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Abstract: Microfluidic mixers, a pivotal application of microfluidic technology, are primarily utilized
for the rapid amalgamation of diverse samples within microscale devices. Given the intricacy of their
design processes and the substantial expertise required from designers, the intelligent automation
of microfluidic mixer design has garnered significant attention. This paper discusses an approach
that integrates artificial neural networks (ANNs) with reinforcement learning techniques to automate
the dimensional parameter design of microfluidic mixers. In this study, we selected two typical
microfluidic mixer structures for testing and trained two neural network models, both highly precise
and cost-efficient, as alternatives to traditional, time-consuming finite-element simulations using up
to 10,000 sets of COMSOL simulation data. By defining effective state evaluation functions for the
reinforcement learning agents, we utilized the trained agents to successfully validate the automated
design of dimensional parameters for these mixer structures. The tests demonstrated that the first
mixer model could be automatically optimized in just 0.129 s, and the second in 0.169 s, significantly
reducing the time compared to manual design. The simulation results validated the potential of
reinforcement learning techniques in the automated design of microfluidic mixers, offering a new
solution in this field.

Keywords: microfluidic mixers; reinforcement learning; design automation

1. Introduction

Microfluidics is a technology that precisely controls fluids at the micrometer scale [1],
capable of handling objects ranging from several hundred micrometers [2] to a few microm-
eters in size. This technology is extensively applied in various fields including bioengineer-
ing [3], chemical experimentation [4], and medical diagnostics [5]. Microfluidic chips are
typically made from glass, silicon, or polymers and feature finely fabricated microchannels
that automate sample preparation [6,7], reactions, separations [8,9], and detections [10,11].
The advantages of this technology include low cost, high precision, and high throughput,
making it suitable for applications such as droplet generation [12,13], cell sorting [14–16],
drug screening [17–19], organs-on-a-chip [20–22], single-cell RNA sequencing [23,24], and
real-time diagnostics [25].

Micromixers represent an application of microfluidic technology, primarily utilized
for the rapid mixing of different samples within microscale devices [26–28]. Micromixers
are categorized into active and passive types. Active micromixers enhance mixing effi-
ciency [29] through external energy sources such as magnetism [30], acoustics [31], thermal
energy [32], or electricity [33]; however, this may increase system complexity and cost. In
contrast, passive micromixers increase fluid contact area and time by designing special
microchannels, which may lower mixing efficiency, but offer advantages in terms of lower
cost, reduced complexity, and ease of manufacture [34]. When designing micromixers,
precise control over the dimensions and shapes of the micromixers is essential to ensure
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accuracy in experimental outcomes and mixing efficiency, utilizing the layout or the geom-
etry of the microchannel structure in the chip to generate a specific fluid profile, which is
helpful for the mixing phenomena [34].

Moreover, under conventional application scenarios, the traditional methods of de-
signing and applying micromixers are not only time-consuming and labor-intensive, but
also, the design work is typically restricted to experts in the field [35]. Concurrently, the
evolution of micromixers to meet emerging demands continues to be an iterative process
characterized by “trial and error”. This necessitates that researchers dedicate substantial
time to numerous repetitive design simulations to ascertain a reliable and stable micromixer
chip architecture that aligns with the required dimensional specifications. Such a method
can be both time-intensive and financially burdensome, particularly in complex or extreme
scenarios. This inefficient chip design method not only limits the potential application
scenarios of current micromixers, but also significantly impacts their prospects in clinical
testing and industrial production. Consequently, many developers are urgently seeking
to implement an automated microfluidic chip design process, hoping that this automated
scheme will expand the utility and application range of microfluidic mixers. Therefore, to
truly leverage the existing capabilities of microfluidic technology and promote its broader
application in the future, it is imperative to explore a viable automated design solution for
microfluidic mixers.

Thanks to the vigorous development of artificial intelligence (AI) technology in re-
cent years, increasingly sophisticated AI techniques have provided researchers with new
avenues for automating the design of micromixer chips [36]. Granados-Ortiz defines a
Machine Learning-Assisted Design Optimization (MLADO) approach that deals with a
multi-objective optimization problem by means of a Random Forest classifier, using genetic
algorithms to optimize the agent model, thus obtaining the optimal geometrical configu-
ration of the mixer [37]. AI technology can utilize trainable statistical models for pattern
recognition and future behavior prediction, marking a novel direction for research into
automated microfluidic mixer design [38]. D. de Oliveira Maionchi employed a neural
network to simulate and analyze how the diameter and offset of obstacles influence mix-
ing efficiency, pressure drop, and energy consumption. By training the dataset with this
method, the research conclusively identified the optimal size and positioning of obstacles
using a genetic algorithm [39].

