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Abstract: Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic
avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phos-
phoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala)
at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and
320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were
identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-
I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated
gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the
activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in
the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR)
established a protective anti-viral immune response in duck lung tissue. Further, the protein–protein
interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11,
RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease
progression in ducks. Together, the functional annotation of the proteome and phosphoproteome
datasets revealed the molecular basis of the disease progression and disease resistance mechanism in
ducks infected with the HPAI H5N1 virus.

Keywords: duck; avian influenza virus; proteomics; phosphoproteome; disease resistance; hub
proteins

1. Introduction

Ducks (Anas platyrhynchos domesticus) act as natural reservoir species of avian influenza
viruses (AIVs). Most of the highly pathogenic avian influenza virus (HPAIV) infections
in domestic ducks are asymptomatic or cause only mild transient clinical signs. This host
protection mechanism against influenza infection in ducks may be conferred by increasing
innate resistance to infection. The system-level understanding of host innate resistance
mechanisms in ducks can help in designing efficient prophylactic and therapeutic strategies
against influenza infection [1,2]. High-throughput genomic methods are more suitable tools
for the system-level understanding of innate immune responses as they provide global

Microorganisms 2024, 12, 1288. https://doi.org/10.3390/microorganisms12071288 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms12071288
https://doi.org/10.3390/microorganisms12071288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-5954-3905
https://orcid.org/0000-0002-8120-224X
https://orcid.org/0000-0002-3885-3514
https://orcid.org/0000-0002-4978-901X
https://doi.org/10.3390/microorganisms12071288
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms12071288?type=check_update&version=2


Microorganisms 2024, 12, 1288 2 of 18

views of the complex innate immune system and reveal the intertwined molecular events
that are responsible for disease resistance mechanisms [2]

Transcriptome analysis is presently one of the high-throughput omics technologies
that can be easily performed, and these are often used as a proxy for protein abundance.
Global host immune gene responses using microarrays/RNA-Seq have been investigated
in ducks infected with different AIVs [3–8]. These transcriptomics studies revealed that
ducks produce an early RIG-I immune response and the expression of cytokines, IFNs,
iNOS, STAT3, and IFITM genes [5,6,8–15]. These differential expression patterns of innate
immune genes play a crucial role in the disease progression of ducks to AIV infection.
Further, the RIG-I immune response is a well-known general concept in ducks for disease
resistance; however, an actual explanation of which molecular pathways constitute this
innate resistance immune response is lacking.

On the other hand, viral–host interactions are multidimensional in nature, and the
transcriptome represents only a single facet of the host response. Other types of high-
throughput omic technologies might bring different insights into disease pathogene-
sis [2,8,16]. The influenza viruses also modulate post-transcriptional regulation and transla-
tion, which cannot be addressed by transcriptomics data alone, but requires the integration
of proteomic data and other omics profiling data [16,17]. The quantities of mRNAs and the
corresponding proteins do not always correlate because proteins are modulated by com-
plex post-transcriptional modification (PTM) processes [18]. Furthermore, PTMs such as
phosphorylation, ubiquitination, acetylation, glycosylation, and many others are required
for regulating signal transduction and the protein interactions of cellular, biological, and
immunological processes [18]. Hence, proteomics analysis, along with phosphoproteomic
data, can elucidate the molecular mechanisms of influenza disease progression to a re-
markably greater extent. Still, now only a few proteomics studies are available for avian
species against avian influenza infection [8,19–21]. Further, most current research into
innate immune processes against influenza virus infection is biased towards human model
systems. Future research work is needed for the wild and domestic aquatic birds because
these birds were recognized as the reservoirs of most influenza A viruses [22]. Hence, this
study was planned to analyze both proteome and phosphoproteome datasets to further
understand the molecular pathways and proteomic determinants responsible for the innate
resistant immune mechanisms in ducks infected with the HPAI H5N1 virus.

2. Materials and Methods
2.1. Experimental Infection of Ducks

Six-week-old healthy domestic ducks, seronegative for AIV, were used for this study.
The animal experiments were approved by the Institutional Animal Ethics Committee
of ICAR-NIHSAD (approval no. 68/IAEC/HSADL/12 dated 11 May 2012), and all the
experiments were conducted in a biosafety level 3 containment facility in the ICAR National
Institute of High-Security Animal Diseases, Bhopal, India. The ducks were separated into
four groups (n = 5 birds/group). Among the four groups, three groups were intranasally
inoculated with 106 EID50 of the H5N1 virus (A/duck/India/02CA10/2011/Agartala), and
one group (control) was inoculated with PBS. The birds were observed daily for clinical
signs. Lung tissues were collected from five birds from each infected group at 12 h, 48 h,
and 5 days post-infection. Lung tissues were also collected from the control group at 12 h
post-inoculation. The tissues were snap-chilled in liquid nitrogen and stored at −80 ◦C until
protein extraction. The avian influenza virus infection of the lung tissues was confirmed
via virus isolation upon inoculation in embryonated chicken eggs (ECEs) and RT-PCR.

