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Abstract: CEST-MRI is an emerging imaging technique suitable for various in vivo applications, in-
cluding the quantification of tumor acidosis. Traditionally, CEST contrast is calculated by asymmetry
analysis, but the presence of fat signals leads to wrong contrast quantification and hence to inaccurate
pH measurements. In this study, we investigated four post-processing approaches to overcome
fat signal influences and enable correct CEST contrast calculations and tumor pH measurements
using iopamidol. The proposed methods involve replacing the Z-spectrum region affected by fat
peaks by (i) using a linear interpolation of the fat frequencies, (ii) applying water pool Lorentzian
fitting, (iii) considering only the positive part of the Z-spectrum, or (iv) calculating a correction
factor for the ratiometric value. In vitro and in vivo studies demonstrated the possibility of using
these approaches to calculate CEST contrast and then to measure tumor pH, even in the presence of
moderate to high fat fraction values. However, only the method based on the water pool Lorentzian
fitting produced highly accurate results in terms of pH measurement in tumor-bearing mice with low
and high fat contents.

Keywords: MRI; chemical exchange saturation transfer (CEST); fat; tumor; pH; acidosis; iopamidol;
contrast agent; pH responsive

1. Introduction

Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a
novel approach in the field of molecular imaging used to investigate small molecules [1–3].
MRI-CEST imaging can exploit endogenous molecules naturally present in the human
body or exogenous molecules to enable the precise mapping and quantification of tumor
pH [4–17]. Among these approaches, iopamidol-based tumor pH imaging is an established
one that offers high accuracy, sensitivity and spatial resolution in quantifying extracellular
tumor pH across a diverse range of tumor types [18,19]. In addition, tumor pH imaging
based on iopamidol has been exploited in several investigational studies to assess the ther-
apeutic efficacy of a large variety of drugs targeting different aspects of tumor metabolism,
acidosis, and immunotherapies [18–31]. Of note, the clinical translation of pH imaging
based on iopamidol or on similar pH-responsive molecules demonstrates the urgent need
for an accurate pH imaging approach at the bedside [32–40].

Iopamidol is an iodinated contrast agent known for its two distinct amide groups
with varying resonance frequencies, specifically at 4.2 ppm and 5.5 ppm [41]. The CEST
effect at a specific offset is calculated using asymmetry analysis by comparing the water
signal upon irradiation at specific offset(s) and at the opposite (negative) frequency offset
(for iopamidol, ∆ω = 4.2 ppm and 5.5 ppm). One of the challenges posed by asymmetry
analysis is the presence of artifacts caused by lipid signals [42]. In fact, the presence of a
fat signal might result in the inaccurate normalization of the Z-spectrum, consequently
creating an intrinsic dependence of CEST signals on the fat content within each voxel [43].
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This dependence on fat content becomes particularly relevant in CEST investigations
targeting tissues with substantial fat contents, such as those commonly observed in breast
cancer cases, mammary glands and other adipose tissues [44–63]. The fat signal within
the fibroglandular breast tissue can affect CEST quantification [64], and careful analysis is
therefore required to obtain accurate calculations, including pH measurements [65]. Several
algorithms and denoising methods have been investigated to improve CEST contrast
quantification due to the inherently low signal-to-noise ratio and susceptibility to image
noise of CEST images, although not addressing the presence of strong lipid signals [66–77].

Several authors have proposed different methods to remove lipid artifacts from con-
ventional MRI images by adopting several fat suppression strategies for various MRI
examinations [78–88]. Within the MRI-CEST field, alternative acquisition strategies and
fat suppression schemes have been exploited [89–92]. Sun et al. investigated echo-planar
imaging, which revealed the presence of a lipid artifact in Amide Proton Transfer (APT)
asymmetry images, and they were able to address this issue effectively by employing a
combination of a chemical-shift-selective refocusing pulse and crusher gradients, resulting
in the production of high-quality images [93]. In a study conducted by Lu et al., the authors
successfully achieved lipid suppression using a Gaussian-shaped chemical-shift-selective
pulse with a 90◦ flip angle and a duration of 6 milliseconds. The frequency offset of this
lipid suppression pulse was set at −3.5 ppm relative to the water resonance frequency. This
specific offset effectively suppressed most lipid signals while leaving the water signal unaf-
fected [94]. In the study by Zhang et al., the authors proposed an approach based on the
interplay among the echo time (TE), fat fraction (FF) and Z-spectrum to remove the fat con-
tribution to CEST contrast quantification [95,96]. Moreover, a multi-echo Dixon technique
with a self-adapting multi-peak model has been validated in the fibroglandular region of
the breast to remove lipid artifacts in CEST imaging [97]. In a similar way, multi-echo-based
fat–water separation with an adaptive fat model that utilizes the full complex data and a
phase demodulation approach was exploited for robust fat artifact correction [91]. Recently,
a post-processing technique has been introduced for the fat correction of APT and guanidyl
CEST contrast to differentiate between normal-appearing fibroglandular tissue and breast
tumors [98]. Within this approach, a multi-Lorentzian fit analysis was developed to in-
crease the diagnostic accuracy of the calculated relaxation-compensated and fat-corrected
CEST contrast.

