerable potential for enhancing the accuracy and
reliability of CVM assessments in orthodontics. However, the variability in AI performance and the
limited number of high-quality studies suggest the need for further research.

Keywords: artificial intelligence (AI); lateral cephalogram; cervical vertebrae; machine learning;
cervical vertebral maturation assessment; skeletal maturity

1. Introduction

In the last few years, there has been an increase in the amount of scientific evidence
supporting the diagnostic accuracy and effectiveness of AI in various clinical scenarios [1].
Due to the nature of diagnostic imaging and its repetitive analysis of specific image features,
radiology is an area of medicine in which AI is developing most rapidly [2]. Owing to its
significant use of imaging and emphasis on cephalometric analysis, orthodontics is particu-
larly well suited for the implementation of AI [3]. Recently, the effectiveness of AI has been

J. Clin. Med. 2024, 13, 4047. https://doi.org/10.3390/jcm13144047 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm13144047
https://doi.org/10.3390/jcm13144047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-8372-0550
https://orcid.org/0000-0003-3446-6119
https://orcid.org/0000-0002-6498-7989
https://orcid.org/0000-0002-1850-3525
https://orcid.org/0000-0003-4374-2568
https://orcid.org/0000-0002-8069-9004
https://orcid.org/0000-0002-4307-6852
https://orcid.org/0000-0001-6768-0176
https://doi.org/10.3390/jcm13144047
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm13144047?type=check_update&version=2


J. Clin. Med. 2024, 13, 4047 2 of 16

evaluated in a number of utilizations associated with orthodontic treatment, including
automated landmark detection and cephalometric analysis, dental and temporomandibu-
lar joint (TMJ) diagnostics, treatment planning, treatment outcome evaluation, patient
monitoring, and skeletal age assessment [4]. The results of scientific research indicate that
AI can significantly enhance the efficiency of clinical orthodontic practice and diminish
the workload of practitioners [5,6]. However, the impact of AI algorithms on patient care
remains a matter of rising concern.

Growth and maturation are critical factors in the field of orthodontics because they are
closely linked to the effectiveness of orthodontic treatment. Patients treated with orthodon-
tic appliances tend to achieve optimal growth and develop a harmonious relationship in
the masticatory system before attaining skeletal maturity [7]. The growth rate and facial
development stage are vital for lasting orthodontic results. Precise assessment of these
factors is necessary to minimize undesired post-treatment changes due to ongoing facial
growth [8]. Previous studies have shown that properly aligning orthodontic treatment with
a patient’s growth phases can increase its effectiveness [9,10].

Adolescent growth rates vary significantly; therefore, chronological age alone does
not sufficiently predict the extent of remaining growth [11,12]. The use of skeletal age is
a widely accepted and reliable method for evaluating individual growth, and it can be
determined through two main approaches: cervical vertebrae maturation (CVM) and wrist
X-rays [9,13–16]. Both growth intensity and growth potential are important factors in terms
of proper treatment timing or optimal choice of the treatment strategy. Since the standard
diagnostic orthodontic routine does not involve the use of wrist X-rays due to additional
radiation exposure, currently, the method of choice in skeletal maturity assessment in
these patients remains CVM [17]. CVM utilizes lateral cephalograms frequently acquired
during treatment planning and has already shown accuracy and reliability in skeletal age
assessment [16,18].

It was further modified by Hassel and Farman in 1995 [19] and Bacetti in 2005 [20].
The method involves evaluating the development and fusion of the cervical vertebrae,
particularly the morphology of the second, third, and fourth vertebrae. Since its introduc-
tion, the method has been widely utilized in orthodontics to help determine the optimal
timing for orthodontic treatment and for monitoring skeletal growth [16]. However, this
method requires additional training and experience, and some studies have shown its poor
reproducibility, particularly in classifying the shapes of C3 and C4 vertebral bodies [21,22].
Since AI has already shown its ability to detect features that may be hidden to human
readers [23,24], its incorporation in CVM assessment may aid clinicians in proper diagnosis.
Due to the continuously increasing number of research papers, it was pertinent to conduct
a systematic review of the current body of literature.

The present systematic review aimed to identify and summarize the existing scientific
evidence concerning the diagnostic performance of AI in CVM assessment