Currently, the field of AI-based automation in microfluidic design has garnered con-
siderable attention. Our previous work [40] transformed fluid dynamics problems into
image-recognition challenges, employing a convolutional neural network (CNN)-based
technique to predict the fluid behavior of stochastic microfluidic mixers. This approach
facilitated micromixer chip design through a reverse engineering process, where optimiza-
tion algorithms iteratively refine the model to determine the optimal design. Researchers
like MT Birtek [41] have optimized the design of non-Newtonian microfluidic systems
by using algorithms that process input from a training library and generate predictions
before manufacturing, significantly reducing development costs and time. Granados-
Ortiz [37] and colleagues designed an efficient mixing mechanism featuring a rectangular
pillar placed within a microchannel, with simulation data showing that this design sur-
passes the efficiency of previously reported devices. Lashkaripour [42] introduced a neural
network-based fluid dynamics automation tool (DAFD), aimed at predicting performance
and automating the design of focused flow droplet generators. This tool demonstrated
significant capabilities in achieving user-specified performance metrics, closely matching
the desired diameter and rate with errors of 4.2% and 11.5%, respectively. It also showed po-
tential for adapting to different fluid combinations without the need for extensive datasets.
Khor [43] and his team utilized machine learning to discover a low-dimensional code
encapsulating droplet shapes, further predicting the likelihood of droplet rupture. Their
method achieved an impressive 91.7% classification accuracy in predicting droplet rupture,
a significant improvement from the traditional accuracy of about 60%.



Micromachines 2024, 15, 901 3 of 18

Currently, there exists no universally acknowledged methodology for the design of
automation solutions for micromixers that garners consensus among all, or even the vast
majority, of practitioners. This indicates that the existing automation algorithms have yet
to be refined to satisfy all market demands, thereby highlighting the ongoing potential for
research and advancement in this domain. In other words, there is no doubt that a more
intelligent and universal automatic design algorithm is needed.

Currently, there is no industry consensus on a rapid, efficient, and standardized design
method for micromixers. This lack of a standardized approach means that researchers
designing a new micromixer often have to invest significant human and material resources
if they cannot match an efficient design scheme, and the final design results may not
even meet the basic expected requirements. Therefore, this paper aims to develop a new
computer algorithm process capable of automatically designing the dimensional parameters
of micromixers, providing researchers with more guidance in selecting design options when
designing micromixer chips.

In recent years, reinforcement learning has been extensively applied in fields such as
chess games [44], flight control [45], robotic control [46], game strategies [47], and urban
traffic management [48]. Therefore, the mechanization design of a micromixer using rein-
forcement learning technology is a viable avenue for research. Simultaneously, owing to the
distinctive technical advantages of reinforcement learning technology, the mechanization
approach of micromixers based on reinforcement learning technology can be employed to
address decision-making challenges in intricate environments and engage in autonomous
learning and gradual optimization through interaction with the environment. Furthermore,
this type of automated design algorithm possesses the capability to generalize in the design
process, thereby enabling more flexible application across a variety of design scenarios.

In this study, we propose an automatic design algorithm for micromixer chip sizing
based on reinforcement learning techniques. The intelligent agents trained by this algorithm
can quickly analyze state sets in different environments, make action decisions based on
reward function calculations, and efficiently design micromixer chip dimensions. COMSOL
is an advanced simulation tool for computational fluid dynamics issues, utilized to simu-
late and evaluate the mixing effects of various micromixer designs. Given the necessity to
conduct numerous COMSOL simulations to gather data during the reinforcement learning
process, frequent invocations of these simulations prove to be excessively time-consuming,
rendering the reinforcement learning algorithms for state evaluation computationally bur-
densome and inefficient. To address this, we collected data from a limited set of COMSOL
simulations of the test structures and trained an artificial neural network with these data.
These data were employed to develop a low-overhead neural network model that predicts
different structural parameters and simulates the mixing efficiency of micromixer chips
under various conditions. Ultimately, this algorithm was applied to successfully automate
the design of two basic micromixer chip structures, achieving satisfactory design outcomes.

The micromixer chip design process introduced in this paper, leveraging reinforcement
learning, significantly reduces the human and material resources needed to achieve designs
that meet the expected standards. Moreover, the application of this algorithm also lowers
the overall design complexity and the skill requirements for designers. This enhances the
broader applicability and potential value of this design approach to the automated design
of micromixers.

2. Methods of the Design
2.1. Design and Theory

This study introduces an automated design process for microfluidic mixer size pa-
rameters for different expected mixing concentrations based on a reinforcement learning
algorithm, as shown in Figure 1. To minimize the impact of different size parameters on
the structure’s mixing concentration outcomes, we employed an artificial neural network
(ANN) to predict the corresponding simulation results. Figure 1a presents the flowchart of
the ANN model used to predict the mixing concentration results for different size parame-
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ters. The design dimensions of the micromixer serve as the input parameters to the neural
network model, while the concentration simulation results at the corresponding output
ports are used as the output parameters of the model. Through training, we have developed
a high-precision, low-overhead ANN model capable of predicting outlet concentrations
based on mixer design parameters. Within the entire automated design algorithm, optimal
design parameters corresponding to specified target outlet concentration values can be
obtained using a reinforcement learning agent. Subsequently, using reinforcement learning
techniques and our defined evaluation function, the algorithm automatically optimizes the
size parameters for different performance metrics, followed by post-simulation to verify
the performance of the reinforcement learning automated design algorithm, as illustrated
in Figure 1b.

