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Abstract: In this paper, a Cr coating was prepared by induction heating and pack-cementation
chromizing on AISI 304 austenitic stainless steel. Then, the cold-rolling deformation and annealing
treatment were introduced to refine the coarse matrix grains caused by pack-chromizing and improve
the overall performance of 304 austenitic stainless steel. The phase composition, element distribution,
and microstructure of the coating were carefully characterized. The microhardness, wear resistance,
and corrosion resistance of the coating were tested. The results show that the Cr coating with a
thickness of 100 µm is mainly composed of a (Cr,Fe)23C6, (Cr,Fe)7C3, and α-Fe-Cr solid solution. After
the cold-rolling deformation and subsequent annealing treatment, the grains are significantly refined
and the Cr coating is divided into two layers, consisting of carbon-chromium compounds such as
Cr23C6, Cr7C3, Cr2C, and Cr3C2 in the surface layer and a Fe-Cr solid solution in the subsurface layer.
The cold-rolling deformation and annealing treatment significantly improved the microhardness and
wear resistance of the coated sample, and the corrosion resistance was also better than that of the
uncoated sample.

Keywords: 304 stainless steel; pack-cementation; induction heating; chromizing; cold-rolling; annealing

1. Introduction

The 304 austenitic stainless steel is a widely used high chromium–nickel austenitic
stainless steel. It has been widely used in various fields because of its good corrosion
resistance, heat resistance, and mechanical properties [1–6]. However, in high temperatures
and complex environments such as nuclear reactors, wear, corrosion, and low hardness
problems would accelerate the failure of 304 austenitic stainless steel [7,8]. Improving the
surface properties of 304 stainless steel can prolong the service life of the material and
adapt to the complex use environment, which has important research value.

Surface coating technology (such as thermal diffusion treatment, vapor deposition
process, laser cladding, electroplating, etc.) is one of the most direct and effective methods
for improving the surface performance of materials [9–14]. Powder pack-cementation
technology is widely used because it can achieve good bonding between the coating and
the substrate and is simple to operate [15–18]. Zeng et al. [19] prepared a Si-Cr coating
on the surface of AISI 5140 steel by pack-cementation, which significantly improved the
microhardness and wear resistance of the substrate surface. It is generally believed that
the coating prepared by pack-cementation chromizing can significantly improve the wear
resistance and corrosion resistance of materials [20–25]. Zhang et al. [26] prepared a Cr-AlN
gradient composite coating on the surface of Fe-14Cr-18Ni-4Mo-2Nb-3Al alumina-forming
austenitic steel using pack-cementation technology, which significantly improved the room-
temperature microhardness and high-temperature wear resistance of the material. Yang
et al. [27] performed pack-cementation treatment on hot-rolled Fe40Mn20Cr20Ni20 HEA and
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prepared a Cr coating with a BCC structure and diffusion layer on the surface of the HEAs,
which significantly increases the hardness and improves corrosion resistance. However, the
problem with the pack-cementation chromizing method is that the heating method during
the process is usually box furnace heating, and the heating temperature is high and the
holding time is long, which may lead to coarse grains, the overheating of the material core
structure, and even the deterioration of performance.

