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Abstract: Secondary metabolites produced by the fermentation of Streptomyces avermitilis bacterium
are powerful antiparasitic agents used in animal health, agriculture and human infection treatments.
Avermectin is a macrocyclic lactone with four structural components (A1, A2, B1, B2), each of them
containing a major and a minor subcomponent, out of which avermectin B1a is the most effective
parasitic control compound. Avermectin B1a produces two homologue avermectins (B1 and B2) that
have been used in agriculture as pesticides and antiparasitic agents, since 1985. It has a great affinity
with the Cl-channels of the glutamate receptor, allowing the constant flow of Cl- ions into the nerve
cells, causing a phenomenon of hyperpolarization causing death by flaccid paralysis. The purpose of
this work was to gather information on the production of avermectins and their biocidal effects, with
special emphasis on their role in the control of pests and phytopathogenic diseases. The literature
showed that S. avermitilis is an important producer of macrocyclic lactones with biocidal properties.
In addition, avermectin contributes to the control of ectoparasites and endoparasites in human health
care, veterinary medicine and agriculture. Importantly, avermectin is a compound that is harmless to
the host (no side effects), non-target organisms and the environment.
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1. Introduction

Microbial natural products, also known as secondary metabolites, are valuable com-
pounds used in agriculture, as well as in the pharmaceutical, veterinary and food in-
dustries [1,2], which are produced by a variety of microorganisms such as bacteria and
fungi [3]. Streptomyces species are Gram-positive, filamentous, spore-generating bacteria
[family Streptomycetaceae, class Actinobacteria] [4] known to be prolific producers of a
wide variety of biologically active secondary metabolites, likewise their importance lies
in being one of the most studied genera, with important medical and agricultural applica-
tions [5–7]. These compounds express antibacterial, antifungal, antihypertensive, antiviral,
antitumor, immunosuppressive and insecticidal action [8]. Streptomyces is characterized
as an abundant source of pharmaceutical compounds including amino acids, sugars, fatty
acids and terpenes, which utilize biochemical pathways to combine to form more complex
structures through precise metabolic pathways [9]. The secondary metabolites generated
by Streptomyces are synthesized by a group of enzymes encoded by the corresponding
set of biosynthetic genes, which are transcriptionally restricted, although the physiolog-
ical role of Streptomyces transcriptional regulators is not well defined [10,11]. The latter
is because several species of this genus have the ability to control morphological differ-
ences as well as the production of secondary metabolites, so their biosynthetic genes are
specifically regulated by related regulatory genes [12]. With great features, the biosyn-
thesis of secondary metabolites generated by this bacterium is mediated by regulatory
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pathways that can be stimulated by vital, nutritional and environmental incentives for
the cell [13]. About 800 Streptomyces species have been studied [14], 100,000 antibiotic
compounds have been reported, of which 70–80% of the bioactive products are applied
in the production of drugs, agrochemicals for pathogen control and plant development
promoters [8,15,16]. The products obtained by Streptomyces are characterized by their struc-
tural diversity, such as aminoglycosides, ansamycins, glycopeptides, macrolides, terpenes
and tetracyclines [8]. The species Streptomyces avermitilis stands out due to the diversity of
whole genome sequencing studies, including the avermectin biosynthetic gene cluster [17],
resulting in at least 8.7 million reference pairs. on the linear chromosome, as well as new
information on the organization of avermectin biosynthetic genes [spanning a distance of
82 kb]. The increasing number of whole genome sequences of Streptomyces has revealed
that we know only a fraction of the biosynthetic potential of this genus [6,18]. Bacteria
often use small extracellular signaling molecules to control complex physiological func-
tions, such as biofilm production, pathogenicity, and antibiotic production capacity [18,19].
Autoregulators are signaling molecules that can trigger antibiotic production in the genus
Streptomyces. Genomic analysis of three genera of Streptomyces, S. avermitilis, Streptomyces
coelicolor A3 [5,20] and Streptomyces griseus [21] has shown that these microorganisms have
large linear chromosomes. which harbor more than 20 sets of secondary metabolic genes.
These genes are involved in polyketide biosynthesis by polyketide synthases (PKS) and
are required for peptide synthesis by non-ribosomal peptide synthases (NRPS), as well
as for producing bacteriocins, terpenoids, shikimate metabolites, aminoglycosides, and
other natural products. S. avermitilis is used on an industrial scale to produce avermectin,
which has been shown to be a highly efficient secondary metabolite-based product and
anthelmintic agent. Likewise, Ivermectin-dihydroavermectin B1 [22,23], has been used as
an agricultural pesticide and antiparasitic agent since 1985, so the present research work
aimed to gather information on the production of avermectins from S. avermilitis and its
biocidal properties.