Figure 1. The flowchart of the automated design of micromixer using reinforcement learning tech-
nology (a) used to train an artificial neural network for predicting the outlet concentration of the
mixer. (b) A flowchart for designing optimal size parameters and post-simulation verification using
reinforcement learning technology.

2.2. Experimental Subjects

This study selected two classic micromixers as examples and used COMSOL Multi-
physics to simulate the concentration fields of the micromixers. As shown in Figure 2a,
this is a reference view of the mixer design 1 geometry from the top. The structure has two
inlet channels, each 100 microns wide, an outlet 100 microns wide, and three triangular
mixing zones with four microchannels, each 5 microns wide, evenly distributed within each
triangle. The specific parameters within this mixing zone can be found in Figure 2a. The
values of a and b are variable. The design incorporates sawtooth microchannels of uniform
width, set at a 90-degree angle to each other. a denotes the linear length of the periodic
step, and L represents the linear length of the Z-shaped microchannel. This is the classic
Y-sawtooth microchannel structure, a typical passive micromixer structural design [49].
The parameter s is the linear length of the periodic step, and the parameter w is the linear
width of the channel, as shown in Figure 2c. To simplify the analysis, the dimensionless
parameter s/w is adjusted to enhance the mixing efficiency (the ratio of the minimum to
maximum concentrations at the outlet cross-section, Cmin/Cmax).

The geometric shape of mixer design 2 is illustrated in Figure 2b, featuring two inlets
each 50 micrometers wide, a 100-micrometer-wide outlet, and a rectangular mixing area
measuring 700 × 1000 micrometers. Within this area, a 4 × 5 rectangular array with a
height of 50 micrometers is created, with each row of microchannels (the spacing between
rectangles) being uniformly wide. Four parameters, d1, d2, d3, and d4, are randomly set
within a specified range.



Micromachines 2024, 15, 901 5 of 18

(a) (b)

(c)

Figure 2. The geometric structures of two mixer designs: (a) the structure of the mixer design 1,
(b) the structure of the mixer design 2, and (c) the Y-mixer geometry.

The primary objective of this research is to test the feasibility of the automated design
algorithm proposed in this paper, rather than to design the mixers themselves. Therefore,
for practical testing, two variables were selected for design 1 and four variables for design 2,
instead of treating all other parameters as variable, to conduct a proof-of-concept study.
Additionally, the chosen parameters capture the main geometric features of the mixing
zone, which are highly relevant to the performance of the proposed mixer designs. The
range of variable parameters for both structures is shown in Table 1.

Table 1. Range of design parameters for two micromixers.

Mixers Design Parameters Range/µm

Mixer design 1 a 100 < a < 200
b 5 < b < 15

Mixer design 2

d1 1 < d1 < 50
d2 1 < d2 < 50
d3 1 < d3 < 50
d4 1 < d4 < 50

2.3. Low-Cost Model Training for Micromixers Based on Artificial Neural Networks

In this study, artificial neural networks trained through supervised learning will
be used instead of finite-element analysis to predict the concentrations at the outlets of
the micromixers. Using artificial neural networks to predict outlet concentrations will
significantly enhance the analytical efficiency of micromixer designs and optimize the
training processes for reinforcement learning agents.

2.3.1. Neural Network Training Data Collection

Based on the variable structural dimensions of the two classic mixer geometries
introduced in Section 2.2, mixer design 1 was configured with two variable parameters
that vary the width of the main channel of mixer design 1. In mixer design 2, a rectangular
array of four rows and five columns was constructed. The value ranges of the variables are
shown in Table 1.

By importing the geometric structures of the two mixer designs into COMSOL, and
then using the laminar flow physics module and the dilute species transport physics
module to simulate the velocity and concentration fields, respectively, two fixed solvers
were set up to solve the concentration distribution of the two mixer designs. The variable
parameters of each mixer design and the concentration values at 11 outlet points were
converted into matrices, with the mixer design parameters varied within a certain range
(refer to Table 1). Each mixer design explored a sufficient number (sampling 10,000 designs
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each) of training designs for later stages, and the corresponding datasets and simulation
models were stored in a local database for further use.

To facilitate the use of artificial neural networks to predict the outlet concentration of
mixer designs, this section utilizes finite-element simulation software to build a database,
the data from which will be used to train the neural network models. The specific process
is illustrated in Figure 3.

Figure 3. The database construction process of classic mixers design.