The objective of this study is to compare four different methods to quantify the CEST
contrast by removing artifacts arising from fat signals without the need to apply complex fat
saturation or fat–water separation techniques but applying only post-processing procedures.
The four methods were validated in vitro and in vivo on two different tumor models with
a low or high amount of fat by comparing the obtained tumor extracellular pH maps.

2. Materials and Methods
2.1. Theory

The CEST effect is quantified by examining the water signal’s intensity when subjected
to irradiation at two distinct frequency offsets from the resonance point of bulk water,
which is set at 0 ppm. This method is crucial to account for any symmetric influences on
the water signal resulting from the application of the irradiation pulse.

Traditionally, the saturation transfer (ST) efficiency is quantified at a specific off-
set using asymmetry analysis (also dubbed Magnetization Transfer Ratio asymmetry, or
MTRasym):

ST =
S−∆ω − S ∆ω

S−∆ω
(1)

where S±∆ω is the water signal intensity in the presence of a saturation pulse at an offset
of ±∆ω (i.e., ∆ω = 4.2 ppm and 5.5 ppm for iopamidol).

The CEST contrast is significantly influenced by the overlapping fat signal when fatty
tissue is present. The first three approaches were developed by exploiting the Z-spectrum
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shape properties (Figure 1), whereas the fourth method relies on the application of a
correction factor to adjust the ratiometric values according to the percentage of fat:
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Figure 1. Graphical representation of a representative simulated Z-spectrum in blue (signal inten-
sity: SI as a function of the irradiation offset in ppm) and of CEST contrast quantification by apply-
ing asymmetry analysis or the other three investigated methods. (a) Conventionally, saturation 
transfer (ST) efficiency is quantified at a specific offset using asymmetry analysis (double arrow in 
red at +4.2 ppm and double arrow in green at -4.2 ppm). (b) Method #1: The CEST contrast is cal-
culated considering only the frequency offsets in the positive part of the Z-spectrum. (c) Method 
#2: Z-spectra offsets centered around the fat signal are replaced with a linear interpolation (red 
line). (d) Method #3: The negative part of the Z-spectrum is replaced by the water pool contribu-
tion upon Lorentzian fitting of the Z-spectrum (red curve). (e) Method #4: The calculated set of 

Figure 1. Graphical representation of a representative simulated Z-spectrum in blue (signal intensity:
SI as a function of the irradiation offset in ppm) and of CEST contrast quantification by applying
asymmetry analysis or the other three investigated methods. (a) Conventionally, saturation transfer
(ST) efficiency is quantified at a specific offset using asymmetry analysis (double arrow in red at
+4.2 ppm and double arrow in green at −4.2 ppm). (b) Method #1: The CEST contrast is calculated
considering only the frequency offsets in the positive part of the Z-spectrum. (c) Method #2: Z-spectra
offsets centered around the fat signal are replaced with a linear interpolation (red line). (d) Method
#3: The negative part of the Z-spectrum is replaced by the water pool contribution upon Lorentzian
fitting of the Z-spectrum (red curve). (e) Method #4: The calculated set of interpolated curves (green
lines) of fat-corrected ratiometric values. The blue circle represents the measured ratiometric value
with a fat fraction of 25%, and the red circle represents the corrected ratiometric value in the absence
of fat (fat fraction = 0%).

• Method #1 calculates the contrast considering only the positive part of the Z-spectrum
using the following equation:

ST =
S0 − S ∆ω

S0
(2)

where S∆ω is the water signal intensity in the presence of a saturation pulse at an offset
∆ω, and S0 is the water signal intensity without any saturation.