2. Streptomyces avermitillis Origin

In the early 1970s, the Kitasato Institute (now part of Kitasato University) in Japan,
in cooperation with Merck & Co Inc. of the USA, developed a new class of antiparasitic
agents [22]. Satoshi Ōmura, the Japanese parasitologist expert in isolating natural products,
studied a group of soil-dwelling actinobacteria (Streptomyces), characterized by producing
a large number of antibiotic, anticancer, antimicrobial, antiviral, antitumor, cytotoxic, herbi-
cidal, immunosuppressive, insect control agents and plant growth promoters [3,23–25].

Ōmura isolated new Streptomyces strains from Japanese soil and cultured them in the
laboratory, selecting fifty of the most active strains to test their therapeutic potential against
pathogenic microbes. William Campbell, an expert in parasite biology, tested the efficacy of
the compounds isolated by Ōmura. His results showed that Streptomyces avermitilis came
from a golf course located in Ito, Japan and had outstanding efficacy against parasites of
domestic animals [26]. Campbell conducted in vivo laboratory tests in which he found a
compound with a novel, powerful and promising bioaction. This compound was named
“avermectin” [1].

3. Streptomyces avermitilis’ Main Secondary Metabolites

After the discovery of streptomycin by Selman A. Waksman, actinomycetes are consid-
ered the most fruitful source of new antibiotics; The most important classes of antibiotics
for clinical use were developed between 1940 and 1960, from different soil microorgan-
isms, nowadays, society is facing an emerging threat of microbial drug resistance, so the
increased demand for new antibiotics of microbial origin has become a social and political
problem [27].

The importance of the genus Streptomyces lies mainly in its ability to produce a wide
range of secondary metabolites [28], these bioactive products are characterized by not
being fundamental within the life cycle of the microorganism, however at the same time
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Provides an evolutionary benefit, due to its application as a weapon of control or chemical
control against pathogens such as bacteria, fungi, viruses, insects, among others, through
deterrence, inhibition and death, providing advantages such as adaptation depending on
the habitat where it is found [23,29]. Among the species studied, S. avermitilis has been
noted to be a highly efficient producer of secondary metabolites as anthelmiticidal agents,
avermectins, a series of eight 16-membered pentacyclic lactones and oligomycins as major
secondary metabolites [1,30,31].

Oligomycins are elaborate 26-membered macrocyclic lactones that produce strong toxic
compounds that inhibit the oxidative phosphorylation reaction in mammalian cells [32].
Along with the production of these bioactives, S. avermitilis serves as a versatile host
for heterologous production of secondary metabolites from other Streptomyces species,
enhancing the yield and production of these bioactive compounds derived from more than
20 biosynthetic gene clusters (BGCs) [4,30,31].

The S. avermitilis genome has been sequenced and identified cryptic secondary metabo-
lite pathways, which are not or weakly expressed under standard laboratory growth con-
ditions [33–36], revealing a gap between their potential and observed biosynthetic gene
expression. The gene clusters involved in the biosynthesis of S. avermectillis metabolites
are generally contiguous, encoding enzymes responsible for the stepwise assembly of
bioactive molecules. However, this group of silent or cryptic genes represents a potential
source of new antimicrobial drug discovery [34,37]. Several techniques currently exist for
the activation of silent genes in actinomycetes, such as in situ activation of these genes
(promoter engineering, transcription factor operation and ribosome engineering), their
expression in heterologous hosts (cloning, reconstruction of biosynthetic pathways and
rational engineering of chassis stresses) [38–41], the systematic condition of culture pa-
rameters [42], co-culture [43] and the use of chemical elicitors, which induce antibiotic
synthesis [44]. For their Tyurin et al. (2018) propose a new technique based on small organic
molecules (γ-Butirolactones and their derivatives) at minimal concentrations (nanomolar
to micromolar) to induce secondary metabolite biosynthesis in actinomycetes [45].