2.3.2. Data Preprocessing and Neural Network Training

Data preprocessing constitutes a vital phase in the training of artificial neural networks.
To bolster the predictive accuracy of our neural network model, we opted for max–min
normalization as our mode of data preprocessing in this study. The precise formula is
presented as Equation (1):

x′ =
x − xmin

xmax − xmin
(1)

In Equation (1), xmin represents the minimum value of the feature data within the
column, xmax is the maximum value, and x′ is the raw data to be processed. After normal-
ization, the data are transformed to fall within the range of [0, 1].

2.4. Using Reinforcement Learning Techniques for Micromixer Structural Dimension Design
2.4.1. Performance Evaluation Methods for Model Predictions of Outlet Concentration
across Design States

A direct analysis is necessary to determine whether different design parameters are
excellent or poor, and among those deemed excellent, which specific design is superior. To
assess the quality of different design parameters, it is necessary to define an evaluation
function that assigns scores to different design options based on their dimensions, reflecting
the merits and demerits of different practical schemes.

To quantitatively describe the mixing efficiency of the micromixers, the mixing in-
dex is utilized, which measures the standard deviation of molar concentration across a
cross-section [50].

It is worth noting that the mixing effect of the micromixer is affected by the Reynolds
number and Péclet number in practical applications. In this experiment, we set the single-
port inlet flow rate to 10 µL/min, which is usually the standard flow rate for operation
in different scenarios according to different purposes [51]. Also, we set the boundary
condition of the outlet to a pressure of 0 Pa. In addition, the solute diffusion coefficient of
fluorescein (4.25 × 10−10 m2 s−1) was used in the experiment, and the density and viscosity
of the fluid were set to parameters characteristic of water at room temperature: the fluid
density was set to 1000 kg/m3, and the dynamic viscosity of the fluid was set to 1 mPa·s.
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Re =
ρuL

µ
(2)

Pe =
uL
D

(3)

In Equations (2) [52] and (3) [53], ρ denotes the density of the fluid, u denotes the
characteristic velocity, L denotes the characteristic length, µ denotes the dynamic viscosity
of the fluid, and D denotes the diffusion coefficient.

We can calculate the Reynolds flow under the simulated conditions so that we can
estimate the Re number and Pe number corresponding to the conditions of this experi-
ment. According to Equation (2), the Reynolds number (Re) is 0.001, while according to
Equation (3), the Péclet number (Pe) is approximately 2.35.

Nonetheless, the primary focus of this study is to explore the potential of reinforce-
ment learning techniques in optimizing the dimensions of micromixers. For this research,
the fluid flow characteristics within the mixer are consistently controlled during the experi-
mental procedures. The calculation is represented by the following formula:

δ =

√
1
N ∑N

i=1(ci − c)2√
1
N ∑N

i=1(c0 − c)2
(4)

In Equation (4), N represents the total number of sampling points on the cross-section,
ci is the molar concentration at sampling point i, and c is the average molar concentration
when the sample is completely mixed, usually set at 0.5. c0 indicates the concentration
in the case of no mixing, typically valued at 0 or 1. σ represents the deviation of molar
concentrations at sampling points from the fully mixed average.

ϵ = 1 − σ (5)

In Equation (5), the mixing index, a number between 0 and 1, is introduced. When it is
close to 1, it indicates that the fluids in the mixer are fully mixed; when it is close to 0, it
indicates that the fluids in the mixer are not mixed; thus, it is used to represent the mixing
performance of the mixer.

2.4.2. Theoretical Foundations of Automated Design Combined with Reinforcement
Learning Algorithms

Reinforcement learning, inspired by behavioral psychology [54], mimics biological
learning patterns by memorizing scenarios through behaviors reinforced by rewards,
making it easier to repeat these behaviors upon re-encounter. Unlike supervised and unsu-
pervised learning, which depend on pre-existing data, reinforcement learning generates
data through interactions with the environment to seek optimal strategies.

In the process of reinforcement learning, three essential parameters are indispensable:
states, actions, and rewards. In specific scenarios, agents learn how to act most appropri-
ately in a given situation by trying different actions to receive rewards or punishments.
The problem is abstracted into models of states, actions, and rewards, transforming it into
the question of “how to find the best states and actions”. In the Deep Q-network (DQN),
rewards are crucial as they directly influence the learning process and the formation of
strategies. DQNs evaluate the effects of different actions by receiving rewards from the
environment. In short, rewards serve as key signals guiding agents in their decision-making
during the training process.

According to the research context, in this study, we used the evaluation function of
the mixing results (Equation (4)) to score the model’s predicted outcomes, thus defining
the evaluation function for reinforcement learning. Different dimensional parameters
correspond to various states of a mixer design, and evaluating the mixer design in that state
completes the assessment of rewards. According to the theory of reinforcement learning
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algorithms, the trained agents can efficiently start from an initial state and quickly achieve
the best design result state.