2.2. Protein Extraction

A total of 150 mg of lung tissue from each sample was washed in 50 mM NH4HCO3
washing buffer. The lung tissue was cut into small pieces, and 650 µL of SDS protein
extraction lysis buffer [0.1% SDS (Invitrogen, Waltham, MA, USA); 50 mM NH4HCO3
(Sigma, Saint Louis, MO, USA); 1X Complete™ Protease Inhibitor Cocktail (Roche Diag-
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nostics GmbH, Mannheim, Germany)] was added. Tissue samples were homogenized in
LZ-Lyser homogenizer at 30 HZ for 2 min. After complete homogenization, the tissue lysate
was incubated on ice for 90 min for complete protein lysis. The lysate was centrifuged at
20,000× g for 60 min at 4 ◦C, and the supernatant was collected. The supernatants were
immediately snap-heat-treated at 56 ◦C for 30 min in a dry bath for the inactivation of
HPAIV H5N1 in the protein extracts. All the heat-treated samples were stored at −80 ◦C
for mass spectrometry analysis.

2.3. Sample Preparation for LC-MS Analysis

The protein amount in each sample was estimated using the Bicinchoninic Acid (BCA)
assay. The quality of the lung proteins was checked using SDS-PAGE. A pool for each time
point was prepared by pooling 150 µg of the protein lysate each from the 3 best samples at
that time point. Protein samples were reduced for 20 min at 60 ◦C in 10 mM dithiothreitol
solution, followed by alkylation for 10 min in 20 mM iodoacetamide in the dark at room
temperature. To remove the SDS from the samples, the samples were subjected to acetone
precipitation (6X). The protein pellet obtained from each condition was then centrifuged
at 13,000× g for 10 min at 4 ◦C to remove the acetone and impurities. The pellets were
then resuspended in 100 mM TEABC buffer and subjected to trypsin digestion (enzyme:
substrate 1:20) at 37 ◦C overnight. After the trypsin digestion, the samples were subjected
to Tandem Mass Tag™ labeling (TMT) labeling (Thermo Scientific™, Waltham, MA, USA).
The samples were labeled with the following TMT channels: control: 127C; D12H–128N;
D48H–129C; D5D–130N, as per the manufacturer’s protocol. After the TMT labeling, a
5 µL labeled sample was taken from each condition and pooled, and the pooled sample
was subjected to high pH reversed-phase liquid chromatography separation. A total of
96 fractions were collected which were subsequently pooled to 12 fractions. Then, 1/10th
of the volume from these was transferred to Eppendorf tubes and used for LC-MS/MS
analysis in an Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific™) to determine
the expression of the total quantitative proteome. The remaining samples were pooled to
obtain 6 fractions, which were subjected to phosphoproteomics analysis. Each fraction was
subjected to phosphopeptide enrichment using TiO2 beads. Briefly, the peptide samples
were incubated with TiO2 beads in a ratio of 1:10 for 15 min, followed by washing the bound
beads and eluting the bound phosphopeptides. LC-MS/MS analysis was carried out using
the Orbitrap Fusion Tribrid mass spectrometer to determine the extent of phosphorylation
across various time points in the enriched fractions. The peptides fragmented via HCD
fragmentation with a collision energy of 34. The data were acquired in the data-dependent
mode (DDA) with the top 10 MS2.