Compared with the box furnace heating method, the induction heating method has
the advantages of high efficiency and environmental protection [28]. Meanwhile, for the
induction heating method, the current density distribution of the AC of the induction coil
on the cross-section of the conductor is uneven. The surface current density is the largest
and gradually weakens to the center, resulting in the “skin effect” [29–31]. This makes
the surface temperature of the induction heating sample higher, and the core structure
is less affected by induction heating. Hu et al. [32] found that, after the first step of
preboronizing on the surface of AISI 5140 steel using the pack-cementation method, for
the second step of pack-chromizing, induction heating can form a thicker, denser, and
flatter Cr coating compared to box furnace heating, and the efficiency is higher. Therefore,
combining the two technologies of induction heating and pack-cementation can effectively
solve the problems caused by a high heating temperature and long holding time during
the chromizing process, which improves the efficiency of the chromizing process, and
reduces the performance degradation of the core structure of the materials. Considering
the characteristics of 304 austenitic stainless steel such as low strength, good plasticity,
and low stacking fault energy, it is still possible to strengthen the austenitic structure by
introducing deformation and the subsequent annealing treatment, and it is also possible
to explore whether the binding force between the coating and the substrate prepared
by pack-cementation is excellent. Therefore, in this study, the combination of induction
heating and pack-cementation can achieve high efficiency and rapid chromization, and the
subsequent cold-rolling and annealing treatment can optimize the coating performance,
refine the organizational structure, and effectively improve the surface microhardness,
wear resistance, and corrosion resistance of 304 stainless steel.

2. Experiments
2.1. Experimental Materials

In this study, the selected substrate was a commercial 304 austenitic stainless steel
(304SS) plate, and the sample size was 25 × 20 × 6 mm3. For the pack-cementation coating
technology, the size of the samples to be coated can be further enlarged to meet needs.
It is necessary to ensure that the sample to be coated can be completely wrapped by the
packaging powder and fully heated. The chemical composition (mass fraction) is shown in
Table 1. Before the pack-cementation treatment, 304SS was solution-treated at 1050 ◦C, kept
warm for 1 h, and then water-cooled. The original microstructure of the sample after the
solution treatment is a single austenite grain. As shown in Figure 1, the measured grain size
of austenite is approximately 100 µm, and the austenite structure contains annealing twins.
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Table 1. Chemical composition (wt.%) of the austenitic stainless steel.

C Si Mn Cr Ni S Fe

0.082 0.517 1.208 18.216 8.006 0.002 Bal.

2.2. Coating Sample Preparation and Processing

The experimental process used in this study is shown in Figure 2. Prior to the pack-
cementation treatment, the samples were ground with 150#, 240#, 400#, 600#, and 800#
sandpaper, and the surface of the samples were ultrasonically cleaned by pure alcohol.
The packaging powder formula (mass fraction) was: 45% Cr powder as feedstock; 45%
Al2O3 powder as an inert filler; 5% NH4Cl as the activator, and 5% La2O3 as the modifier.
After the four kinds of powders were fully mixed evenly according to the proportion, place
the packed composite powder and 304SS sample together in a high-temperature-resistant
ceramic crucible. The holes on the crucible cover were inserted into the thermocouple,
and the mixture of high-temperature refractory mud and water glass was used for the
sealing treatment. Then, the mixture was heated to 1000 ◦C in an induction heating furnace
and held for 1 h (the sample is denoted as Coated). Then, the cold-rolling deformation
of the 21% rolling deformation was carried out by a rolling mill (the sample was denoted
as Coated-CR), and, finally, the annealing treatment at 800 ◦C (slightly higher than the
austenite recovery and martensite inversion temperature [33]) for 5 min was carried out by
the box furnace (the sample was denoted as Coated-CR-A), and subjected quickly to water
cooling to prevent the obtained fine equiaxed grain’s further growth.
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2.3. Microstructure Characterization and Property Testing

After pack-chromizing, the sample was cut along the section by wire cutting to fa-
cilitate the observation of the interface microstructure. The phase identification of the
samples (Coated, Coated-CR, and Coated-CR-A) after pack-chromizing was performed
by using an X-ray diffractometer (XRD, DX-2500, Dandong Fangyuan Instrument, Dan-
dong, China). The phases were determined using the International Diffraction Data Center
database [34]. The surface and cross-sectional microstructure and corresponding element
distribution were characterized by using backscattered electron imaging (BSEI), secondary
electron imaging (SEI), energy dispersive spectrometer (EDS, AZtech Max2, Oxford Instru-
ments, London, UK), and electron backscatter diffraction (EBSD, AZtech Max2, Oxford
Instruments, London, UK) installed in a field emission gun scanning electron microscope
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(FEG-SEM, Zeiss Sigma HD, Zeiss, Dresden, Germany). Post-processing of the EBSD data
was performed using the Channel 5 software package. A broad-beam argon ion milling and
polishing system ion milling (Fischione SEM Mill, Export, PA, USA) were used to polish
the sample surface for the EBSD mapping.