2.4.3. Automated Design Process for Mixer Chips Based on Reinforcement
Learning Algorithms

After defining the three pivotal concepts of state sets, action sets, and reward func-
tions in the reinforcement learning training process, we utilized reinforcement learning
algorithms to train the agents for configuring mixer structures. The design parameters
of the mixer are treated as states within the reinforcement learning context. The mixer
design 1 model features two design parameters (a and b), forming a two-parameter state set.
The second model includes four parameters (d1, d2, d3, d4), resulting in a four-parameter
state set.

The state set S and the current state st are mathematically expressed as follows:

St = {Param1, Param2, ...., Paramn} (6)

In Equation (6), Param1–Paramn represent the design parameters of the mixer’s
geometric structure, with n = 2 for the mixer design 1 model and n = 4 for the mixer
design 2 model.

Let A denote the action set and at represent the current action. In the DQN frame-
work, the agent determines the subsequent action at based on the current known state st
and ϵ − greedy.

The reward function is a critical parameter in the reinforcement learning algorithm.
The agent adjusts its actions based on the current state, assigning a reward value rt. The
objective of this section is optimization based on the target outlet concentration to find
the optimal mixer design. The calculation formula for the mixing index, used as the main
part of the reward function, is given by Equation (9). The difference in the mixing index
between the DQN-optimized design and the COMSOL simulation model, along with the
difference in the outlet concentration, collectively determines the magnitude of the reward
value. A very small deviation results in a reward value of 1, while a larger discrepancy
results in a penalty, setting the reward value at −1. The specific formula is as follows:

ϵDQN = 1 − δDQN (7)

ϵCOMSOL = 1 − δCOMCOL (8)

∆ϵ = |ϵDQN − ϵCOMSOL| (9)

∆c =
1
N

N

∑
i=0

|cDQN,i − cCOMSOL,i| (10)

rt =


1 if ∆ϵ < 0.01 and ∆c < 0.01
0.5 if 0.01 ≤ ∆ϵ < 0.05 and 0.01 ≤ ∆c < 0.01
−1 if ∆ϵ > 0.1 and ∆c > 0.05
0 otherwise

(11)

The optimization process of the DQN algorithm is illustrated in Figure 4, where two
agents are trained for two different mixer design models to autonomously synthesize
structural parameters. This training process includes two modules: the DQN agent train-
ing module and the environment interaction module. In the agent training module, the
RMSProp algorithm is used to optimize the loss function, and two structurally identical
ANNs are trained to predict the current Q-values and target-Q values, respectively. The
network parameter configuration is shown in Table 2. The environment interaction module
utilizes the low-overhead ANN model trained in Section 2.3 to obtain sample data.
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Table 2. Configuration parameters for Q-network and target-Q network of two intelligent agents.

Input Layer Activation
Function

Neuron Node
Count Output Layer

IntelligentAgent1 2 ReLU 11 11
IntelligentAgent2 4 ReLU 11 11

Before the automated design algorithm commences, an initial design dimension is
randomly selected as the starting state, and the current design parameters of the mixer
are recorded in the current state set st. The Q-values for all actions under the state st
are then output. Subsequently, the algorithm ϵ − greedy selects an action at based on the
strategy, and inputs at into the environment to obtain the new state st+1. The agent inputs
the current structural design parameters into a pre-trained ANN model to predict the
outlet concentration, and calculates the reward value based on the predicted concentration
and the reward function. These data (st, at, rt, st+1) are stored in the experience pool for
subsequent training of the agent. Simultaneously, the DQN’s loss function and Q-value
parameters are calculated and updated, as specified in Equation (12).

L =
1
2
[yt − Q(st, at, θ)]2 (12)

The Q-value parameters are periodically updated into the target-Q network, and the
target values for the target-Q network are calculated as per Equation (13).

yt = rt + γ∗ max Q(st+1, a′, θ′) (13)

The algorithm generates a vast amount of experience through continuous interaction
with the environment, then randomly shuffles the data in the experience pool and selects
small batches of data for training the Q-network. Ultimately, an optimal set of mixer
design parameters is derived and output, completing one design cycle. The specific
implementation process of the algorithm can be referred to in Figure 4.

Figure 4. Implementation flowchart of DQN algorithm.

3. Results and Discussion

Through experimental testing, the reinforcement learning-based automated design
model proposed in this article successfully fulfilled the automated design requirements of
the mixer designs. For two basic mixer designs, targeting the anticipated mixing efficiency,
the agents trained using this algorithm can achieve superior final design outputs with
fewer design iteration steps.
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3.1. Simulation Library Building and Model Training

In the process of establishing a simulation dataset, the variable size parameters of
the two types of mixer designs mentioned in Section 2.2 and the concentration values at
11 points of the corresponding outlets were transformed into matrices. Based on the variable
parameter range specified in Table 1, the mixer design parameters were varied within a
certain range. Ultimately, 10,000 design variants were explored for each mixer design, each
of which was modeled using COMSOL 6.0, in the same simulation conditions, while we
will keep the inlet fluid pressure constant throughout the simulation. The corresponding
datasets and simulation models are stored in a local database for further use.