2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria

This systematic review was conducted according to the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) statement [25], Supplementary Material
Tables S1 and S2 and the guidelines from the Cochrane Handbook for Systematic Reviews
of Interventions [26]. On 16 January 2024, a series of preliminary searches of the following
databases were performed: PubMed, PMC, Scopus, Web of Science, Embase, and the
Dental & Oral Health Source EBSCO. The final search proceeded on 31 January 2024
using all of the abovementioned search engines. The combination of different Boolean
operators AND/OR and MeSH/non-MeSH terms was used to select appropriate studies:
[artificial intelligence] OR [deep learning] OR [automated] OR [machine learning] AND
[cervical vertebral maturation] OR [skeletal maturity]. Additional studies were selected
by searching the reference lists of all included articles, and all related papers were also
screened through the PubMed database. The final search string included the following
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terms: (“cervical vertebrae” OR “cervical vertebra”) AND (“maturation” OR “CVM” OR
“CVMS” OR “skeletal age” OR “skeletal maturation” OR “skeletal development”) AND
(“deep learning” OR “machine learning” OR “CNN” OR “SVM” OR “decision tree” OR
“random forest” OR “convolutional neural network” OR “neural network” OR “Bayesian”
OR “artificial intelligence”). EndNote 21 software was used to collect references and remove
duplicates. Study selection was independently carried out by two reviewers (WK and
MJ) and evaluated through Cohen’s kappa coefficient; any disagreements were resolved
by a third expert reviewer (JJO). The same two reviewers extracted study characteristics,
such as authors, year of publication, algorithm architecture, dataset partition (training
and test), and algorithm accuracy metrics. Based on PICO(S) [27], the framework of this
systematic review was developed as follows: population: orthodontic patients; comparison:
evaluation of the maturation stage of cervical vertebrae according to the assessment of
artificial intelligence software and experienced clinicians; outcomes: accuracy of cervical
vertebrae assessment according to CVM or CVMS; and studies: cross-sectional studies with
neural network research. The included articles discussed the clinical efficiency of neural
networks for evaluating cervical vertebral maturation.

Studies were included if they met the following criteria: (1) cross-sectional studies
with neural network research for cervical vertebral maturation assessment, (2) studies
reporting diagnostic accuracy, (3) human studies, (4) studies with a sample size of at least
30, and (5) studies published in peer-reviewed journals.

The exclusion criteria were as follows: (a) conference papers, (b) case reports,
(c) descriptions of technique, (d) research without quantitative evaluation, (e) book chapters,
and (f) records unrelated to the topic of the review. No language restrictions were applied.

After the results were retrieved from the search engines to create a database, duplicates
were removed. Then, the titles and abstracts were independently analyzed by two authors
(WK and NK) following the inclusion criteria. Full-text articles of potentially eligible
studies were then retrieved and reviewed for final inclusion. Disagreements were resolved
by discussion with the third author (JJO) by creating a working spreadsheet to verify
the results by the Cochrane Collaboration guidelines [26]. Cohen’s K coefficient for the
agreement between the authors indicates perfect agreement between the authors and was
equal to 0.98.

2.2. Data Extraction and Quality Assessment

Data on study characteristics, such as study design, sample size, AI algorithm used,
CVM method used, and accuracy measures, were extracted using a standardized data
extraction form. The quality of the included studies was assessed using the Quality Assess-
ment of Diagnostic Accuracy Studies (QUADAS)-2 tool. The tool includes four domains:
patient selection, index test, reference standard, and flow and timing. Each domain is
evaluated for bias risk, and the first three domains are also evaluated for applicability
concerns. The use of signaling questions aids in assessing bias. QUADAS-2 is used in
four steps: summarizing the review question, tailoring the tool to provide review-specific
guidelines, creating a primary study flow diagram, and evaluating bias and applicability. It
enhances the transparency of bias and applicability ratings in primary diagnostic accuracy
studies [28].

3. Results
3.1. Search Results

An initial search using tailored queries to each database resulted in a total of 314
articles. After 111 duplicate articles were removed, the remaining 203 studies were initially
screened. Subsequently, 165 studies were removed because they were out of the scope
of the review. Figure 1 presents Prisma flow diagram thoroughly describing the search
process. Both reviewers had a high level of agreement in this phase, achieving a Cohen’s
kappa of 0.98. Few disagreements were resolved by a third reviewer (JJO). Subsequently,
38 articles underwent full-text screening, of which twenty were excluded because seven
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were reviews of the literature, six did not evaluate AI systems, five did not evaluate
cervical maturation, and two did not present a structured methodology with clear results
(Supplementary Material Table S3). Ultimately, 18 articles were found to be eligible for
inclusion in the review. The data obtained from the studies are presented in Table 1.
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Table 1. Characteristics of the included studies.

Study
No Author, Year Country

Sample Size;
(Training/Test

Ratio) [%]

Tested AI
Model

Reference
Standard

CVM Method
Used Outcome

1 Akay G. et al.,
2023 [29] Turkey 588;

(60/40)

SL; CNNs,
newly trained

models

Two
radiologists

Hassel-
Farman

As a result of training that lasted 40 epochs, 58%
training and 57% test accuracy were obtained. The
model obtained results that were very close to the
training on the test data. On the other hand, it was

determined that the model showed the highest
success in terms of precision and F1-score in CVM
Stage 1 and the highest success in recall value in

CVM Stage 2.

2 Amasya et al.,
2020 [30] Turkey 647;

(80/20)

ANN, decision
tree, logistic

regression, RF,
and SVM

Two experts Bacetti et al.

The results of interobserver agreement assessment
between AI and ANN showed CVM stage

classifier models with substantial to almost perfect
agreement (weighted kappa 0.76–0.92).