The determination of the Vickers hardness across the coating was performed on a
Vickers indenter (HVS-1000Z, Shanghai CSOIF Co., Ltd., Shanghai, China) with a load
of 2 N and a dwell time of 10 s. The friction resistance was tested by the HSE-2M high-
speed reciprocating friction and wear tester (Zhongke Kaihua Science and Technology
Development Co., Ltd., Lanzhou, China). The specific parameters were as follows: the
hard alloy steel ball (GCr15) with a diameter of 6 mm was used to load 15 N, the duration
was 30 min, the frequency was 2 Hz, the wear scar length was 10 mm, and the temperature
was room temperature. In a 3.5% NaCl deionized water solution, the potential polarization
curve of the sample was tested by a GAMRY electrochemical device (Reference 3000,
Warminster, PA, USA), and the corrosion resistance of the coating was evaluated.

3. Results
3.1. Phase Identification

Figure 3 shows the XRD patterns of various samples. The initial material (Uncoated)
exhibits a single austenitic structure. The surface phases of the Coated and Coated-CR
samples are mainly the (Cr,Fe)23C6, (Cr,Fe)7C3, and α-Fe-Cr solid solution phases, which is
consistent with the results in the literature [28]. The surface phases of the annealed samples
are mainly Cr23C6, Cr7C3, Cr2C, and Cr3C2. After cold-rolling, a martensite peak appears in
the matrix structure of the Coated-CR sample, which is mainly the deformed α’-martensite
structure. The martensitic phase has lower free energy than the austenitic phase at room
temperature, which is the driving force for the transformation of austenite to martensite
during cold deformation [35,36]. Therefore, austenite undergoes deformation-induced
martensitic transformation during cold deformation. The transformation of austenite,
which is a metastable phase at room temperature, to martensite can be stimulated by
thermal driving forces (cryogenic treatment [37]) or mechanical driving forces (deforma-
tion [36]). The deformed martensite phase can be reversed into the austenite phase during
heat treatment. There is still a certain amount of α’-martensite in the Coated-CR-A sample.

Materials 2024, 17, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. XRD phase profiles of various samples. 

3.2. Microstructure Characteristics of the Coating 
Figure 4 displays the cross-sectional microstructure of the Coated sample and the 

corresponding results of EDS map scanning, line scanning, and point scanning after pack-
chromizing. It can be seen that the cross-sectional microstructure of the Coated sample 
after chromizing is mainly divided into the coating and substrate (see Figure 4a). Through 
an XRD phase analysis, it can be known that the coating is mainly composed of (Cr,Fe)23C6, 
(Cr,Fe)7C3, and α-Fe-Cr. Among them, (Cr,Fe)23C6 and (Cr,Fe)7C3 are mainly columnar 
crystals precipitated at a certain angle along the grain boundary. The formation of colum-
nar crystals is mainly related to the precipitation of C atoms along the grain boundary 
from the matrix to the coating. The coating is mainly the α-Fe-Cr solid solution phase. 
From Figure 4b, it can be seen that the thickness of the coating is about 100 µm, and the 
Cr element between 90 µm and 100 µm shows a certain gradient decrease, which indicates 
that there is a certain transition layer between the coating and the matrix. The distribution 
of Cr and Fe elements in the coating can be seen in Figure 4c. The distribution boundaries 
of Cr and Fe elements between the coating and the matrix are obvious, and the element 
drops sharply, indicating that the transition zone between the coating and the matrix is 
narrow. The point scanning data in Figure 4d are the element contents in the S1, S2, and 
S3 regions in Figure 4a. The content of Cr (mass percentage) decreases from 44.82% of S1 
on the surface of the coating to 20.64% of S3 in the matrix region, indicating that the con-
tent of Cr in the coating decreases gradually along the direction of the coating to the ma-
trix, while the content of Fe is the opposite. Compared with the Fe atom, the C atom makes 
it easier to form carbon-chromium compounds with the Cr atom [28]. In the diffusion pro-
cess, the activation energy required for lattice diffusion is greater than that for grain 
boundary diffusion, so the grain boundary is used as a high-speed channel for diffusion. 
The atomic radius of the C atom is much smaller than that of the Fe atom, and it is easier 
to diffuse to the coating through the grain boundary in the diffusion process. Due to the 