After collecting the dataset and performing data preprocessing, we utilized the cleaned
data to train high-precision, low-overhead models for two structural bodies. The train-
ing processes of these two artificial neural networks are depicted in Figure 5. Of the
10,000 datasets, 70% were used as the training set, with the remaining 30% serving as the
test set. Figure 5a illustrates the training process of the neural network cANN1 for mixer
design 1, which, after 1500 iterations of training, achieved a training accuracy of 99.98% and
a test accuracy of 98.98%, with the minimum loss rate in the training set being 1.56 × 10−7.
Figure 5b shows the training process of the neural network cANN2 for mixer design 2,
which, after 1500 iterations, reached a training accuracy of 99.91% and a test accuracy of
98.91%, with the minimum loss rate in the training set being 5.33 × 10−7.

（a） （b）1x10-5 1x10-3

5.33x10-71.56x10-7

Figure 5. Two types of neural network training process diagrams: (a) cANN1 training process
diagram; (b) cANN2 training process diagram.

To validate the training efficacy of these two artificial neural networks, we utilized
finite-element simulation software to re-simulate 1500 models for each mixer design as a
test set, employing cANN1 to predict the outlet concentration of mixer design 1. Figure 6a
displays the absolute errors in outlet concentration for the test set of mixer design 1 (the
difference between the target values and the concentrations predicted by cANN), where
11.2%, 19.4%, and 17.7% of the concentration data points had absolute errors less than
0.003 mol/m3, 0.004 mol/m3, and 0.005 mol/m3, respectively. When the absolute error
threshold was increased to 0.009 mol/m3, the percentage rose to 85.5%.

For mixer design 2, the absolute errors in the outlet concentration of the test set are
shown in Figure 6b, where 28.6%, 40%, and 19.3% of the concentration data points had
absolute errors less than 0.003 mol/m3, 0.004 mol/m3, and 0.005 mol/m3, respectively. All
1500 model data points had absolute errors within 0.009 mol/m3.
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Figure 6. The absolute error distribution diagram of cANN test set: (a) represents cANN1;
(b) represents cANN2.

3.2. Design Results of Two Mixers’ Size Parameters Based on Reinforcement Learning Algorithm

Utilizing the DQN framework from the automated mixer design algorithm proposed in
this paper, we conducted 50 sets of optimization designs for the two classic mixer structures
mentioned in Section 2.1 (data shown in Tables 3 and 4). The training process of the agent
and the post-simulation verification of the mixer designs were conducted on a computer
running Windows 10, equipped with an Intel Core i7-10700 CPU and 64 GB of RAM.

Table 3. The concentration mean and variance of 11 points of 50 target concentration values for mixer
design 1.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Mean 0.117 0.129 0.179 0.273 0.374 0.500 0.629 0.729 0.812 0.858 0.869
Variance 0.027 0.027 0.023 0.016 0.010 0.003 0.011 0.017 0.020 0.023 0.023

Table 4. The concentration mean and variance of 11 points of 50 target concentration values for mixer
design 2.

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Mean 0.333 0.337 0.357 0.399 0.455 0.510 0.559 0.598 0.624 0.635 0.637
Variance 0.024 0.023 0.020 0.016 0.012 0.006 0.008 0.016 0.023 0.026 0.026

3.2.1. Automated Design Results of Structure 1

As illustrated in Figure 7, the parameter design for mixer design 1’s structure is
detailed, showcasing the training and design specifics of the intelligent agent. Figure 7a
depicts the convergence process of the DQN optimization algorithm, where the x-axis
represents the number of training iterations and the y-axis indicates the average reward
per iteration. Initially, the agent’s average reward was minimal and negative. However,
through continuous interaction between the agent and the environment, the calculation
of the reward function, and adjustment of the action decisions, the score converged after
50 iterations, culminating in a set of optimized parameters.

During the training of the agent, each episode’s optimization design steps were
recorded, as shown in Figure 7b. The x-axis represents the number of design iterations per
episode, and the y-axis corresponds to the steps taken to complete the design. Initially,
optimizing a set of design parameters required several hundred iterations to produce
the best design outcome. However, as the agent effectively learned from the data in the
experience pool, it was able to optimize a set of design parameters in just 40 iterations
post-training, significantly speeding up the design process.
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Figure 7. Mixer design 1 intelligent agent training and design details: (a) describes the training
process diagram of the mixer design 1 DQN; (b) describes the optimization steps for each episode in
the mixer design 1 DQN.

From the 50 sets of optimization designs, several were randomly selected to exemplify
the optimization process of the DQN intelligent agent for the structural size parameters
of mixer design 1. Figure 8 randomly selects four steps from the total 50-step iterative
process, demonstrating how the agent adjusted the structural design parameters. The final
design was optimized with parameters a = 130 µm and b = 6 µm. Initially, the values of
a and b were set at 200 µm and 5 µm, respectively. Throughout the interaction with the
environment, the agent continuously learned and optimized its strategy, adjusting the
structural design actions. By the 21st step, the parameters were adjusted to a = 170 µm
and b = 5 µm. Using the cANN1 to predict the new mixer design structure performance
and calculating the reward value based on the reward function, the agent proceeded to the
next iteration, ultimately achieving the optimal design of a = 130 µm and b = 6 µm after
50 iterations.