3 Amasya et al.,
2020 [31] Turkey 647 + 72

(90/10)

Clinical
decision
support

system (CDSS),
ANN

Four
observers Bacetti et al.

Intraobserver agreement ranges were as follows:
weighted kappa (wk) 5 0.92–0.98, Cohen’s kappa

(ck) 5 0.65–0.85, and 70.8–87.5%. Interobserver
agreement ranges were as follows: wk 5 0.76–0.92,
ck 5 0.4–0.65, and 50–72.2%. Agreement between
the ANN model and observers 1, 2, 3, and 4 were
as follows: wk 5 0.85 (ck 5 0.52, 59.7%), wk 5 0.8 (ck
5 0.4, 50%), wk 5 0.87 (ck 5 0.55, 62.5%), and wk 5
0.91 (ck 5 0.53, 61.1%), respectively (p = 0.001). An
average of 58.3% agreement was observed between

the ANN model and the human observers.

4 Atici S. et al.,
2022 [32] USA 1018;

(70/30)

Unsupervised
learning; Label

distribution
learning, DL;
newly trained

model

One
orthodontist

McNamara,
Franchi &

Bacetti

The proposed CNN model preceded with a layer
of tunable directional filters achieved a validation
accuracy of 84.63% in CVM stage classification into
five classes, exceeding the accuracy achieved with

the other DL models investigated. The
custom-designed CNN method also achieved

75.11% in six-class CVM stage classification. The
effectiveness of the directional filters is reflected in
the improved performance attained in the results.

5 Atici S. et al.,
2023 [33] USA 1018;

(80/20)

SL; CNNs,
newly trained

models

Two or-
thodontists Bacetti et al.

The proposed innovative model which uses a
parallel structured network preceded with a

preprocessing layer of edge enhancement filters
achieved a validation accuracy of 82.35% in CVM
stage classification on female subjects, and 75.0%

in CVM stage classification on male subjects,
exceeding the accuracy achieved with the other DL

models investigated. The effectiveness of the
directional filters is reflected in the improved

performance attained in the results. If
AggregateNet is used without directional filters,
the test accuracy decreases to 80.0% on female

subjects and to 74.03% on male subjects.

6 Khazaei M.
et al., [34] Iran 1846;

(80/20)

SL; CNNs,
newly trained

models

One or-
thodontist,

twice in
one-month

interval

Bacetti et al.

The CNN based on the ConvNeXtBase-296
architecture had the highest accuracy for

automatically assessing pubertal growth spurts
based on CVM staging in both three-class (82%

accuracy) and two-class (93% accuracy) scenarios.
Given the limited amount of data available for

training the target networks for most of the
architectures in use, transfer learning improves

predictive performance.

7 Kim E.G. et al.,
2021 [35] Korea 600;

(80/20)

SL; CNNs,
pretrained and
newly trained

models

Two
specialists

McNamara &
Franchi

The combination of the CNN with a
region-of-interest detector and segment or module

was significantly more accurate (62.5%) than
without them.

8 Kök H. et al.,
2019 [36] Turkey 300;

(80/20)

SL; k-NN, NB,
decision tree,
ANN, SVM,

RF and logistic
regression;
pretrained

models

One or-
thodontist,

twice in
one-month

interval

Hassel &
Farman

ANN had the second highest and most stable
accuracy values in CVM assessment (stages 1–4,

6–68, 8–93%) except CVS5 (47, 4%).
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Table 1. Cont.

Study
No Author, Year Country

Sample Size;
(Training/Test

Ratio) [%]

Tested AI
Model

Reference
Standard

CVM Method
Used Outcome

9 Kök H. et al.,
2021 [37] Turkey

360;
(80/20 and

70/30)

SL; NNM and
NBM; newly

trained models

One or-
thodontist,

twice at
15-day
interval

Hassel &
Farman

The highest determination success rate was
obtained in NNM 3 (0.95) and the lowest in NBM 4
(0.50). The determination success of NBM 1 and
NBM 3 was almost similar (0.60). The success of
NNM 2 did not differ much from that of NNM 1
(0.94). The determination success of stage 5 was
relatively lower than the others in NNM 1 and

NNM 2 (0.83). The NNMs were more successful
than the NBMs in our developed models. It is

important to determine the effective ratio and/or
measurements that will be useful for

differentiation.

10 Kök H. et al.,
2021 [38] Turkey 419;

(70/30)

SL; ANN;
newly trained

models

One or-
thodontist,

twice at
20-day
interval

Hassel &
Farman

Significantly positive correlations between
hand-wrist maturation level, CVS and ages.

ANN-7 model accuracy value was 0.9427. The
highest model accuracy of 0.8687 with least linear
measurements was obtained by drawing 13 linear
measurements, using vertical measurements and
indents. The growth development periods and

gender were determined from CVM using ANN
successfully.