2.4. Bioinformatics Analysis

The data obtained from both the total proteome and phosphoproteome datasets were
analyzed in the Proteome Discoverer 2.1 software suite (Thermo Scientific™). The data
were searched using the SequestHT algorithm. The reference duck proteome dataset was
downloaded from the NCBI database. The important parameters used for the database
search were as follows: peptide mass error tolerance level: 10 ppm, fragment mass error
tolerance level: 0.05 Da, and the number of missed cleavages: 2, and carbamidomethylation
of cysteine, TMT label at N-term of peptides, and lysine residues were set at fixed modi-
fication, and the oxidation of methionine was set at variable modification. In addition to
the above parameters, for the identification of phosphoproteins, phosphorylation at serine
(S), threonine (T), and tyrosine (Y) was set at variable modification. The relative ratio for
each phosphopeptide was calculated by dividing the intensity of each phosphorylated
peptide by the intensity of the corresponding peptide. The highly confident PTM sites
were filtered using a PhosphoRS score above 75%. The data were searched against the
target decoy database and the false discovery rate was set to 1% at the protein and peptide
level. The functional classification of the proteins and phosphoproteins was performed for
gene ontology (GO) in the database for annotation, visualization, and integrated discovery
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(DAVID) [23] and pathway analysis in the NetworkAnalyst web server using the Kyoto
encyclopedia of genes and genomes (KEGGs) database [24,25]. Featuring a web server and
web service for the functional annotation and enrichment analyses of gene lists, DAVID is
a well-known bioinformatics resource system. We used the online web server Network-
Analyst for the construction of the protein–protein interaction (PPI) networks [24]. The
main driving or hub proteins were identified based on two topological measures, degree
centrality and betweenness centrality. The heatmap was generated using the “Clustvis”
web tool [26].

3. Results and Discussion
3.1. Differential Protein Expression Analysis

The duck lung raw proteome dataset contained a total of 120,000 MS spectra and
30,000 MS/MS spectra. The 30,000 MS/MS spectra were searched against the NCBI duck
proteome database. A total of 2082 proteins were differentially expressed in duck lung
tissues infected with the HPAI H5N1 virus at the 1% FDR level. The analysis of the differen-
tial expression of proteins at 12 h intervals showed that 876 proteins were upregulated, and
1179 proteins were downregulated. A total of 898 proteins were upregulated, and 1159 pro-
teins were downregulated at 48 h post-infection. At 5 days post-infection, 1095 proteins
were upregulated, and 962 proteins were downregulated in duck lung tissues (Table 1).
The protein profile showed that 113, 72, and 205 proteins were exclusively upregulated
in H5N1-infected duck lung tissue at 12 h, 48 h, and 5 days post-infection, respectively
(Figure 1). The downregulation of 154, 112, and 49 proteins was observed exclusively at
12 h, 48 h, and 5 days post-infection, respectively (Figure 1). The fold change value of the
upregulated proteins ranged from 11.8 to 1. Interestingly, at the 12 and 48 h time points,
a higher number of proteins were downregulated as compared to the 5 day time point
post-infection condition (Table 1). The heatmap of the differentially expressed proteins of
HPAIV-infected duck lung tissues is represented in Figure 2. This result indicates that many
of the host proteins were downregulated at the initial stage of infection, and then later,
the host adjusted the cellular homeostasis to recover from the virus-induced differential
expression of proteins.

Table 1. Differential protein expression analysis in ducks infected with the HPAI H5N1 virus.

Condition Upregulated Proteins Downregulated Proteins Upregulated Proteins (>1.5 Fold)
Downregulated
Proteins
(<1.5 Fold)

12 h interval 895 1159 128 225

48 h interval 898 1159 199 277

5 day interval 1095 962 296 264
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The gene ontology (GO) analysis of the exclusively upregulated and downregulated
lung tissue proteins of H5N1-infected ducks was achieved using DAVID 2021 tools. This
analysis result provides information on how the disease progresses from the commence-
ment of the disease to the end of disease progression in ducks infected with the HPAI
H5N1 virus. At 12 h intervals, the upregulated proteins enriched the Fc-epsilon recep-
tor signaling pathway, MAPK cascade, Wnt signaling pathway, antigen processing and
presentation of exogenous peptide antigen via MHC class I, NIK/NF-kappaB signaling,
tumor necrosis factor-mediated signaling pathway, endocytosis, and small GTPase, which
mediated the signal transduction GO terms. The downregulated proteins enriched the ATP
binding, the glycolytic process, protein refolding, the extracellular matrix, the intracellular
ribonucleoprotein complex, gluconeogenesis, NAD binding, translational initiation, mRNA
transport, and protein transport GO terms related to cellular homeostasis (Figure 3). These
patterns indicate that, at 12 h time intervals, virus–host interactions resulted in the activa-
tion of host signaling pathways and inhibited the cellular homeostasis process. At the 48 h
post-infection stage, the upregulated proteins enriched the movement of cell components,
mRNA splicing, focal adhesion, the actin cytoskeleton, and the spliceosomal complex, and
the downregulated proteins enriched the Golgi membrane, endoplasmic reticulum lumen,
lysosome, and calcium ion transport GO terms (Figure 4). At the 5-day post-infection stage,
most of the cellular homeostasis processes like the regulation of mRNA stability, protein
polyubiquitination, cytoskeleton organization, translational initiation, the tricarboxylic acid
cycle, and organelle assembly, and the positive regulation of the cellular protein catabolic
process, transport vesicle, GTPase activity, and the kinase activity GO terms were enriched
(Figure 5). In summary, these results indicate that the inhibition of cellular homeostasis
and activation of signaling pathways occurs at the initial stage of infection, and the host
resumes normal cellular homeostasis at the later stage of infection.
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3.2. Differential Phosphoproteomic Expression Analysis