Figure 3. XRD phase profiles of various samples.



Materials 2024, 17, 3589 5 of 15

3.2. Microstructure Characteristics of the Coating

Figure 4 displays the cross-sectional microstructure of the Coated sample and the
corresponding results of EDS map scanning, line scanning, and point scanning after pack-
chromizing. It can be seen that the cross-sectional microstructure of the Coated sample
after chromizing is mainly divided into the coating and substrate (see Figure 4a). Through
an XRD phase analysis, it can be known that the coating is mainly composed of (Cr,Fe)23C6,
(Cr,Fe)7C3, and α-Fe-Cr. Among them, (Cr,Fe)23C6 and (Cr,Fe)7C3 are mainly columnar
crystals precipitated at a certain angle along the grain boundary. The formation of columnar
crystals is mainly related to the precipitation of C atoms along the grain boundary from
the matrix to the coating. The coating is mainly the α-Fe-Cr solid solution phase. From
Figure 4b, it can be seen that the thickness of the coating is about 100 µm, and the Cr
element between 90 µm and 100 µm shows a certain gradient decrease, which indicates
that there is a certain transition layer between the coating and the matrix. The distribution
of Cr and Fe elements in the coating can be seen in Figure 4c. The distribution boundaries
of Cr and Fe elements between the coating and the matrix are obvious, and the element
drops sharply, indicating that the transition zone between the coating and the matrix is
narrow. The point scanning data in Figure 4d are the element contents in the S1, S2, and S3
regions in Figure 4a. The content of Cr (mass percentage) decreases from 44.82% of S1 on
the surface of the coating to 20.64% of S3 in the matrix region, indicating that the content
of Cr in the coating decreases gradually along the direction of the coating to the matrix,
while the content of Fe is the opposite. Compared with the Fe atom, the C atom makes
it easier to form carbon-chromium compounds with the Cr atom [28]. In the diffusion
process, the activation energy required for lattice diffusion is greater than that for grain
boundary diffusion, so the grain boundary is used as a high-speed channel for diffusion.
The atomic radius of the C atom is much smaller than that of the Fe atom, and it is easier to
diffuse to the coating through the grain boundary in the diffusion process. Due to the low
content of the C atom in 304 stainless steel, the carbides in the coating are mainly formed at
the grain boundary near the side of the matrix material.
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To further figure out the change in the microstructure of the coating, the cross-sectional
of the induction-heated chromizing sample was characterized by EBSD, as shown in
Figure 5. Figure 5a illustrates the inverse pole figure (IPF), and the grain orientation of
the Coated sample is relatively uniform without an obvious preferred orientation of a
certain crystal plane. Figure 5b is the grain boundary (GB) map. It can be observed that
the boundary between the Cr layer and the matrix is obvious. The size of the austenite
grain near the coating is bigger than that far from the coating, and the number of twins
in the coarse austenite region is less. The austenite grain coarsening is mainly reflected in
grain boundary migration, involving thermal activation, diffusion, and interface reactions.
Grain coarsening is comprehensively controlled by the driving force and grain boundary
movement resistance. During the pack-cementation heating, the growth and coarsening of
austenite grains are driven by the reduction in boundary energy. At the same time, there
will also be resistance from the diffusion activation energy and carbide particle pinning [38].
The interstitial solid solution and carbide content in austenite are reduced, and the pinning
effect is greatly reduced, resulting in the obvious growth of the austenite grain near the Cr
coating. Figure 5c is the locally enlarged drawing in Figure 5b. It presents more clearly the
bonding area between the coating and the matrix, where the coarse austenite grains are
divided by twin boundaries. Figure 5d shows the misorientation distribution and inverse
pole figures. It can be seen that the fluctuation of the grain boundary between 2◦ and
10◦ in the low-angle boundaries region (2–15◦) is obvious, and the low-angle boundaries
generated in the austenite matrix organization. The large-angle boundaries region (>15◦)
is mainly composed of 40–50◦ grain boundaries and 60◦ twin boundaries, which are the
austenite grain boundary, columnar grain boundary, and twin boundary of Fe-Cr carbide.
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After the chromizing treatment, the modified chromizing layer was prepared on the
surface of 304 stainless steel, but the matrix grain became coarse due to heat treatment,
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which reduced its hardness and affected the performance of the matrix material. The
microstructure of the matrix is transformed from equiaxed austenite grain with a diameter
of 100 µm to coarse austenite grain with a diameter of 100–500 µm. The austenite grains at
the interface between the infiltration layer and the matrix are coarser. Coarse grains would
lead to a reduction in the hardness and properties of the matrix and a weakening of the
bond between the coating and the matrix. Therefore, in this paper, deformation annealing
treatment is introduced to solve these defects in the process of chromizing to achieve the
effect of grain refinement.