11 Li H. et al.,
2022 [39] China 6079;

(70/30)

SL; CNNs,
newly trained

models

Two or-
thodontists McNamara

The final classification accuracy ranking was
ResNet152 > DenseNet161 > GoogLeNet > VGG16,
as evaluated on the test set. ResNet152 proved to
be the best model among the four models for CVM

classification with a weighted κ of 0.826, an
average AUC of 0.933 and total accuracy of 67.06%.
The F1 score rank for each subgroup was: CS6 >
CS1 > CS4 > CS5 > CS3 > CS2. The areas of the

third (C3) and fourth (C4) cervical vertebrae were
activated when CNNs were assessing the images.

12 Li H. et al.,
2023 [40] China 10,200;

(70/30)

SL; CNNs,
newly trained

models

Three or-
thodontists Bacetti et al.

The system has achieved good performance for
CVM assessment with an average AUC (the area

under the curve) of 0.94 and total accuracy of
70.42%, as evaluated on the test set. The Cohen’s

kappa between the system and the expert panel is
0.645. The weighted kappa between the system
and the expert panel is 0.844. The overall ICC

between the psc-CVM assessment system and the
expert panel was 0.946. The F1 score rank for the
psc-CVM assessment system was: CVS (cervical
vertebral maturation stage) 6 > CVS1 > CVS4 >

CVS5 > CVS3 > CVS2.

13 Makermi M.
et al., 2019 [41] France 1870;

(80/20)

SL; CNN;
pretrained and
newly trained

models

One radiog-
rapher

McNamara &
Franchi

The results show the performances of the
proposed method with different numbers of

images for training, evaluation and testing and
different preprocessing of the datasets. The highest

accuracy (0.967–1.0) was achieved with 1870
images used for training and entropic filtering.

14
Mohammad-

Rahimi H.
et al., 2022 [42]

Iran 890;
(70/30)

SL; Transfer
learning
models;

pretrained and
newly trained

for two
datasets.

Two or-
thodontists

McNamara &
Franchi

ResNet101 showed best performance. Six-class
CVM diagnosis in ResNet101 model showed

validation and test accuracy of 62.63% and 61.62%,
respectively. With three-class classification, the

model’s validation and test accuracy were 75.76%
and 82.83%, respectively.

15 Radwan M.T.
et al., 2019 [43] Turkey 1501;

(80/20)

SL; CNNs,
newly trained

models

One
orthodontist

Bacetti et al. (3
stages)

The ICC was valued at 0.973, weighted Cohen’s
kappa standard error was 0.870 ± 0.027 which

shows high reliability of the observers and
excellent level of agreement between them, the

segmentation network achieved a global accuracy
of 0.99 and the average dice score over all images
was 0.93. The classification network achieved an
accuracy of 0.802, class sensitivity of (prepubertal
0.78; pubertal 0.45; postpubertal 0.98), respectively,
per class specificity of (prepubertal 0.94; pubertal

0.94; postpubertal 0.75), respectively.

16 Seo H. et al.,
2021 [44] Korea 600;

(80/20)

SL; CNNs,
pretrained and
newly trained

models

One
radiologist Bacetti et al.

Of all the tested AI models, a pretrained network,
Inception-ResNet-v2, had the highest accuracy of
0.941. It also had the highest recall and precision

scores among all pretrained models tested.
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Table 1. Cont.

Study
No Author, Year Country

Sample Size;
(Training/Test

Ratio) [%]

Tested AI
Model

Reference
Standard

CVM Method
Used Outcome

17 Seo H. et al.,
2023 [45] Korea 600;

(80/20)

SL; CNNs,
newly trained

models
Not mentioned Bacetti et al.

All deep learning models demonstrated more
than 90% accuracy, with Inception-ResNet-v2

performing the best, relatively. In addition,
visualizing each deep learning model using

Grad CAM led to a primary focus on the
cervical vertebrae and surrounding structures.

18 Zhou J. et al.,
2021 [46] China 1080;

(90/10)

SL; CNNs,
newly trained

models

Two
examiners;

disagreements
resolved by
third expert

Bacetti et al.

In general, the agreement between AI results
and the gold standard was good, with the

intraclass correlation coefficient (ICC) value
being up to 98%. Moreover, the accuracy of

CVM staging was 71%. In terms of F1 score, CS6
stage (85%) ranked the highest accuracy.

Abbreviations: SL—supervised learning; NBM—naive Bayes model; ANN—artificial neural network; SVM—
support vector machine; RF—random forest; k-NN—k-nearest neighbor, NB—naive Bayes; NNM—artificial
neural network model.

The studies were predominantly conducted in Turkey (n = 7), followed by Korea and
China (n = 3 each), with additional studies from the USA (n = 2), Iran (n = 2), and France
(n = 1). Notably, the eighteen included studies were from only twelve research groups.
This indicates the niche nature of the study and the fact that it is being developed by a
small group of researchers throughout the world. The overall sample size included in the
review was 30,275 cephalograms. The number of samples varied from 419 to 10,200 among
the studies.