In this study, we investigated the phosphorylation-regulated host proteins and sig-
naling pathways of HPAI H5N1-infected duck lung tissues at different time points post-
infection. We identified 320 phosphorylation sites mapping to 199 phosphopeptides, corre-
sponding to 129 proteins. In all, 93, 93, and 104 phosphosites were differentially phospho-
rylated (1.5-fold up and down) at 12 h, 48 h, and 5 days post-infection, respectively, in duck
lung tissues. The phosphoproteome profile showed that 36, 27, and 40 sites were hyperphos-
phorylated in duck lung tissue proteins at 12 h, 48 h, and 5 days post-infection, respectively.
Further, 57, 66, and 64 sites were observed as hypophosphorylated in the lung tissue pro-
teins at 12 h, 48 h, and 5 days post-infection, respectively. Post-translational modifications
(PTMs) are crucial regulatory cellular processes in which proteins are enzymatically mod-
ified to reversibly modulate the activity, subcellular localization, conformation, and/or
protein–protein interactions of the target protein. Thus, PTMs are essential for the dynamic
regulation of intracellular pathogen-sensing signal transduction pathways [27]. In RIG-I
and interferon-mediated signaling pathways, ubiquitination and phosphorylation events
are important for the induction of anti-viral innate immune responses. Phosphorylation is
the most important PTM, which involves the transfer of a phosphate group by a protein
kinase to a serine (S), threonine (T), and tyrosine (Y) residue of a target protein substrate.

Our phosphoproteome profile indicates that the HPAI H5N1 virus has a substan-
tial impact on host protein phosphorylation. Most proteins were phosphorylated at the
Ser residues in comparison with the Thr and Tyr residues, which agrees with a previous
study [28,29]. To elucidate the kinase family involved in influenza infection conditions,
we used a group-based prediction system (GPS) [30]. The GPS ranks the likelihood that a
particular kinase or kinase family phosphorylates a given phosphorylation site by consider-
ing the amino acids surrounding the phosphorylation site. The AGC, CK1, CMGC, and
CAMK protein kinase families were predicted to be activated during HPAI H5N1 infection
conditions in ducks. The activation of these protein kinase family members in influenza
infection was reported in a previous study [28,29,31].

3.3. Pathway Analysis of Proteomics Datasets

In domestic ducks, most HPAI virus infections cause no or mild clinical signs and
lesions [32,33]. Understanding the disease-resistance immune responses in ducks in HPAIV
infection may provide key insights into the immune pathways required for prophylactic
or therapeutic protection. Previous literature specifies that HPAI virus-infected ducks
produce an early protective type I interferon response and thereby recover from influenza-
induced inflammatory pathology [5,6,14,34,35]. However, the relationship between type I
interferon and inflammation is a complex and multifactorial cellular process [36]. Further,
the several signaling pathways activated during the type I interferon response are yet to
be confirmed at the protein and phosphoproteome levels in ducks. Hence, the proteome
and phosphoproteome datasets were used for pathway analysis to identify the signaling
pathways that are activated in ducks during HPAIV infection. The molecular pathway
analysis of differentially expressed proteins showed the activation of the RIG-I-like receptor
signaling pathway, Jak-STAT signaling pathway, PI3K-Akt signaling pathway, MAPK
signaling pathway, NOD-like receptor signaling pathway, and Toll-like receptor signaling
pathways in the lung tissue of ducks (Table 2).

Table 2. KEGG pathway analysis of differentially expressed proteins in duck lung tissues infected
with the HPAI H5N1 virus.

Pathway Hits FDR

Focal adhesion 179 3.20 × 10−21

PI3K-Akt signaling pathway 291 1.10 × 10−20

MAPK signaling pathway 243 1.12 × 10−17
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Table 2. Cont.