3.1. Macrocyclic Lactones

Interest in natural products, such as secondary metabolites produced by various
microorganisms and plants, has been increasing, as they represent a wide range of com-
pounds with inherent properties and specific and effective defense mechanisms against
other organisms, being key in the development of bioactive substances [46,47]. Lactones
are an important example of secondary metabolites due to their chemical composition and
biological activity [48,49]. Lactones can be mainly classified into γ-Lactones, δ-Lactones,
Medium-sized lactones, Phtalides, Coumarins, Spirolactones, Strigolactones, Macrolac-
tones or Macrocyclic Lactones [49]. Macrocyclic lactones are cyclic esters that belong to two
large families, depending on the original fermented actinomycetes: avermectins produced
by S. avermitilis, and milbemycins produced by S. cyaneogriseus (Figure 1) [50,51]. The
complex chemical structures of these drugs stem from a 16-membered macrocyclic lactone,
similar to the macrocyclic lactone of macrolide antibiotics (but without the bacterial effect).
Avermectins (abamectin, doramectin, eprinomectin, emamectin and ivermectin) share a
16-membered macrocyclic lactone backbone with different functional groups in the benzo-
furan, disaccharide and spiroketal moieties. Both families of macrocyclic lactones are highly
lipid-soluble drugs.. Both families of macrocyclic lactones are highly lipid-soluble drugs.
Macrocyclic lactones are large molecules with molecular weights ranging from 600 kDa
(milbemycins) to 800 kDa (avermectins) [50]. In the last 35 years, these molecules have
gained importance in the control of parasitic infections, but much remains to be learned
about them.
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Figure 1. Important characteristics of Streptomyces. Production of macrocyclic lactones (avermectins 
and milbemycins) by S. avermertilis and S. cyaneogriseus, and chemical structure of ivermectin; [50–
53]. Created with BioRender.com (accessed on 7 May 2024). 

Avermectins are divided into natural (Ivermectin and Abamectin) and biosynthetic 
(Doramectin, Eprinomectin and Selemectin) [54]. Milbemycins include milbemycin, mox-
idectin and nemadectin [55,56]. Ivermectin and Abamectin [Figure 2], were the first drugs 
used in the control of parasites [intestinal worms and arthropods] [57,58]. The first in vitro 
tests of ivermectin were performed at Merck Sharp & Dohme research laboratories with 
mice infected with the nematode Nematospiroides dubius, which indicated that the whole 
broth obtained from fermentation of the bacterium was highly effective in a range of at 
least eightfold without toxicity to rodents [1]. Subsequently, evaluations of the individual 
components were performed, and although there were differences in their effectiveness, 
component B1a proved to be active against other nematode species (Trichostrongylus axei, 
Trichostrongylus colubriformis, Cooperia oncophora, Oesophagostomum columbianum, Haemon-
chus placei, Ostertagia ostertagi, T. axei, T. colubriformis, C. oncophora, Cooperia punctata, Oe-
sophagostomum radiatum and Dictyocaulus viviparus) with an oral dose of 0.1 mg kg−1 and 
in the case of canine hookworm (Ancylostoma caninum) with a dose of 0.005 mg kg−1 pre-
sented a control of 83 to 100% [59]. 

Figure 1. Important characteristics of Streptomyces. Production of macrocyclic lactones (avermectins
and milbemycins) by S. avermertilis and S. cyaneogriseus, and chemical structure of ivermectin; [50–53].
Created with BioRender.com (accessed on 7 May 2024).