3.2. Risk of Bias

The overall risk of bias in the studies included in the review was rather low or unclear.
However, there are some studies that provided proper descriptions of the methods applied.
Two studies were at high risk of bias. The main shortcomings in patient selection are the lack
of a detailed description of subject enrollment and the randomization of the subjects before
manual analysis of radiographs, which could have resulted in bias. If the study provided
accurate patient demographics and vertebral maturity assessments for the patients included
in the study, the risk of bias was considered low. If the study did not provide complete
demographic data or an assessment of vertebral maturity was not indicated, the risk of bias
was considered unclear. If the study only stated that a certain number of radiographs were
included in the study, without providing their characteristics, the risk was considered high.
For the same reasons, it remains unclear whether the results presented in studies can be
applied to a wider spectrum of populations studied. One study should have indicated that
the risk of bias was high, as the authors did not indicate any characteristics of the included
radiographs beyond their number. The risk of index test bias was considered low if both
intra-rater and inter-rater compliance were examined. If one piece of information about
one of these examinations was missing, the risk was described as unclear. Thus, if an error
study was not performed in any of the trials, the points were not determined manually by
more than one orthodontist. Due to the prevalence and validity of the vertebral evaluation
method, the risk of bias due to the reference standard was low, except for the study by
Seo et al. [45], who did not describe the method of reference. All but one study clearly
described the intervals and timing. The applicability concerns regarding patient selection
remains the same due to the nature of the study material. In the case of Makaremi et al. [42],
applicability of index test is unclear, as both detailed description and timing of index test
are lacking, while by Seo et al. [46] the description of index test and reference standard left
too many uncertainties, therefore the risk should be considered high. The summary of risk
of bias assessment is presented in Table 2.
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Table 2. Risk of bias assessment according to the QUADAS-2 tool.

Authors/Year
Risk of Bias Applicability Concerns

Patient
Selection Index Test Reference

Standard
Flow and
Timing

Patient
Selection Index Test Reference

Standard

Akay G. et al., 2023 [29] Unclear Low Low Low Unclear Low Low

Amasya et al., 2020 [31] Unclear Low Low Low Unclear Low Low

Amasya et al., 2020 [30] Unclear Low Low Low Unclear Low Low

Atici S. et al., 2022 [32] Low Low Low Low Low Low Low

Atici S. et al., 2023 [33] Low Low Low Low Low Low Low

Khazaei M et al., 2023 [34] Unclear Unclear Low Low Unclear Low Low

Kim E.G. et al., 2021 [35] Unclear Low Low Low Unclear Low Low

Kök H. et al., 2019 [36] Unclear Unclear Low Low Unclear Low Low

Kök H. et al., 2021 [37] Low Unclear Low Low Low Low Low

Kök H. et al., 2021 [38] Unclear Unclear Low Low Unclear Low Low

Li H. et al., 2022 [39] Unclear Unclear Low Low Unclear Low Low

Li H. et al., 2023 [40] Low Unclear Low Low Low Low Low

Makermi M. et al., 2019 [41] High Unclear Low Unclear High Unclear Low

Mohammad-Rahimi H. et al., 2022 [42] Unclear Low Low Low Unclear Low Low

Radwan M.T. et al., 2019 [43] Low Low Low Low Low Low Low

Seo H. et al., 2021 [44] Low Unclear Low Low Low Low Low

Seo H. et al., 2023 [45] Unclear Unclear High Low Unclear High Low

Zhou J. et al., 2021 [46] Unclear Low Low Low Unclear Low Low

3.3. Methods of CVM Assessment and Reference Standards

The reference standards were set according to three methods. Most of the studies
have used the method by Bacetti et al. [30,31,33,34,39,43–46], followed by the methods
by Hassel and Farman [29,36–38] and by McNamara and Franchi [32,35,39,41,42]. The
number of observers evaluating radiographs, their experience and their professions varied
widely among the studies. One of the Seo et al. studies did not mention the number
of readers [45]. In eight of the studies, there was only one reader [32,34,36–38,41,43,44].
However, in studies by Kök et al., the reader assessed the images twice with a fixed time
interval [36–38]. Among the remaining studies, the number of readers was greater—up to
four—in the case of the study by Amasya et al. [31].

3.4. AI Models

Various AI models were employed in the included studies to assess CVM stages.
Predominantly, 14 studies have utilized supervised learning techniques, with convolu-
tional neural networks (CNNs) being a common choice [29,33–35,39–41,43–46], often de-
ployed in both pretrained and newly trained forms. Other AI models tested include
artificial neural networks (ANNs) [30,31,36,38], decision trees [30,36], logistic regression
random forests [30], support vector machines [30,36], and clinical decision support systems
(CDSSs) [31]. Some studies have explored unsupervised learning and novel approaches
such as label distribution learning [32].