3.3. Effect of Cold-Rolling Deformation on Coating

The structure of 304 stainless steel is metastable austenite at room temperature, and
the austenite grain is refined during rolling deformation, which will also transform into
deformation-induced martensite [39–41]. It is reported that deformation-induced marten-
site has a finer grain size and higher strength than austenite [42], so the rolling deformation
will refine the grain and improve the strength of 304 stainless steel. The BSEI images of
the 21% rolling deformation sample (Coated-CR) are shown in Figure 6. It can be seen
that there are no cracks and defects between the chromized 304 stainless steel and matrix
after the cold-rolling treatment (see Figure 6a,b), which indicates that the metallurgical
bonding between the coating and matrix is very close. The slip bands appear in the coating
at an angle of approximately 45◦ to the matrix, which indicates that the microstructure of
the coating also has a certain deformation in cold-rolling. The slip bands in the austenite
grains are interlaced and entangled, and dislocations accumulate here to form deformation-
induced martensite. The stress at grain boundaries and slip bands is more concentrated,
and the deformation-induced martensite is mainly formed at the grain boundaries and slip
bands, which is consistent with the results reported in the literature [43].

Materials 2024, 17, x FOR PEER REVIEW 8 of 17 
 

 

form deformation-induced martensite. The stress at grain boundaries and slip bands is 
more concentrated, and the deformation-induced martensite is mainly formed at the grain 
boundaries and slip bands, which is consistent with the results reported in the literature 
[43]. 

 
Figure 6. BSEI images showing the cross-sectional microstructure of the Coated-CR sample.: (a-d) 
different magnification microstructure. 

After the cold-rolling deformation, the deformation of the coating is compressed and 
the organizational structure is divided by slip bands. The austenite grains in the matrix 
structure are divided into irregular fine grains due to the slip bands, and, under the action 
of the cold-rolling deformation, part of the austenite transforms into α’-martensite. α’-
martensite is mainly concentrated in the stress concentration location such as slip bands 
and grain boundaries. The above effects provide internal stress and a driving force for 
annealing to refine the grains. It should be noted that the thickness of the Coated sample 
is reduced due to the cold-rolling deformation, and the thickness of the surface coating is 
less than 100 µm. 