Pathway Hits FDR

Cell cycle 116 1.97 × 10−17

Endocytosis 204 2.00 × 10−16

AMPK signaling pathway 110 5.46 × 10−15

Regulation of the actin cytoskeleton 179 1.36 × 10−14

Phospholipase D signaling pathway 130 3.91 × 10−14

T cell receptor signaling pathway 94 4.54 × 10−14

Chemokine signaling pathway 159 3.77 × 10−13

Apoptosis 119 8.99 × 10−13

Spliceosome 117 1.91 × 10−12

Platelet activation 109 4.49 × 10−12

Ubiquitin-mediated proteolysis 117 4.00 × 10−11

mTOR signaling pathway 128 8.53 × 10−11

Fc epsilon RI signaling pathway 64 1.68 × 10−10

Influenza A 137 2.43 × 10−10

Jak-STAT signaling pathway 132 1.20 × 10−9

Protein processing in the endoplasmic reticulum 134 1.32 × 10−9

Proteasome 44 4.35 × 10−9

Toll-like receptor signaling pathway 88 2.57 × 10−8

RIG-I-like receptor signaling pathway 62 1.09 × 10−7

Metabolic pathways 926 1.26 × 10−7

TNF signaling pathway 91 1.26 × 10−7

Th1 and Th2 cell differentiation 77 4.78 × 10−7

Leukocyte transendothelial migration 91 5.95 × 10−7

3.4. RIG-I-Like Receptor Signaling Pathway

Retinoic acid-inducible gene I is thought to be an important pattern-recognizing
receptor (PRR) during influenza infection [37]. The RLR family includes three members:
RIG-I, melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and
physiology 2 (LGP2) [38]. We observed the upregulation of the expression of the MDA5
and LGP2 proteins in the duck H5N1-infected lung tissues. The significant upregulation
of MDA5 and LGP2 has been observed in the lung tissues of Muscovy ducks infected
with HPAI H5N1 [39,40]. In ducks, both MDA5 and LGP2 activate IRF-7-dependent
signaling pathways and induce interferons (IFNs) as well as interferon-stimulated gene
(ISG) production, both of which mediate the anti-viral and pro-inflammatory responses
during HPAI H5N1 virus infection [8,39–44]. The tripartite motif (TRIM) family of proteins,
tripartite motif 25 (TRIM25), and ubiquitin carboxyl-terminal hydrolase 15 (USP15) were
expressed in the duck lung tissues (Figure 6). The IFN-inducible E3 ubiquitin ligase TRIM25
protein is a key regulator of the RIG-I-mediated IFN response and modifies RIG-I with
K63-linked polyubiquitination [43,45]. The CARD domains of RIG-I and MDA5 were
ubiquitinated by TRIM25 [46–48]. TRIM25 stabilizes the RIG-I–2CARD: MAVS–CARD
helical structure by furnishing the short chains of K63-linked ubiquitin molecules and
amplifying MAVS signaling [45]. Further, duck TRIM25 provides both anchored and
unanchored K63-linked polyubiquitin chains to the CARD domains of RIG-I [48]. USP15 is
a deubiquitinase, which removes K48-linked ubiquitination from the TRIM25 SPRY domain,
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thus stabilizing TRIM25 and inducing a sustained cytokine response. Taken together, RIG-
I-like receptor ubiquitination by the TRIM25 protein induces RIG-I oligomerization, and its
interaction with MAVS activates the RIG-I signaling pathway and induces anti-viral gene
expression in the lung tissues of HPAI H5N1 virus-infected ducks.
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3.5. Interferon Signaling: The Jak-Stat Pathway

Janus kinase 2 (JAK2) is ubiquitously expressed and binds to the heterodimers of the
IFN-γ receptor 1 (IFNGR1) and 2 (IFNGR2) chains on the inner side of the membrane.
JAKs provide receptors with stability, facilitate their cell-surface localization, and serve
as key components of IFN signaling complexes [49–51]. The upregulation of the JAK2
protein in all three post-infection conditions was observed in the HPAIV-infected duck
lung tissues (Figure 6). Upon binding type II IFN to IFNGR1/2, the receptor complex
leads to the phosphorylation of preassociated JAK1 and JAK2 tyrosine kinases, and the
transphosphorylation of the receptor chains leads to the recruitment and phosphorylation
of the signal transducers and activators of transcription 1 (STAT1) [52]. The homodimers of
phosphorylated STAT1 proteins form the IFN-γ activation factor (GAF). The GAF translo-
cates into the nucleus and binds to the gamma-activated sequence promoter elements,
resulting in the expression of ISGs [53].