Figure 8. Process result for adjusting the structure of mixer design 1.

Upon the completion of the design, the 50 sets of optimized design parameters un-
derwent post-simulation verification in COMSOL. A comprehensive statistical analysis
of the DQN optimization design’s performance was then conducted. This analysis com-
pared the outlet concentration values of the mixer, the target concentration values, and
the post-simulation verified outlet concentration values from COMSOL, as illustrated in
Figure 9.

In Figure 9a, the x-axis represents 11 points at the mixer’s outlet, while the y-axis
depicts the concentration, spanning from 0 to 1. The red diamond labels stand for the
mean of the target concentration values, with the variance at that location indicated by
the fluctuation above and below the mean. The blue circle labels represent the mean of
the DQN optimized design’s outlet concentration, along with its variance. Similarly, the
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green triangle labels indicate the mean of the COMSOL post-simulation verified outlet
concentration, also with its variance. The overlapping of these labels suggested that the
variance-calculated outlet concentration values of the mixer are very close, indicative of
minimal error.

Figure 9b depicts the absolute errors between the target concentration values and
the DQN-optimized design concentration values, as well as between the target concentra-
tion values and the COMSOL post-simulation verified concentration values. The x-axis
showcases the error range, and the y-axis represents the number of occurrences in each
interval. The distribution of absolute errors between the target concentration values and the
post-simulation verified values shows that more than 94.9% of the concentration points had
an absolute error less than 0.01 mol/m3, with 5.1% having an error less than 0.02 mol/m3.
On the other hand, the distribution of the absolute errors between the target concentration
values and the DQN-optimized design indicated that more than 26.4%, 24%, and 21.1% of
the concentration points had an absolute error less than 0.01 mol/m3, 0.02 mol/m3, and
0.03 mol/m3, respectively.

Figure 9. Comparison of outlet concentration values for mixer design 1 based on DQN optimization
design and COMSOL post-simulation verification: (a) A comparative graph of the concentration
values between the two methods. (b) Distribution graphs of absolute errors in concentration between
the target values and both the DQN-optimized design and the COMSOL post-simulation verification.
(c) Mixed results chart.

The post-simulation verification visually demonstrates that the automated design
process for the mixer design 1 structure performed excellently. The final output of the de-
sign meets the design requirements, and the overall design time was significantly reduced
compared to a manual design. This indicates that the proposed algorithm’s reinforce-
ment learning approach effectively meets the needs for ensuring design effectiveness and
enhancing design efficiency in the automated design of this structure’s dimensions.

3.2.2. Automated Design Results of Structure 2

For mixer design 2, the training process is illustrated in Figure 10. The x-axis represents
the number of iterations of training, while the y-axis denotes the average reward value per
iteration. Figure 10a describes the convergence process of the DQN optimization algorithm.
Initially, the agent’s average reward values were low. Through interaction with the simula-
tion environment and utilizing cANN2 to predict the mixer design outlet concentration
values based on the current structural design parameters, as well as calculating correspond-
ing the reward values, the agent adjusted its actions accordingly. After 50 iterations, the
agent quickly converged, ultimately yielding a set of optimized parameters.

During the training of the agent, the number of steps taken to optimize a set of design
parameters per episode was recorded, as shown in Figure 10b. The x-axis is the number of
episodes, and the y-axis is the corresponding number of steps. Initially, optimizing a set of
design parameters required over seven hundred iterations per episode. However, as the
agent effectively learned from the data in the experience pool, it required only 12 iterations
to rapidly complete the optimization of a set of design parameters after training.
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Figure 10. Mixer design 2 intelligent agent training and design details. (a) describes the training
process diagram of mixer design 2 based on the DQN; (b) describes the optimization step iteration
diagram of mixer design 2 based on the DQN.

From a selection of twelve optimized designs, several were chosen at random to
exemplify the process by which the DQN agent optimizes the geometric structure of mixer
design 2 using the reinforcement learning algorithms, based on the target structure’s outlet
concentration values. The adjustable parameters for this mixer design are the widths of
four microchannels, designated as d1, d2, d3, and d4, with all other parameters remaining
constant. Figure 11 illustrates the process of the agent adjusting the structural design
parameters. Four steps were randomly selected from a twelve-step design process. The
initial design parameters were set at d1, d2 = 1 µm, d3 = 1 µm, and d4 = 1 µm. Throughout the
interaction with the environment, the agent continuously learned and optimized its strategy,
adjusting its actions based on the structural design. Utilizing cANN2, the agent predicted
the performance of new mixer design structures and calculated reward values based on the
reward function before proceeding to the next iteration. Ultimately, after twelve iterations
of design, the agent achieved an optimal design with parameters d1 = 29 µm, d2 = 47 µm,
d3 = 30 µm, and d4 = 27 µm.