3.4. Effect of Annealing Treatment on Coating 
The annealing process is mainly controlled by the annealing temperature and anneal-

ing time. The fine equiaxed austenite microstructure can be obtained by the appropriate 
annealing process parameters to refine the grains and improve the microstructure and 
properties of the matrix [44]. Figure 7 displays the cross-sectional micromorphology of 
the Coated-CR-A sample and the corresponding element distribution. The microstructure 
of the coating is divided into two different morphologies. The coating near the surface is 
a continuous lamellar structure, and the coating near the matrix is discontinuous fine den-
drites and a darker lamellar structure (see Figure 7a). Combined with an XRD phase anal-
ysis, it can be known that the continuous layered structure is chromium carbide. There 
are deformed grains and slip bands after the rolling deformation in the matrix organiza-
tion, and there are also fine equiaxed crystals produced by recrystallization. It can be seen 
that, under the experiment conditions of holding at 800 °C for 5 min and rapid cooling, 
the matrix organization is not completely annealed, which is consistent with the result of 

Figure 6. BSEI images showing the cross-sectional microstructure of the Coated-CR sample:
(a–d) different magnification microstructure.

After the cold-rolling deformation, the deformation of the coating is compressed and
the organizational structure is divided by slip bands. The austenite grains in the matrix
structure are divided into irregular fine grains due to the slip bands, and, under the action
of the cold-rolling deformation, part of the austenite transforms into α’-martensite. α’-
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martensite is mainly concentrated in the stress concentration location such as slip bands
and grain boundaries. The above effects provide internal stress and a driving force for
annealing to refine the grains. It should be noted that the thickness of the Coated sample is
reduced due to the cold-rolling deformation, and the thickness of the surface coating is less
than 100 µm.

3.4. Effect of Annealing Treatment on Coating

The annealing process is mainly controlled by the annealing temperature and anneal-
ing time. The fine equiaxed austenite microstructure can be obtained by the appropriate
annealing process parameters to refine the grains and improve the microstructure and
properties of the matrix [44]. Figure 7 displays the cross-sectional micromorphology of
the Coated-CR-A sample and the corresponding element distribution. The microstructure
of the coating is divided into two different morphologies. The coating near the surface
is a continuous lamellar structure, and the coating near the matrix is discontinuous fine
dendrites and a darker lamellar structure (see Figure 7a). Combined with an XRD phase
analysis, it can be known that the continuous layered structure is chromium carbide. There
are deformed grains and slip bands after the rolling deformation in the matrix organization,
and there are also fine equiaxed crystals produced by recrystallization. It can be seen
that, under the experiment conditions of holding at 800 ◦C for 5 min and rapid cooling,
the matrix organization is not completely annealed, which is consistent with the result of
XRD that martensite still exists in the matrix. Figure 7b,c are the local magnification of
the infiltration layer. The columnar crystal of Fe-Cr carbide similar to the Coated sample
appears in the coating (see Figure 7b,c). This is because the C atom diffuses to the coating
along the grain boundary during annealing. The grain boundary of the columnar crystal
during chromizing and the slip bands generated by cold-rolling provides a channel for
the diffusion of the C atom to the coating [45,46]. The Cr atoms combine with diffused C
atoms to form carbon-chromium compounds in the coating. During the C atom diffusion
process, the subsequent rapid cooling by water terminated the diffusion of the C element
and the reaction with the Cr element, so the formed microstructure has the network struc-
ture, and fine dendritic precipitation crystals form around the columnar grain boundary
(see Figure 7c). In addition, the content of the Cr and C element decreases gradually
from the surface to the matrix (see Figure 7d). With the increase in diffusion channels
of the C element and the more sufficient combination of the Cr element, compact flake
carbon-chromium compounds were formed.
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To further understand the evolution of the structure and the changes in grains in the
Coated-CR-A sample, EBSD testing and analysis of the cross-section of the Coated-CR-A
sample were performed and the EBSD results are shown in Figure 8. It can be clearly
seen from the BC map that there is still an obvious boundary between the coating and the
matrix after annealing (see Figure 8a). It is worth noting that there are still slip bands in
the coating, while the slip bands of the matrix are significantly reduced, which indicates
that the annealing recrystallization temperature of the coating is higher than that of the
matrix. Compared with the grain size of the Coated sample (see Figure 5), the grain size of
the Coated-CR-A sample after annealing is significantly refined (see Figure 8b). Especially,
there are more fine grains at the stress concentration of the rolling deformation, because
the content of α’-martensite at the stress concentration is more. In the annealing process,
the deformation-induced martensite transforms into austenite in the inverse phase, and
the deformed grains also recrystallize. Due to the short holding time, the equiaxed grains
cannot grow and form fine equiaxed grains. Obviously, the grain boundaries in the Coated-
CR-A sample are mainly composed of more low-angle boundaries and a small number of
large-angle boundaries (see Figure 8c). It can be seen from the grain boundary map that
the matrix structure after annealing is not uniform, and some grains are also filled with
small gray grain boundaries, because the deformation of this part of the grain in the rolling
process is large, and part of the grains have not yet fully recovered during annealing. Some
equiaxed grains without low-angle grain boundaries are produced by recrystallization. It
can be observed from the phase map that the Coated-CR-A sample mainly consists of fcc
and bcc phases (see Figure 8d). The coating near the matrix is mainly the bcc phase, which
is the body-centered cubic phase of the α-Fe-Cr solid solution. The content of the fcc phase
in the matrix is relatively high and the fcc phase is the austenite phase, indicating that the
fine austenite is mainly formed by the recrystallization of deformed austenite and a small
amount of α’-martensite reverse transformation.
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3.5. Mechanism Analysis