• Method #2 consists of removing the fat frequencies (in the range of −2 to −5.9 ppm)
and replacing the missing range with a linear interpolation. The CEST contrast is then
calculated by asymmetry analysis using equation #1.

• Method #3 consists of replacing the negative part of the Z-spectrum with the water
pool contribution upon Lorentzian fitting of the spectrum, and the contrast is then
calculated by asymmetry analysis using the same equation #1.

• Method #4 corrects the calculated ratiometric values according to the measured fat frac-
tion levels by interpolating the ratiometric values with cubic splines to correct for the
proper pH values in the absence of fat (more details in the Supplementary Materials).

2.2. In Vitro MRI Studies

Two phantoms were prepared for in vitro validation. The phantoms consisted of
a 50 mL Falcon conical tube (diameter of 30 mm and length of 115 mm) filled with 1X
phosphate-buffered saline (PBS) solution containing 30 mM iopamidol, one with the pH
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adjusted to 6.4 and the other with the pH adjusted to 6.9. The solution was then layered with
sunflower oil. To create a gradient in the fat fraction across the imaging plane, the imaging
plane was angled at the interface of the two liquid phases of the sample (Figure 2) [43].
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Figure 2. For in vitro validation, a 50 ml Falcon tube phantom was prepared consisting of a solution
containing 30 mM iopamidol (titrated at pH = 6.9) layered with sunflower oil. (a) The phantom
diagram illustrates the oblique placement of the slice, where the interface area shows the gradual
mixing of fat and water within the slice. (b) MRI T2w-coronal image of the phantom showing the
iopamidol-containing water (bottom) and a vegetable oil (top) solutions. (c) The fat fraction map of
the section shows a linear gradient across the interface. The regions of interest (ROIs) are arranged
from left to right, each corresponding to a specific range of the fat fraction in increments of 10%. ROI
1 includes pixels with a fat fraction between 0 and 10%, up to ROI 6, which includes pixels with a fat
fraction between 50 and 60%.

The fat fraction (FF) was estimated as follows:

FF =
F

F + W
(3)

where F and W are the fat and water peak amplitudes [99].
Z-spectra were acquired on a Bruker Avance 300 operating at 7 T (Bruker BioSpin MRI,

Ettlingen, Germany) equipped with a MICWB40 RES 1H 040/030 QTR imaging probe.
The scan protocol consisted of a CEST sequence (TR, 3.247 s; TE, 3.768 ms; NEX, 1; rare
factor, 64; field of view [FOV], 3.5 × 3.5 cm; slice thickness, 3 mm; matrix, 96 × 96; the
RF saturation offset was varied between ±10 ppm at intervals of 0.1 ppm) and a Dixon
sequence (TR, 4s; TE, 9.75 ms; NEX, 1; rare factor, 8; field of view [FOV], 3.5 × 3.5 cm; slice
thickness, 3 mm; matrix, 128 × 128).

2.3. In Vivo MRI Studies

Two breast cancer murine models were exploited because they were characterized by
low (4T1, triple-negative breast cancer cells) and high (MMTV-PyMT, transgenic breast
murine model) amounts of fat. Female BALB/c mice (Charles River Laboratories Italia
S.r.l., Calco, Italy) and female MMTV-PyMT mice (The Jackson Laboratory, Bar Harbor,
ME, USA) were maintained in the animal facility of the Dept. of Molecular Biotechnol-
ogy and Health Sciences, University of Turin, under specific pathogen-free conditions.
Animal manipulation and experimental procedures were carried out in accordance with
the European Community guidelines (directive 2010/63) and under the approval of the
Italian Ministry of Health (authorization #741/2022 and #958/2018). A 6-week-old female
BALB/c mouse was subcutaneously inoculated with 4T1 (1 × 106 cells) resuspended in
50 µL of phosphate saline buffer (PBS, Sigma Aldrich, Milano, Italy) in both 4th mammary
glands’ fat pads, whereas a female FVB/N-Tg(MMTV-PyVT) transgenic mouse (PyMT)
spontaneously developed tumors that were visible after four weeks. Before MRI acquisition,
mice were anesthetized by an intramuscular injection of a mixture of 5 mg/kg of xylazine
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(Rompun, Bayer, Italy) and 20 mg/kg of tiletamine/zolazepam (Zoletil 100, Virbac, Italy),
and a 27-gauge needle was introduced into the tail vain for contrast agent injection. During
the acquisition, the breath rate was monitored by an air pillow placed below the animal
(SA Instruments, Stony Brook, NY, USA). CEST pH mapping was performed upon the
intravenous injection of 4 g I/kg b.w. of iopamidol (Isovue370, kindly provided by Bracco
Imaging SpA, Colleretto Giacosa, Italy).