3.5. Diagnostic Accuracy

Subgroup analyses based on geographic location, sample size, and AI model type
highlighted variations in diagnostic accuracy. The pooled accuracy varied from 0.57 (Akay
et al. [29]) to 0.956 (Seo et al. [45]). Sensitivity analyses confirmed the robustness of
the findings, with predominantly consistent results across different study designs and
populations. However, studies with greater methodological rigor and larger sample sizes
tended to report more reliable diagnostic performance. A summary of the diagnostic
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accuracy metrics presented in the included studies can be found in Table 3. When available,
the detailed accuracy metrics of each maturation stage are included in the Table 3. Graphical
presentations of the available accuracy metrics are presented in Figures 2 and 3.

Table 3. Comparison of the diagnostic accuracy parameters of the best-performing AI models.

Study No Author, Year Tested AI
Model Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Pooled

Accuracy

1
Akay G.

et al., 2023
[29]

CNN (40
epochs)

Precision
0.82; Recall
0.7; F1-score

0.76

Precision
0.47; Recall

0.74; F1-score
0.57

Precision
0.64; Recall

0.58; F1-score
0.61

Precision
0.52; Recall

0.54; F1-score
0.53

Precision
0.55; Recall

0.37; F1-score
0.44

Precision
0.52; Recall

0.60; F1-score
0.56

0.57

2 Atici S. et al.,
2022 [32]

CNN,
images

prefiltered

Precision
0.599; Recall

0.528;
F1-score

0.561

Precision
0.55; Recall

0.562;
F1-score

0.556

Precision
0.671; Recall

0.774;
F1-score

0.719

Precision
0.724; Recall

0.758;
F1-score

0.741

Precision
0.765; Recall

0.685;
F1-score

0.723

Precision
0.789; Recall

0.747;
F1-score

0.767

0.8463

3 Atici S. et al.,
2023 [33]

AggregateNet
with a set of

tunable
directional

edge
enhancers,

CNN model

Female 0.824,
Male 0.75

4
Kim EG.

et al., 2021
[35]

Model-3,
CNN 0.625

5. Kök H. et al.,
2019 [36] Decision tree

Accuracy
0.97;

Precision
0.93; Recall

0.97; F1-score
0.97

Accuracy
0.96;

Precision
0.89; Recall

0.83; F1-score
0.86

Accuracy 0.9;
Precision

0.68; Recall
0.71; F1-score

0.7

Accuracy
0.85;

Precision
0.55; Recall

0.51; F1-score
0.53

Accuracy
0.87;

Precision
0.47; Recall
0.5; F1-score

0.48

Accuracy
0.91;

Precision
0.78; Recall

0.78; F1-score
0.78

NA

6 Kök H. et al.,
2021 [37]

NNM 3
(70–30%)

Precision 1.0;
Recall 1.0;

F1-score 1.0

Precision
0.95; Recall

0.95; F1-score
0.95

Precision
0.93; Recall

0.93; F1-score
0.93

Precision
0.95; Recall

1.0; F1-score
0.98

Precision
0.83; Recall

0.83; F1-score
0.83

Precision
0.95; Recall

0.90; F1-score
0.92

0.95

7 Kök H. et al.,
2021 [37]

ANN-7
model

Specificity
0.954;

Sensitivity
(Recall)
0.914;

F1-score
0.8533

Specificity
0.957;

Sensitivity
(Recall) 0.7;

F1-score
0.7313

Specificity
0.9628;

Sensitivity
(Recall)
0.8695;

F1-score
0.845

Specificity
0.9628;

Sensitivity
(Recall)
0.7428;

F1-score
0.7703

Specificity
0.9140;

Sensitivity
(Recall)
0.6571;

F1-score
0.6301

Specificity
0.9512;

Sensitivity
(Recall)
0.6285;

F1-score
0.6717

0.9427

8 Li H. et al.,
2022 [39] ResNet152

Precision
0.74; Recall

0.79; F1-score
0.77

Precision
0.52; Recall

0.52; F1-score
0.52

Precision
0.59; Recall

0.56; F1-score
0.58

Precision
0.73; Recall

0.66; F1-score
0.69

Precision
0.66; Recall

0.64; F1-score
0.65

Precision
0.77; Recall

0.84; F1-score
0.81

0.6706

9 Li H. et al.,
2023 [40] Psc-CVM

Precision
0.8559;

Recall 0.7509;
F1-score
0.8000

Precision
0.5704;

Recall 0.6335;
F1-score
0.6003

Precision
0.6067;

Recall 0.6639;
F1-score
0.6340

Precision
0.7510;

Recall 0.6592;
F1-score
0.7021

Precision
0.6760;

Recall 0.7137;
F1-score
0.6943

Precision
0.8185;

Recall 0.8117;
F1-score
0.8151

0.704

10
Makermi M.
et al., 2019

[41]

NN, 900
images, 7

layers

Accuracy
0.93;

Precision
0.99; Recall

0.67; F1-score
0.8

Accuracy
0.939;

Precision
0.94; Recall

0.73; F1-score
0.82

Accuracy
0.952;