STAT proteins have the dual function of signal transduction and the activation of
transcription [54]. In the duck proteome dataset, the expression of STAT proteins like
STAT1, STAT3, STAT5B, and STAT6 were observed (Figure 6). It has also previously been
reported that the influenza A virus induces the expression of the STAT protein in the lung
tissues of ducks [6,13,55]. STAT1 is critical in signal transduction from the type I IFNs and
the type II IFNs [52,56,57]. Previous studies showed that SOCS-3 expression negatively
affects STAT phosphorylation [58,59]. The STAT3 protein acts as a transcription factor,
plays a critical role in the IFN signaling pathways, and is required for a robust IFN-induced
anti-viral response [60]. The STAT3 protein has an antagonistic effect on the inflammatory
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cytokine response and promotes a strong anti-inflammatory response [6,13,55]. STAT5B is
activated in response to a variety of cytokines, binds to the gamma interferon activation
site element, and activates prolactin-induced transcription [61,62].

The interferon-induced protein with tetratricopeptide 5 (IFIT5) exhibited anti-viral
activity against the influenza virus by sequestering single-strand viral RNA with 5’triphos-
phate [63]. The IFIT5 protein, at 12 h intervals, was downregulated, and in later post-
infection conditions, IFIT5 showed upregulation to counter viral infection. Similar kinds
of upregulation were observed in duck lungs and spleens in response to HPAI H5N1
viruses [6,35,64,65]. PKR is an interferon-induced protein with anti-viral, anti-proliferative,
and pro-apoptotic functions. PKR is upregulated by the type I and type III IFN signaling
pathways [66]. PKR has a known anti-influenza A virus effect by phosphorylating the alpha
subunit of eukaryotic initiation factor 2 (EIF2α), which shuts down cellular and influenza A
viral protein synthesis, thereby effectively reducing viral replication [67,68]. PKR is highly
upregulated in the lungs of HPAI-infected ducks, and the same pattern has been reported
(Figure 6) [6,65]. In summary, our datasets showed evidence that protective interferon
responses were activated through the stimulation of RIG-I-like receptor signaling and the
Jak-STAT signaling pathways, which resulted in the induction of the expression of ISGs
(STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR).

3.6. Pathway Analysis of Phosphoproteomics Datasets

To further gain insight into the activation of specific signal transduction pathways
by HPAI H5N1 infection conditions in ducks, we analyzed the phosphoproteome data
using the KEGG pathway database (Table 3). The most notable cellular pathways activated
for differentially regulated phosphoproteins in duck lung tissues included the Jak-STAT
signaling pathway, NF-kappa B signaling pathway, MAPK signaling pathway, ErbB sig-
naling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, regulation of the
actin cytoskeleton, prolactin signaling pathway, chemokine signaling pathway, T cell re-
ceptor signaling pathway, endocytosis, tight junctions, etc. Among these pathways, the
Jak-STAT signaling pathway, NF-kappa B signaling pathway, and MAPK signaling path-
way were interrelated with RIG-I and the interferon-mediated signaling pathways. Hence,
our phosphoproteome dataset pathway analysis also confirmed the activation of RIG-I
and interferon-mediated signaling pathways in HPAIV infection conditions in ducks. The
activation of the MAPK signaling pathway, endocytosis, and tight junctions in influenza
virus infection conditions was reported [29]. Furthermore, the activation of focal adhe-
sions and the actin cytoskeleton pathway involved in the early stages of IAV infection was
also reported [29,31]. Lakadamyali et al., 2003 suggested the endocytic pathway toward
late endosomes: endosome maturation and initial acidification occur in the perinuclear
region [69]. Sun and Whittaker (2007) reported the indispensable roles of a dynamic actin
cytoskeleton for influenza virus entry into the epithelial cells [70]. Thus, the activation of
these cellular functions is essential for influenza virus entry into host cells.

Table 3. KEGG pathway analysis of differentially expressed phosphoproteins in duck lung tissues
infected with the HPAI H5N1 virus.

Pathway Hits p Value

Jak-STAT signaling pathway 5 0.0191

NF-kappa B signaling pathway 5 0.0026

MAPK signaling pathway 14 5.84 × 10−7

PI3K-Akt signaling pathway 22 7.33 × 10−13

Focal adhesion 34 2.84 × 10−35

Regulation of the actin cytoskeleton 24 5.77 × 10−20
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Table 3. Cont.