Avermectins are divided into natural (Ivermectin and Abamectin) and biosynthetic
(Doramectin, Eprinomectin and Selemectin) [54]. Milbemycins include milbemycin, mox-
idectin and nemadectin [55,56]. Ivermectin and Abamectin [Figure 2], were the first drugs
used in the control of parasites [intestinal worms and arthropods] [57,58]. The first in vitro
tests of ivermectin were performed at Merck Sharp & Dohme research laboratories with
mice infected with the nematode Nematospiroides dubius, which indicated that the whole
broth obtained from fermentation of the bacterium was highly effective in a range of at
least eightfold without toxicity to rodents [1]. Subsequently, evaluations of the individual
components were performed, and although there were differences in their effectiveness,
component B1a proved to be active against other nematode species (Trichostrongylus axei, Tri-
chostrongylus colubriformis, Cooperia oncophora, Oesophagostomum columbianum, Haemonchus
placei, Ostertagia ostertagi, T. axei, T. colubriformis, C. oncophora, Cooperia punctata, Oesophagos-
tomum radiatum and Dictyocaulus viviparus) with an oral dose of 0.1 mg kg−1 and in the
case of canine hookworm (Ancylostoma caninum) with a dose of 0.005 mg kg−1 presented a
control of 83 to 100% [59].
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3.1.1. Avermectin

Avermectin is a by-product of a pentacyclic compound with 16 members and a dis-
accharide made by Loleandrose units (1 → 4) linked to the macrolide ring in C13. Cane
et al. (1983), suggested that avermectin aglycone has seven acetates, five propionates
and one 2-methylbutyrate or isobutyrate and its biosynthesis follows the polyketide syn-
thetases’ pathway (PKS) [60]. According to research, the anthelmintic activity comes from
Avermectin produced by the mycelium of S. avermitilis. Chromatographic and spectropho-
tometric techniques were used to determine the four structural components of avermectin,
[A1, A2, B1, B2] each with a major and a minor subcomponent [A1a, A1b; A2a, A2b; B1a,
B1b; B2a, B2b]; resulting from the structural differences in C5, C22–C23 y C26 [61]. They
are usually producing in ratios ranging between 80:20 and 90:10 [62]. Out of the eight
main avermectin compounds, B1a is the most efficient compound against a broad range
of nematodes and parasitic arthropods affecting domestic animals [63]. B1a forms two
homologs, avermectin B1 and B2, differentiated by a methyl group that has been used as
an agricultural pesticide and antiparasitic agent since 1985 [64], due to its low harmful
effect on humans [2]. This compound forms odorless yellowish-white crystals [51,65], and
has anthelmintic power similar to the power of Ivermectin or even higher [66]. It differs
from Ivermectin only by the presence of a double bond in carbons 22 and 23 [51,65]. Since
this compound showed activity against endoparasites and ectoparasites, it was called
endectocide; a term currently applied to macrocyclic lactones in general. Merck & Co Inc.
introduced this product for livestock use in Australia and it extended to other places as an
agricultural pesticide due to its low cost [67].

Later, scientists working for Merck & Co Inc., developed a specific analog program
for abamectin, seeking to identify an active compound that could work against a broad
spectrum of Lepidoptera. As a result, they discovered emamectin, which was produced as
benzoate salt (MK-244) [68], particularly effective against Tuta absoluta [69]. Emamectin
comes from avermectin through a five-step synthesis process and it is far more powerful
than avermectin [70]. Novartis S.A. de C.V. introduced emamectin benzoate to the market
in 1997. In 2000 a 2007 emamectin benzoate was officially approved [71], as the only
therapeutic chemical allowed for the control of parasites in salmon’s production [72], and
at present it is also used in insecticides for agricultural pest control. Currently a new
member of the avermectin family with a patent number (2012105478044), produced by
Hebei Xingbai Agricultural Technology Co., Ltd., China, has been registered in China.
This new compound is Abamectin B2 which is a mixture of B2a and B2b and is registered
for the management of root-knot nematodes in crops such as tomato, cucumber, celery,
watermelon, peanut, soybean, banana and coffee [73].