Upon the completion of the design phase, the optimized parameters for the final set
of twelve mixer designs were utilized in COMSOL for simulation calculations. Figure 12
provides a statistical analysis of the performance of the DQN-optimized designs, comparing
the optimized concentration values of mixer design 2, the target concentration values, and
the concentration values verified by COMSOL post-simulation. In Figure 12a, the x-axis
represents 11 points at the mixer design outlet, while the y-axis represents the concentration,
ranging from 0 to 1. The red diamond labels denote the mean of the target concentration val-
ues, with variance representing the fluctuation at that position; the blue circle labels indicate
the mean of the DQN-optimized outlet concentration, with variance as the fluctuation; the
green triangle labels represent the mean of the post-simulation verified outlet concentration,
with variance as the fluctuation. The substantial overlap among the three labels signifies a
high level of consistency between the DQN-optimized design, the post-simulation verified
mixer design, and the target design in terms of outlet concentration.

Figure 12b displays the absolute errors between the target concentration values and the
DQN-optimized concentration values, as well as between the target concentration values
and the post-simulation verified concentration values. The x-axis represents the range of
errors, while the y-axis illustrates the number of points in each interval. In the distribution
of absolute errors between the target concentration values and the post-simulation verified
concentration, more than 33.3%, 24.5%, and 17.5% of the concentration points exhibit
absolute errors of less than 0.01 mol/m3, 0.02 mol/m3, and 0.03 mol/m3, respectively.
In the distribution of absolute errors between the target concentration values and the
DQN-optimized concentration, over 92.2%, 7.6%, and 0.1% of the concentration points have
absolute errors less than 0.01 mol/m3, 0.02 mol/m3, and 0.03 mol/m3, respectively.
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Figure 11. Mixer design 2 structure adjustment process.

Figure 12. Comparison of mixer design 2 based on DQN optimization design, COMSOL post-
simulation verification, and target outlet concentration values: (a) Concentration comparison chart
for the three methods. (b) Distribution chart of absolute errors in concentration between the target
values and both the DQN-optimized design and COMSOL post-simulation verification. (c) Mixed
results chart.

From the post-simulation verification, it can be concluded that the automated design
process for the second type of mixer structure performed excellently. The final output of
the design meets the design requirements, and the overall design process significantly
improved in terms of time consumption. This indicates that the reinforcement learning
algorithm proposed in this paper satisfies the needs to ensure design effectiveness and
enhance design efficiency.

4. Potential Limitations

There are still shortcomings and limitations that require continuous exploration
and improvement:
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(1) Agents obtained through reinforcement learning can only optimize designs for trained
structures and cannot use a single agent to achieve universal design across multiple
structures. This means that designing multiple structures would require training
multiple agents, significantly increasing the technical investment in the early stages
of design.

(2) Currently, the design capabilities of microfluidic mixer agents are based on training
with predictive data from high-accuracy, low-overhead ANN models. This means
that the predictive accuracy of the ANN models directly affects the design capabilities
of the agents. Moreover, beyond the predictive capabilities of the ANN models, the
design capabilities of the agents are also significantly reduced.

(3) In this experiment, the fluid simulation experiments were executed under the set fixed
boundary conditions. Although this approach cuts down the influence of the Reynolds
number in scoring the design results, it also limits the applicability of our validation
algorithm to different flow conditions. As a result, we can only conclude that the
proposed algorithm is valid in the tested flow rate range. This limitation undoubtedly
poses a constraint on our ability to fully evaluate the performance of the algorithm.
In subsequent studies, we will continue to explore the performance of the algorithm
under different boundary conditions to verify its generality.

5. Conclusions

This study explores an automated method for synthesizing micromixer design pa-
rameters using a reinforcement learning algorithm based on the DQN framework. Tests
were conducted on the structural designs of two classic micromixers. During the algorithm
testing, reward functions were designed based on the formula for mixing efficiency of
micromixers, considering the variable structural parameters and corresponding outlet
concentration values. Combined with a pre-trained low-overhead artificial neural network
model, two agents were trained to automatically optimize the design of the two types of
micromixers. Using a dataset of 50 groups, the two agents were trained to automatically
optimize the designs of these classic micromixers. The experiments demonstrated that a
single call to the agent for automated optimization design took 0.129 s for the first type
of micromixer and 0.169 s for the second type, significantly faster than manual design
simulation times.

Unlike other optimization-algorithm-driven automated design processes, the intelli-
gent design using reinforcement learning does not easily fall into the trap of local optima.
Agents trained using reinforcement learning technology are capable of analyzing the cur-
rent state in a more thoughtful manner and are oriented towards optimal goals, seeking the
best solution under current design requirements. Such a design process is forward-looking
in the direction of the automated design of micromixer chips.
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