Through the microstructure analysis of the annealed sample, it can be known that
the matrix microstructure of the sample after rolling and annealing is composed of fine
equiaxed austenite grains and deformed martensite. The microstructure of the coating is
divided into surface-dense lamellar carbon-chromium compounds, and the α-Fe-Cr solid
solution near the matrix is body-centered cubic. The combination between the coating
and the matrix microstructure is close, without cracks and holes. Figure 9 illustrates
the mechanism of the effect of the cold-rolling deformation and subsequent annealing
treatment on the coating. Before the cold-rolling deformation, the Coated sample consists
of a coating and an austenite matrix (containing a small number of twins), where the coating
is composed of (Fe,Cr)xCy and Fe-Cr solid solution with a body-centered cubic structure
(see Figure 9a). After the Coated sample is deformed by cold-rolling, obvious and more
slip bands appear on the surface coating. The matrix undergoes a deformation-induced
phase transformation, and part of the austenite transforms into α’-martensite and the grains
are refined (see Figure 9b). Figure 9c is a schematic diagram of atomic diffusion during
the annealing process in the dotted box area in Figure 9b. It can be seen that the C atom
diffuses from the matrix organization to the coating through the slip band and the crystal
boundary, and combines with the Cr atom in the coating to form the carbon-chromium
compound. As we can see in Figure 9d, after the cold-rolling deformation and subsequent
annealing treatment, the surface coating of the Coated sample is divided into two layers,
which are the continuous and dense carbon-chromium compound in the surface layer and
the Fe-Cr solid solution with a body-centered cubic structure in the subsurface layer. The
α’-martensite in the matrix is transformed into austenite during the annealing process but
a small amount of α’-martensite is still retained. The austenite grains are equiaxed and
the grains do not grow significantly. The carbon-chromium compounds in the coating
greatly improve the hardness of the coating, and the matrix structure is also refined and
strengthened, so the performance is improved.
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4. Performance Comparison
4.1. Microhardness