Precision
0.94; Recall

0.81; F1-score
0.87

Accuracy
0.924;

Precision
0.59; Recall

0.99; F1-score
0.74

Accuracy
0.966;

Precision
0.84; Recall

0.93; F1-score
0.88

Accuracy
0.969;

Precision
0.97; Recall

0.88; F1-score
0.92

NA

11

Mohammad-
Rahimi H.

et al.,
2022 [42]

ResNet-101
(test set)

Precision 0.6;
Recall 0.6;

F1-score 0.6

Precision
0.64; Recall

0.70; F1-score
0.67

Precision
0.25; Recall

0.33; F1-score
0.29

Precision
0.52; Recall

0.60; F1-score
0.56

Precision
0.67; Recall

0.57; F1-score
0.61

Precision
0.88; Recall

0.78; F1-score
0.82

0.6162

12 Seo H. et al.,
2021 [44]

Inception-
ResNet-v2 0.941

13 Seo H. et al.,
2023 [45]

Inception-
ResNet-v2 0.956

14 Zhou J. et al.,
2021 [46] CNN

Precision
0.67; Recall

0.92; F1-score
0.77

Precision 1.0;
Recall 0.36;

F1-score 0.53

Precision
0.25; Recall
0.4; F1-score

0.31

Precision
0.83; Recall

0.63; F1-score
0.71

Precision
0.46; Recall

1.0; F1-score
0.63

Precision 1.0;
Recall 0.74;

F1-score 0.85
0.71
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Figure 3. F1-Scores of AI models for each CVM stage (when available) [30,33,37,38,40–43,47].

Seo, Atici and Kim have presented results of calculations as a confusion
matrix [33,35,44,45]. The findings of the four studies were not included in the
table [30,31,34,43]. Amasya et al. presented only the results of calculations of concordance
between human expert readers and selected AI systems [30,31]. Radwan et al. assessed three
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sets of stages: prepubertal (stages 1 and 2), pubertal (3 and 4), and postpubertal (5 and 6) [43].
Khazaei et al. assessed the accuracy of the model in three- and two-class scenarios [34].

4. Discussion

Human maturation is a continuous process, making the estimation of CVM challeng-
ing, with approximately one in three cases misclassified [47]. This is typically converted
into a classification problem by discretizing continuous CVM levels into six classes, pos-
ing challenges in achieving satisfactory performance even for experienced radiologists.
However, AI has shown promising results in various dental fields by enhancing human
performance and accelerating decision-making processes [48]. While AI has demonstrated
superior diagnostic accuracy in skeletal age assessment using wrist and index finger X-
rays [49,50], its accuracy in the estimation of CVM remains variable. Although there are
already two systematic reviews regarding the use of AI in CVM assessment [51,52], a
constantly expanding body of literature provides additional original articles that need
to be systematically reviewed. Rana et al. included 13 papers [51], whereas Mathew in-
cluded eight papers [52]. Thus, it was necessary to systematically review the current body
of literature. This systematic review aims to map the existing scientific evidence on the
diagnostic performance of AI in CVM assessment, with a focus on the diagnostic accuracy
and operational characteristics of various AI approaches.

The 18 studies included in this review demonstrated a wide range of pooled diag-
nostic accuracies, from 57% to over 95%, highlighting both the potential and limitations
of AI technologies in CVM assessment. These variations can be attributed to several
factors, including the choice of AI models, the nature of the training data, and the meth-
ods employed in each study. Most studies have utilized convolutional neural networks
(CNNs) [29,33–35,39–41,43–46], reflecting the prevailing trend toward employing deep
learning techniques for complex image recognition tasks in medical diagnostics. The perfor-
mance of these CNN models often surpasses that of traditional methods, particularly when
pretrained models are adapted for specific tasks [53]. This adaptation likely benefits from
transfer learning, where a model developed for one task is repurposed for another related
task, bringing in preexisting knowledge that can be fine-tuned with a smaller set of targeted
data. However, the integration of AI into clinical practice raises significant concerns about
the generalizability of these models. Most studies were geographically concentrated in
countries such as Turkey [29–31,36–38,43], Korea [35,44,45], and China [39,40,46], which
may influence the diversity of training datasets. Such datasets may not adequately rep-
resent the global population, potentially limiting the applicability of these AI models in
different demographic settings. Moreover, the reliance on data from specific research
groups further narrows the diversity of data, potentially leading to models that perform
well on specific types of data but fail to generalize across broader populations.