3.1.2. Avermectin Biosyntesis

Due to the commercial importance of S. avermitilis, previous studies have characterized
its genetic structure as well as the gene cluster that synthesizes Avermectin. The complete
genome of S. avermitilis has at least 8.7 million base pairs on the linear chromosome [17]. The
genes involved in avermectin synthesis are organized similarly to complex polyketides [74].
The nucleotide sequence has been determined with 18 ORF’s (Open Reading Frame) [75],
encoding one cargo module and 12 extension modules at 82 Kb [76]. Four ORF’s (aveA1,
aveA2, aveA3 and aveA4) encode for multifunctional polyketides, constituting the aver-
mectin polyketide synthetase and the twelve enzymatic activity modules for polyketide
chain elongation are generated, while aveC and aveE are related in polyketide modification
and aveD and aveF encode a C5 O-methyltransferase and a C5-ketoreductase, respectively,
which modify avermectin intermediates. For oleandrose synthesis, the aveBII and aveBVIII
genes are related and the aveB1 gene is involved in macrolide biosynthesis [77].

The synthesis of avermectin proceeds in three steps: (1) formation of an aglycone,
(2) modification of the aglycone to form aglycone avermectin and (3) glycosylation of the
aglycone avermectin with a derivative of an oleandrose. An acyl group is derived from the
catabolism of isoleucine in the “a” components and valinate from the “b” components [31],
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bind to 2-methylbutyryl-CoA or isobutyryl-CoA to convert the acetyl group and valinate
to isobutyl or isopropyl for the “a” and “b” components, respectively [76], subsequently
four additional peptides of polyketide synthetase (PKS) are responsible for the enzymatic
activity to give rise to aglycone. The carbon chain undergoes several modifications, such
as the formation of a furan ring and methylation to form the macrocyclic lactone and
finally, a derivative of oleandrose one (oleandrose dioxythymidine diphosphate) is attached
and thus generates avermectin [31]. Avermectin B1a (Figure 3), is the main component
of avermectins, its application is largely directed to the control of internal anthelmintics,
external parasites and for the control of agricultural pests, due to its broad spectrum of
bioactivities [78].
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gation of a polyketide chain by four multifunctional modulating polyketide synthase components
(AveA1,2,3,4); (B) Modification by dehydration of C22–23 and formation of spiroketal by AveC;
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Currently, the production of Avermectin is still a process exclusively by submerged
fermentation (SmF) using different strains of S. avermitilis [81,82]. However, advances have
been made that help to have a better control in the production of Avermectin. Cao and
co-workers in 2018, established a high throughput screening (HTS) strategy integrated by
fluorescence activated cell sorting and random mutagenesis to detect S. avermitilis mutant
strains with high yields of Avermectin, such process reported advantages in efficient
spore selection, reduction in labor process of HTS process and improvement in process
accuracy [83]. In 2022, the increased production of Avermectin B1a using the high-yielding
industrial strain of S. avermitilis A229 was studied using a combined strategy that provides
an efficient approach by improving B1a production by 49.1% with the implementation of
genetic engineering [84]. Tian and coworkers in 2024, investigated MtrA (sav_5063) gene
which is a transcriptional regulator of the OmpR family in S. avermitilis, reporting a negative
regulatory effect on Avermectin biosynthesis, indicating that it plays crucial functions in
the coordination of physiological processes (growth, development and morphological
differentiation) in S. avermitilis, being this an advance on the regulation of Avermectin
biosynthesis [85].

3.1.3. Avermectin Biocidal Propierties

The genus Streptomyces has the ability to produce a large number of secondary metabo-
lites, including antibiotics and other biologically active compounds widely used in human
health care, agriculture and veterinary medicine. Avermectin has been the most relevant of
these compounds with biocidal action [86]. Initially, avermectin was considered effective
against helminths, insects and spiders, without causing harm to flatworms, protozoa, bac-
teria and fungi [87,88]. However, recent studies have shown that it can also act against the
genus Mycobacterium [89].