Pathway Hits p Value

ErbB signaling pathway 14 3.30 × 10−14

Leukocyte transendothelial migration 14 1.71 × 10−12

Ras signaling pathway 16 3.65 × 10−10

Rap1 signaling pathway 15 6.58 × 10−10

T cell receptor signaling pathway 10 3.29 × 10−8

Chemokine signaling pathway 12 1.97 × 10−7

Phospholipase D signaling pathway 10 1.22 × 10−6

Tight junction 9 3.13 × 10−5

Endocytosis 8 0.00218

Prolactin signaling pathway 4 0.00439

Influenza viruses can hijack the various intracellular signaling pathways to support
their efficient replication. Among the signaling pathways, the activation of PI3K/Akt
signaling, the MAPK (Raf/MEK/ERK) signaling pathway, and the NF-κB signaling path-
ways were reported as essential pathways responsible for virus-supportive replication.
The influenza NS1 protein binds to the SH2 domain of the p85 sub8unit and activates the
PI3K/Akt signaling pathways [71,72]. The activation of this pathway prevents premature
apoptosis, thereby promoting efficient virus replication at a late step of the infection [22,73].
MAPK (Raf/MEK/ERK) signaling pathways encompass cascades of kinases that convert
extracellular signals into cellular responses [74]. The activation of the Raf/MEK/ERK
signaling pathway facilitates influenza-supportive virus replication roles by inducing the
nuclear export of viral ribonucleoprotein complexes (RNPs) at the late stages of the viral
life cycle [75]. Further, influenza virus infection impairs the Ras-Raf-MEK-ERK pathway
by downregulating MEK1 SUMOylation to facilitate viral RNP export and virus propa-
gation [76]. The activation of the NF κB signaling pathway is one of the essential cellular
responses regulating anti-viral cytokine and interferon-β expression [77]. Some previous
studies have suggested that influenza viruses-elicited NF-κB activity, which helps in virus
replication and spreading and NF-κB inhibition, also impairs IAV propagation [78–80].
In a nutshell, phosphoproteome dataset analysis provides insights into multiple kinase-
mediated signaling pathways that were activated in HPAI H5N1 virus-infected duck
lung tissues.

3.7. Identification of Proteomic Determinants

Biological network analysis is a powerful approach to gain a systems-level under-
standing of disease pathogenesis. To know the main driving or hub proteins responsible for
disease resistance to HPAIV infection conditions in ducks, we constructed protein–protein
interaction (PPI) networks for the differentially expressed lung proteins of ducks. Among
different molecular networks, PPI networks have emerged as an important resource be-
cause protein interactions play fundamental roles in structuring and mediating essentially
all biological processes. PPI networks are often presented as undirected graphs with nodes
as proteins and edges indicating interactions between two connecting proteins.

Proteins such as AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1,
MAPK1, etc., were identified with high degree centrality and betweenness centrality
measures as the main hub proteins responsible for disease pathogenesis in ducks (Table 4)
(Figure 7). The functional proteomics and phosphoproteomics analysis of our datasets
showed that the activation of RIG-I signaling and Jak-STAT signaling pathways was re-
sponsible for disease resistance against HPAI H5N1 virus infection in ducks. The JAK2,
STAT1, STAT3, and NFKB1 proteins were involved in these pathways and were identified
as the main hub proteins for disease pathogenesis in ducks. These proteins act as the main
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signaling molecules for the induction of the expression of ISGs and the establishment of
anti-viral states in the host cells.

Table 4. Hub proteins identified in duck PPI networks based on degree centrality and betweenness
centrality measures.

Proteins Degree Centrality Betweenness Centrality

AKT1 151 23,549.86

STAT3 138 20,538.68

JAK2 122 14,684.79

RAC1 117 9430.98

STAT1 116 14,916.66

PTPN11 116 14,221.68

RPS27A 113 11,935.64

UBA52 110 11,175.27

HSP90AA1 107 17,096.24

RHOA 107 7556.94

NFKB1 106 13,320.84

GRB2 103 6744.12

MAPK1 100 8118.52
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Akt (protein kinase B, PKB) is a serine/threonine kinase, and Akt is activated by
the lipid products of phosphoinositide 3′-kinase (PI3K). Upon activation, Akt regulates
the activities related to proliferation, the cell cycle, glycogen synthesis, angiogenesis, and
telomerase [81]. In particular, the PI3K–Akt pathway plays a critical role in the uptake of a
virus during viral entry, the prevention of premature apoptosis, and viral RNA expression
and RNP localization [72,73,82]. RAC1 belongs to the family of Rho GTPases that regulate
a wide variety of cellular processes. RAC1 is reported to have virus-supportive as well as
virus-suppressive functions for different viruses [83–86]. In the case of the influenza virus
infections condition, RAC1 has an anti-viral role by inducing interferon-β production and
a crucial virus-supportive role in the activity of the viral polymerase complex [87,88]. The
influenza A virus (IAV) blocks RAC1-mediated host cell signal transduction through the
NS1 protein to facilitate its replication [89]. Further, RAC1 is proposed as a cellular target
for the therapeutic treatment of influenza virus infections, as the inhibition of RAC1 by the
small chemical compound NSC23766 resulted in the impaired replication of a wide variety
of influenza viruses [88].