MR images were acquired with a Bruker 7T Avance 300 MRI scanner (Bruker Biospin,
Ettlingen, Germany) using a 30 mm insert coil. After a scout acquisition, anatomical T2w
images were acquired with a fast spin-echo RARE sequence (repetition time (TR) = 4000 ms,
echo time (TE) = 5.79 ms, number of slices = 8, slice thickness = 1.5 mm, FOV = 30 mm;
matrix = 256 × 256, two averages, acquisition time = 2.56 ms), and the same geometry was
used for CEST acquisition. The Z-spectra of CEST-MRI were acquired using a single-shot
RARE sequence with centric encoding (typical setting TR/TE = 12,000 s/3.76 ms) preceded
by a 3 µT cw block presaturation pulse and by a fat-suppression module [100]. A series
of 46 MR frequencies were saturated to acquire a CEST spectrum in the frequency offset
range ±10 ppm. We used an acquisition matrix of 96 × 96 reconstructed to 128 × 128 for a
field of view of 3 × 3 cm2 (in-plane spatial resolution = 234 µm) with eight slices to cover
the whole tumor with a slice thickness = 1.5 mm [101]. MRI-CEST image acquisition was
repeated before and after the i.v. injection of iodinated contrast media (dose = 4 g iodine/kg
body weight). The total scan time for CEST pH imaging was approximately 20 min. Fat
quantification was performed with a Dixon method implemented in Paravision 360.1 by
Bruker with the following parameters: TR = 4 s; TE = 39.4 ms; number of slices = 8; slice
thickness = 1.5 mm; FOV = 30 mm; matrix = 128 × 128; three averages. The total acquisition
time was approximately 6 min.

2.4. Data Analysis

The data were processed using an in-house script written in MATLAB R2023b (The
MathWorks, Inc., Natick, MA, USA): https://github.com/cim-unito/Fat-Correction (ac-
cessed on 24 June 2024). Lorentzian CEST curve fitting was implemented with the open-
source Matlab-based code (https://github.com/cest-sources/CEST_EVAL, last accessed
on 15 October 2023) [102–105].

Prior to commencing data analysis, a background removal process was performed.
A smoothed cubic spline algorithm was employed to perform interpolation on the Z-
spectrum. B0-field shifting was determined by measuring the distance from the minimum
point of the interpolated Z-spectrum by cubic smoothing splines to 0 ppm. The saturation
transfer (ST) efficiency was quantified at a specific offset using Equation (1) or (2). Ra-
tiometric values (RST) were determined by dividing the contrast values obtained at two
distinct offsets utilizing the following equation:

RST =
ST4.2 ppm

ST5.5 ppm
(4)

Voxel-wise pH maps were generated by extrapolating pH values from the ratiometric
curves.

3. Results

The acquired Z-spectra for iopamidol in the presence of several fat fraction values
and the corresponding modified Z-spectra using the various proposed methods to correct
for the fat signal are depicted in Figure 3a for the iopamidol solution at pH 6.9 and in
Figure S5 for the iopamidol phantom titrated at pH 6.4. The amplitude of both the water and
iopamidol resonance peaks is strongly affected by the presence of fat. Moreover, beyond a
certain threshold of fat content, the detectability of the CEST contrast arising from the two
iopamidol amide peaks (resonating at 4.2 and 5.5 ppm) is markedly reduced, decreasing
to negative values when FF values are greater than 30% (Figure 4a,b). Consequently,
increased fat fraction values strongly affect the corresponding pH calculation (Figure 4c,e)

https://github.com/cim-unito/Fat-Correction
https://github.com/cest-sources/CEST_EVAL
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and the fraction of pixels where reliable pH values can be calculated (Figure 4d,f), even
in the presence of fat suppression schemes. In this scenario, asymmetry analysis enables
pH measurement only up to an FF less than 10%, since for FF values already exceeding
10%, there is a tendency for the pH measurement to be underestimated (Figure 4c) or not
calculated at all (Figure 4f).
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Figure 3. In vitro Z-spectra of iopamidol 30 mM titrated at pH = 6.9 at several percentages of fat
values in the range 0–80% and graphical representations of the proposed methods for fat correction.
The asymmetry analysis utilizes the original Z-spectrum (a), method #1 considers only the positive
part of the Z-spectrum (b), method #2 replaces the negative part of the Z-spectrum with a linear
interpolation (c) and method #3 consists of replacing the negative part of the Z-spectrum with the
water pool contribution upon Lorentzian fitting of the spectrum (d).