Avermectin has been used for more than 20 years to eradicate human diseases such
as lymphatic filariasis [90]; onchocerciasis, one of the poorly treated tropical diseases
in Africa [91,92] and strongyloidiasis in Asia [93]. In May 1977, Merck Co Inc. was
asked to consider the potential use of avermectin in humans, given the demonstrated
efficacy of ivermectin against uncinaria and other intestinal nematodes in dogs. In January
1978, data on filarial worms did not appear particularly promising due to the lack of
effect on adult parasites [67]. Subsequently, avermectin proved to be a wonder drug for
human health, improving the nutrition, general health and well-being of billions of people
worldwide since it was first used against onchocerciasis in humans in 1988 [22]. It is the
ideal drug in many ways. It is highly effective, safe, well tolerated; it is easy to apply and is
currently used to treat various nematode-related internal infections, such as onchocerciasis,
strongyloidiasis, ascaridiasis, filariasis, gnathostomiasis and trichuriasis. It is also part
of oral treatments against ectoparasite infections, such as pediculosis [lice infestation]
and scabies (mite) [94]. Currently, the pharmaceutical potential of avermectin includes
treatments against Mycobacterium tuberculosis, such as multidrug-resistant tuberculosis and
extensively drug-resistant tuberculosis [84]; as well as the synergistic effect of avermectin
B1a with methicillin against methicillin-resistant Staphylococcus aureus [38,94]. Recent
studies have shown that cytochrome P450 (CYP105D7) production by S. avermectilis can
hydrolyze pharmaceutically important flavanones [naringenin and pinocembrin] [95],
due to their antioxidant, anti-inflammatory and anticancer properties [96]. For example,
we know that naringenin is a good inhibitor of aromatase (an important strategy in the
treatment of breast cancer) [97,98]. On the other hand, naringenin in grapefruit juice has
been shown to inhibit P450 metabolites that metabolize drugs in the human kidney [99].

In 1981, an injectable formulation of ivermectin was introduced in France for veterinary
use as a subcutaneous treatment of cattle and a new injectable formulation was introduced
in New Zealand for intramuscular treatment of horses (it was replaced in 1984 by oral
formulations). Subsequent introductions included ivermectin for sheep in Brazil [1982]
and for pigs in the UK (1983); abamectin for cattle in Australia (1985); and Ivermectin for
dogs in the USA (1987) [67]. These drugs are safe, effective, low cost, easy to apply, with
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minimal side effects and show a broad spectrum of effectiveness against gastrointestinal
nematodes, pulmonary nematodes and ectoparasites in domestic animals [100,101]. In
addition, they have proven to be effective treatments for infections caused by worms, as well
as mites, lice and scabies [102]. However, despite the benefits of these biopharmaceutical
drugs, their broad spectrum of action has also raised concerns about their impact on
non-target organisms in terrestrial and aquatic environments [103]. It is eliminated in the
feces of treated animals [104], causing ecotoxicological effects on non-target organisms
associated with the decomposition of organic matter such as beetles, flies, springtails, mites,
earthworms and free-living nematodes [105], while Pérez-Cogollo et al. (2018) mentions
that to reduce the amount of avermectin residues to the environment it is necessary to
perform parasitosis diagnostics to apply selective treatments in bovine herds [106,107].

Within the applications in the agricultural area [Table 1], this type of compounds has
been used in several countries for the control of agricultural pests [108], due to their power-
ful action as nematicides, acaricides and insecticides [109]. Today, it is used for chemical
seed treatment for the control of plant parasitic nematodes [110], such as Meloidogyne incog-
nita [111], Pratylenchus zeae [112], Heterodera schachtii [113], Tylenchulus semipenetrans [114],
Radopholus similis [115], and Bursaphelenchus xylophilus [116]. They also exhibit a broad
spectrum of action against pests. insects in socially important commercial crops, including
mites and insects of the orders Coleoptera, Hymenoptera, Diptera, Orthoptera, Isoptera and
Lepidoptera [117].

Table 1. Applications of macrocyclic lactones for the control of insects and nematodes of agricultural
importance.

Compound Application Reference

Avermectin B2 Microcapsules Population of RKN = Efficiency 80% [118]

Ivermectin Ivermectin 1% diluted in
DMSO 5% Susceptibility to EPN (Steinernema y Heterorhabditis) [119]

Abamectin Abamectin (18 g/L) diluted in
N-Methyl-2-Pyrrolidone Significant Globodera pallida control, soil application [120]

Avermectin B1 Emamectin benzonate Susceptibility of Spodoptera fugiperda. [121]

Abamectin Abamectin 1.8%, per 10 plants
2.5 mL Efecto acaricida en ninfas de Tetranicus spp. en maíz [122]

Avermectin N,O-carboxymethylchitosan
(NOCC) grafted whit avermectin

Insecticidal activity at 4 mg/L against
Spodoptera exigua,

Tetranychus cinnabarinus and
Aphis fabae.