Protein tyrosine phosphatase non-receptor type 11 (PTPN11) is a member of the
protein tyrosine phosphatase family. The expression of PTPN11 genes has been reported in
influenza infection conditions [90,91]. SHP-2, the protein encoded by PTPN11, interacts
with the transcriptional activator STAT3 [92]. PTPN11 interacts with long intergenic non-
coding RNA LINC00673, which promotes cell growth and proliferation by activating
SRC-ERK signaling and inhibiting STAT1 signaling [93]. PTPN11 positively regulates the
MAPK signal transduction pathway [94]. NFKB1 is a subunit of the NF-kappaB (NF-κB)
protein complex. The activation of NF-κB plays an important role in the inhibition of
virus replication by stimulating the synthesis of IFN-α/β, which leads to the expression
of anti-viral genes [95,96]. However, the NS1 protein of the influenza A virus can prevent
NF-κB activation, thereby subverting the IFN innate immune system [97].

MAPK1 is a member of the MAP kinase family. MAPKs play critical roles in regulating
the expression of various pro-inflammatory cytokines, including IL-6 and TNF-alpha, in
response to microbial infection [98]. The activation of p38 mitogen-activated protein kinase
(p38 MAPK) induces the dysregulation of cytokine expression in HPAIV-infected primary
human monocyte-derived macrophages and bronchial epithelial cells [99–101]. Further, the
inhibition of p38 MAPK significantly reduces the hyperinduction of cytokines and prevents
cytokine-induced pathogenicity in HPAIV-infected mice and human macrophages [99,102].
Therefore, interference with the p38 MAPK pathway is also proposed for therapeutic
treatments for HPAIV infection [102]. The RPS27A and UBA52 genes code for ubiquitin,
and this ubiquitin is a highly conserved protein that has a major role in targeting cellular
proteins for degradation in the 26S proteasome [103,104]. Further, the UBA52 host protein
interacts with the viral RNA polymerase acidic protein (PA), PA-N155, and PA-N182 and
promotes the replication of the highly pathogenic H5N1 avian influenza virus [105].

The Ras homolog gene family member A (RhoA) is a small GTPase that controls
gene transcription, actin polymerization, cell cycle progression, and cell transformation.
The influenza virus NS1 protein induces G0/G1 cell cycle arrest mainly by interfering
with the RhoA/pRb signaling cascade [106]. In summary, we identified many proteomic
determinants involved in the RIG-I, Jak-STAT, and other signaling pathways responsible for
disease progression and disease resistance in ducks infected with HPAIV using PPI network
analysis. Most of the proteomic determinants identified in this study were previously
reported in human model systems and showed evidence of playing a very essential role in
disease pathogenesis in influenza infection conditions. Here, we identified the expression
of these proteins in duck lung tissues and functionally annotated their role in disease
progression. Further, some of these proteomic determinants were already tested as novel
cellular targets for the therapeutic treatment of influenza virus infections. However, further
in vivo studies are required to validate the role of proteomic determinants in disease
progression and find novel host proteins as a therapeutic or prophylactic treatment in
HPAIV infection in ducks.
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4. Conclusions

In conclusion, the bioinformatics analysis of the proteome and phosphoproteome
datasets revealed the activation of RIG-I-like receptor signaling and the Jak-STAT signal-
ing pathways, which resulted in the expression of ISG proteins (STAT1, STAT3, STAT5B,
STAT6, IFIT5, and PKR), thus establishing a protective anti-viral immune response in HPAI
H5N1 virus-infected lung tissues. The activation of these pathways and expression of
interferon-stimulated proteins may restrict viral replication and recovery from influenza
virus-induced inflammatory changes. Therefore, ducks may develop disease resistance
against the HPAI H5N1 virus infection condition. Through PPI network analysis, we
identified many proteomic determinants (AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11,
RPS27A, NFKB1, and MAPK1) that might play important roles in disease progression and
disease resistance in ducks.
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