The linear method (#2) overestimates the correct pH values when fat fractions are
above 10% and underestimates pH values when FF values exceed 20%. Both the positive
method (#1) and the Lorentzian method (#3) measure comparable CEST contrast for fat
fraction values up to 40–50%, proving to be the most robust to increasing fat signals
(Figure 4e). Moreover, both positive and Lorentzian methods (#1 and #3) provide robust
and accurate pH measurements up to FF values of 40–60% (Figure 4c). The proposed
interpolation method (#4) showed reduced CEST contrast quantification for FF values
above 40%, with robust pH measurements for FF values in the FF range of 0 to 30%. Of
note, both the positive and Lorentzian methods (#1 and #3) were able to increase the number
of pixels where pH was measurable, with more accurate pH values (Figure 4d,g).

The four methods were also validated in vivo on two different tumor models char-
acterized by low and high amounts of fat. The 4T1 tumors showed low to moderate
amounts of fat (ca. 3% and 4% for RO1 and RO2, respectively, Figure 5a) with a moderate
fat contribution in the acquired Z-spectrum (Figure 5c). Compared to the asymmetry
analysis approach, the Lorentzian method (#3) and interpolation method (#4) produced the
most similar pH maps, with comparable mean values and percentages of detected pixels,
whereas the positive method (#1) and the linear method (#2) resulted in more acidic tumor
pH values and less tumor pH coverage (Figure 5b,d,e).

The PyMT tumors showed moderate to high percentages of fat (ca. 29% and 10%
for RO1 and RO2, respectively, Figure 6a), with a marked fat peak clearly visible in the
acquired Z-spectrum for ROI1, in contrast to ROI2 (Figure 6c). Therefore, the difference in
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the fat contribution within the same tumor type allows a proper evaluation of the proposed
fat correction methods. The asymmetry analysis provided acidic tumor pH values inside
the tumor with a lower fat content (ROI 2), with only the Lorentzian method (#3) providing
comparable pH values, whereas all the other approaches resulted in tumor pH values that
were too acidic (positive and linear methods (#1 and #2), Figure 6e). For the tumor with
high fat content (ROI1), the asymmetry analysis was strongly affected, showing less acidic
tumor pH values (Figure 6b,d). Only the Lorentzian method (#3) provided accurate tumor
pH values, similar to tumor pH values for ROI2. In contrast, all the other approaches
resulted in tumor pH values that were too acidic (positive and linear methods (#1 and #2))
or closer to neutral values (interpolation method (#4), Figure 6b,d).
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of fat (ca. 3% and 4% for RO1 and RO2, respectively, Figure 5a) with a moderate fat con-
tribution in the acquired Z-spectrum (Figure 5c). Compared to the asymmetry analysis 
approach, the Lorentzian method (#3) and interpolation method (#4) produced the most 
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For the in vivo analysis, more than 4400 Z-spectra were processed with the proposed
methods with a ASUSTeK D520MT (ASUS, Taipei, Taiwan) desktop pc running Windows
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10 Pro equipped with an Intel Core i5-6400 CPU at 2.70 GHz and 16 GB of RAM. Among the
investigated methods, the Lorentzian method (#3) was the slowest, requiring ca. 5650 s to
complete the analysis. On the other hand, all the other methods were faster, with compara-
ble acquisition times below 10 min (458 s, 470 s, 530 s and 460 s for the asymmetry analysis,
positive method (#1), linear method (#2) and interpolation method (#4), respectively).

4. Discussion

The presence of lipids in varying amounts inside tissues can potentially affect the
shape of the acquired Z-spectra and hence lead to erroneous CEST contrast quantification.
Even the presence of low fat fractions can have an effect on the shape of the measured
Z-spectrum, as shown in Figure 3a. To compensate for the lipid-induced inaccuracy in
the MTRasym calculation, we investigated four different post-processing methods and
evaluated them both in vitro and in vivo. All the methods aim to reduce or compensate
the overall contribution of the lipid signal on the negative side of the acquired Z-spectrum,
thus removing the main source of the erroneous CEST contrast.