[123]

Avermectin B1a 40 avermectin derivates
Biological activity against

Tetranychus cinnabarinus, Aphis craccivora and
Bursaphelenchus xylophilus

[124]

Ivermectin B1a 25-methyl y 25-ethyl ivermectin Nematicidal activity against Caenorhabditis elegans, and
insecticidal activity against Mythimna separata larve. [125]

Abamectin
Abamectin (95%) (avermectin

B1a > 80% and avermectin
B1b < 20%)

Time and dose dependet cell viability in
Spodoptera frugiperda. [126]

3.1.4. Mode of Action

The biocides mentioned in this literature review have a non-systemic mode of action,
but show good translaminar activity [127]. They act by ingestion and to a lesser extent by
direct contact [128,129], although these biocides can be absorbed by all the usual routes, due
to their high liposolubility. They are distributed throughout tissues, including the intestinal
tract, fat and skin [130,131], acting as allosteric modulators of the glutamate-regulated
chloride channel (GluCl) [132], by binding to a high affinity receptor, this binding increases
the permeability of Cl-ions, causing a detachment of the parasite by flaccid paralysis. The
identification of the specific receptor to which avermectin and emamectin benzoate bind has
been controversial. Early studies claimed that the biocides produced a release of gamma-
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aminobutyric acid (GABA) from the synaptosomes of the rat brain; as well as modulation
of GABA receptors that increased their affinity for the neural transmitter. Depending on
the concentration of the toxicant to which the parasites are exposed, Cl- entry may or may
not be mediated by the GABAergic mechanism [81,118–126].

Recent research work suggests that the antiparasitic action of avermectins is due to
their interaction with glutamate receptor-gated Cl- channels in the target parasite, giving
rise to the phenomenon of hyperpolarization [51,133]. In fact, avermectin acts on the
neural transmission of the parasite by binding to a glutamate receptor of chloride channels
on neural cell membranes, close to a GABA receptor and a benzodiazepine receptor,
minimizing GABA action; which increases GABA release and action potential [54]. The
binding triggers the release of a flux of Cl- ions into the neural cells of the parasites
that increases permeability, producing pharyngeal hyperpolarization and somatic muscle
paralysis, leading to parasite death [51]. Olsvik et al. (2008) mention that toxicity in
mammals is low, since avermectins do not cross the mammalian blood-brain barrier and
therefore the GABA receptor does not affect the neurons of the central nervous system
(Figure 4) [134].
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4. Conclusions

Streptomyces avermitilis is a significant producer of macrocyclic lactones such as
Avermectin, with substantial potential as a biocide in agricultural parasitology. The
demonstrated efficacy of Avermectin against a wide range of agriculturally significant
phytopathogens, along with its safety profile for crops and the environment, positions
Avermectin as a promising tool in integrated pest management.

However, to maximize its use as a biocide, a deeper understanding of the mechanisms
of action and pharmacokinetics in specific agricultural environments is necessary. This aims
to better comprehend how such microbial-derived substances interact with phytopathogens
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and how they are distributed and degraded in the environment. Additionally, further
research is required for the development of more efficient formulations and application
strategies that optimize its effectiveness in pest and disease control, while minimizing
any negative impact on non-target organisms (e.g., beneficial microorganisms) and the
ecosystem as a whole.

With a continued focus on biotechnology and metabolic engineering, new oppor-
tunities can be explored to enhance the selectivity and efficiency of Avermectin as an
agricultural biocide, paving the way for more sustainable and environmentally friendly
agricultural practices.

Author Contributions: Conceptualization, J.F.R.-R. and E.C.-C., investigation, J.F.R.-R. and K.B.G.-C.;
writing-original draft preparation J.F.R.-R., Y.M.O.-F. and K.B.G.-C.; writing-review and editing,
J.F.R.-R., E.C.-C., K.B.G.-C. and Y.M.O.-F.; visualization, J.F.R.-R. and K.B.G.-C.; supervision Y.M.O.-F.
All authors have read and agreed to the published version of the manuscript.
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