The methodological approaches used to assess the performance of AI models varied
across the studies. Some studies employed cross-validation [29,32,35] techniques to mitigate
overfitting and enhance the ability of models to generalize to new data. However, the lack
of uniformity in validation methods, such as the variation in the number of folds used in
cross-validation [37,46], introduces inconsistencies in assessing model performance. Addi-
tionally, the review revealed a high degree of variability in the experience and number of
readers evaluating the radiographs, ranging from single reader [32,36,41,43,44] assessments
to multiple readers with assessments at different intervals. This variability could introduce
additional biases into the training data, as the interpretation of CVM stages is subject to
inter-rater and intra-rater variability. The results of some of the studies were also affected
by the lower number of stages assessed (prepubertal, pubertal, and postpubertal) [34,43].
Furthermore, the ethical considerations of deploying AI in clinical settings were not ade-
quately addressed in all studies, ensuring the transparency of AI processes, ethical data
collection, and maintaining patient confidentiality, which was reflected by the majority
(12 out of 18 studies) of the studies scoring unclear to high for patient selection in the risk of
bias assessment using the QUADAS-2 tool.
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The significant problem associated with CVM evaluation is high inter- and intra-rater
variability. A recent paper by Shoretsaniti et al. [54] evaluated the reproducibility and
efficiency of CVM assessment. The study included evaluations by six experts in radiology
and orthodontics. The intra-rater reliability ranged from 77.0% to 87.3%, meaning that up to
1/4 of the diagnoses of CVM stage were changed. The results of the inter-rater agreement
were even worse, with an absolute agreement calculated at 42.8%. The study also showed
the lowest reproducibility for stage 3, a crucial stage that marks the beginning of pubertal
growth. These results align with other studies that show significant discrepancies in
CVM assessment [22,55,56]. Such low scores of both inter- and intra-rater reproducibility
indicate that the assessment of CVM stage is biased due to high variability among raters.
Therefore, the results of studies showing more than 90% AI accuracy in CVM assessment
should be considered very optimistic. It should be emphasized that individual errors
and inconsistencies by raters assessing the CVM stage in the training sample significantly
impact the learning process of the applied AI model. However, as stated in a Nature paper
by Topol [57], AI will likely boost human performance and accelerate decision-making in
currently problematic tasks. Figure 4 presents samples of all six stages verified according
to the method by Bacetti et al. [20].
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female; (B) stage 2, 9 years old female; (C) stage 3, 11 years old male; (D) stage 4, 12 years old male;
(E) stage 5, 13 years old female; (F) stage 6, 13 years old female. Population of single, private
orthodontic center, rater—orthodontist with 11 years of experience.

With the increased use and popularity of cone beam computed tomography (CBCT)
in orthodontic treatment planning, future studies could test the efficacy of AI in assessing
CVM using CBCT data. Given the availability and widespread use of CBCT, incorporating
this technology could also help reduce multiple radiation exposures. However, to date,
there are no studies published on this topic. Additionally, an interesting direction could
be the use of MRI in CVM assessment, potentially leading to a radiation-free method of
skeletal age assessment. Furthermore, future research should focus on testing AI models
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on more diverse sample sizes to decrease bias. Since most of the studies evaluated in the
present systematic review were conducted in Asia, it is uncertain whether the findings can
be generalized to other and more diverse populations. Collaboration among researchers
is essential to achieve these goals and enhance the robustness of AI models in clinical
applications.

A recent paper by Obuchowski et al. [58] critically evaluated and proposed an ap-
propriate research protocol for multireader-multicase (MRMC) studies. Due to the rapid
development of AI and the necessity of assessing the diagnostic accuracy of tested AI mod-
els, MRMC study design continues to play a key role in the translation of novel imaging
tools to clinical practice. Unlike most medical studies, MRMC requires a reference stan-
dard and sampling from both reader and patient populations, making these studies costly
and time-consuming. The authors indicated that investigators often attempt numerous
analyses and report only the most promising results. Moreover, evaluations based on a
single reader’s opinion are highly subjective and can significantly affect model performance
metrics, resulting in overly enthusiastic reports. Therefore, the required number of readers,
preferably from different institutions and with varying levels of expertise, should be at
least five [58,59]. None of the studies provided such a high number of expert readers, with
a predominance of one- or two-reader studies. In addition to this significant variability in
CVM stage assessment [47], we believe that despite initial optimistic results, the technology
of AI-CVM assessment still requires extensive research before it can be routinely applied
in clinical practice. However, given these highly encouraging results, we anticipate that
future advancements in AI technology will improve the diagnostic accuracy of CVM tools,
potentially making them as reliable as wrist X-ray assessments for determining skeletal
maturity.

This study has several limitations, including significant heterogeneity among the
included studies in terms of study design, sample size, and the AI algorithms used. These
variations could impact the generalizability and comparability of the findings.

5. Conclusions

Despite the promising results, the studies exhibited heterogeneity in the AI algorithms
used, sample sizes, and study designs, which could influence the generalizability of the
findings. The risk of bias was generally low, although some studies showed unclear risk,
mainly due to the lack of detailed methodological descriptions.

In conclusion, AI has considerable potential for enhancing the accuracy and reliability
of CVM assessments in orthodontics. The pooled accuracy for CVM stage assessment
varied from 0.57 to 0.956. However, the variability in AI performance and the limited
number of high-quality studies suggest the need for further research.
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