In the phantom experiments, all the methods but #2 were able to successfully remove
the lipid contribution even with large fat fraction values, with the Lorentzian method
(#3) providing the best results in terms of pH accuracy and detectability. Also, the linear
and interpolation methods (#2 and #4) demonstrated accurate pH calculation with low
to moderate (10–30%) or moderate to high (30–60%) FF values (Figure 4c); however, they
showed higher pH variations with increasing fat fraction values (Figure 4e), with the
interpolation method (#4) being the most affected.

For the in vivo experiments, we investigated tumors with different amounts of fat
to further validate the proposed methods. In the presence of low FF values, most of the
methods are able to successfully remove the small lipid contribution, hence leading to
comparable tumor pH maps similar to those provided by the conventional asymmetry
analysis. The calculated average values and spatial distributions were similar across the
asymmetry analysis approach and the Lorentzian and interpolation methods (#3 and
#4) (Figure 5d,e). The linear method (#2) did not succeed in vivo in removing the lipid
contribution, as observed for the in vitro data. However, in contrast to the in vitro findings,
the positive method (#1) was unable to provide accurate pH measurements even with low
FF values.

On the other hand, in the presence of tissues with high fat fraction values, the asymme-
try analysis showed incorrect (less acidic) tumor pH values (ROI 1, Figure 6), and only the
Lorentzian method (#3) could robustly remove the lipid contribution, therefore providing
reliable tumor pH maps. All the other methods, including the interpolation method (#4),
provided less accurate tumor pH values with increasing fat content. Overall, among the
proposed methods, the Lorentzian method (#3) stands out as the most robust approach.
One tentative explanation is based on the effect of the fat content on the overall shape of
the Z-spectrum. With moderate fat content, both the conventional asymmetry analysis
and the positive method (#2) are not robust enough to compensate for this disturbance.
On the other hand, the linear method (#2) likely removes too much information from the
Z-spectrum, which is better maintained by the Lorentzian method (#3), hence providing
more accurate pH results.

Fat suppression methods throughout selective saturation are designed to reduce the
fat signal but do not guarantee complete fat signal suppression, especially when the fat
fraction exceeds 40%. This limitation could arise from the sub-optimal power of the fat
suppression pulse or be related to B0 inhomogeneities that reduce the efficiency of the fat
suppression scheme. In fact, in previous studies, lipid fat correction methods were able
to completely remove lipid artifacts in tissues with low fat fractions, whereas the residual
fat signal was not successfully removed in the presence of very high fat fraction values.
In the study by Zhang and coworkers in healthy subjects, successful water–fat separation
was achieved, although in some of the pixels with a high fat fraction (approximately
>50%), the lipid peak was still detectable in the water-only images [96]. In another study
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by Zimmermann et al., an extensive examination of the Z-spectra at various fat fraction
values indicated that the maximum evaluable FF for the in vivo acquisition protocol was
approximately 50%. Voxels characterized by FF percentages exceeding 50% were omitted
from the analysis [43]. Although the Lorentzian method (#3) is not influenced by the lipid
signal up to a fat fraction of ca. 50–60%, thus providing accurate tumor pH measurements,
higher fat fractions can still lead to uncorrected lipid artifacts and hence wrong CEST
contrast calculations. However, in tumor tissues, although moderate fat fractions can be
observed, they are usually low and hence successfully corrected by the proposed methods.
On the other hand, very high fat fraction values are only observed in breasts, where
fibroglandular and fat tissues are usually interleaved, resulting in a high fat signal. Even
in the investigated transgenic PyMT breast cancer murine model, where cancer lesions
develop within the mammary glands, the observed fat fraction was below the limit that the
investigated Lorentzian method (#3) is able to successfully correct.

5. Conclusions

In conclusion, several approaches to accurately calculate CEST contrast even in the
presence of fat were implemented and evaluated. In vitro and in vivo studies showed
the capability of these approaches to calculate the CEST contrast and then to accurately
measure tumor pH without requiring complex acquisition schemes that would further
increase the overall acquisition time. Among the different methods, the approach to
calculating the CEST contrast by replacing the negative part of the spectrum with the water
pool contribution upon fitting the Z-spectrum with the Lorentzian method (#3) produced
the best results in terms of pH measurement and pixel detection both in vitro and in vivo
with moderate to high fat contents.
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Figure S4: Ratiometric values calculated at several fat fraction percentages with different titrated
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pH = 6.4 at several percentages of fat values in the range 0–80% [106,107].
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