Figure 10 shows the microhardness distribution along the depth direction of 304 stain-
less steel Uncoated, Coated, and Coated-CR-A samples. It can be clearly seen that the
microhardness of the samples (Coated and Coated-CR-A samples) after chromizing presents
a gradient distribution along the depth direction. This gradient distribution of hardness
is beneficial to the material properties and can make the material have a high external
hardness and good internal toughness [47]. The gradient change in microhardness is caused
by the concentration gradient of the Cr element in the coating because, in this study, the
carbon-chromium compound contributed the most to the improvement in microhardness.
The microhardness of the Coated sample is approximately 400 HV, which is due to the low
content of the C element in 304 stainless steel, and the lack of the C atom diffusion channel
in the coating and the carbide formed cannot be evenly distributed on the surface coat-
ing. The coating after cold rolling and annealing is a dense carbon-chromium compound
layer, which greatly improves the microhardness, and its hardness is 1120 HV. Meanwhile,
the grains are refined in the matrix. Under the action of fine grain strengthening, the
microhardness of the Coated-CR-A sample matrix is about 40 HV higher than that of the
Uncoated sample.
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4.2. Wear Resistance

Figure 11 displays the wear amount and friction coefficient of Uncoated, Coated,
and Coated-CR-A samples. As shown in Figure 11a, the wear amounts of Coated and
Coated-CR-A samples are only 0.46 and 0.16 mg, respectively, which is much smaller than
the Uncoated sample (0.84 mg). It indicates that the Cr coating in this study significantly
improved the wear resistance of the material surface. Figure 11b presents the friction
coefficient curves of the above three samples as a function of time. The friction coefficient of
the Uncoated sample increases rapidly after contact with the friction pair, and then begins
to stabilize. The friction coefficient of the Coated and Coated-CR-A samples increases
slowly after contact with the friction pair and gradually stabilizes after about 10 min. This
is mainly due to the high hardness of the Cr coating. The average friction coefficient of
the Uncoated sample is 0.303, that of the Coated sample is 0.206, and that of the Coated-
CR-A sample is 0.344. Generally speaking, when the friction coefficient is reduced, the
wear resistance can be enhanced [26,32]. The friction coefficient of the Coated sample is
lower than that of the Uncoated sample, and the Coated sample has better wear resistance.
However, the friction coefficient is not completely positively related to the wear resistance.
After the Coated-CR sample is annealed (without atmosphere protection or vacuum), the
surface of the material is oxidized, the surface roughness increases, and the lubrication
effect becomes worse, resulting in an increase in friction coefficient. However, this does
not mean the resistance of the Coated-CR-A sample is worse than that of the Uncoated
sample. For example, the brake pad material in automobiles has a large friction coefficient



Materials 2024, 17, 3589 12 of 15

but still has excellent wear resistance. Comparing the wear amount, Coated-CR-A has a
much smaller wear amount, so Coated-CR-A has the most excellent wear resistance.
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4.3. Surface Corrosion Resistance

The electrochemical test was carried out in a 3.5% NaCl solution. Figure 12 shows the
polarization curves of the Uncoated, Coated, and Coated-CR-A samples. Obviously, the
corrosion potential (Ecorr) of the Coated sample is the highest, followed by the Coated-
CR-A sample, and the Uncoated sample is the smallest. A higher corrosion potential
usually means that the corrosion behavior is difficult to start and develop, and the trend
of corrosion is inhibited. Table 2 summarizes some important parameters obtained from
the electrochemical test, in which the corrosion rate (CR) is calculated using the Faraday
formula [25], as follows:

CR(mm/y) =
3.27 × 10−3 × jcorr × EW

ρ
(1)
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Table 2. Electrochemical parameters of various samples.

Samples Ecorr (mv) jcorr (µA/cm2) CR (mm/y)

Uncoated −618 3.06 0.0353
Coated −159 0.189 0.0022

Coated-CR-A −430 6.26 0.0723

In this formula, jcorr is the corrosion current density (µA/cm2), EW is the equivalent
of the measured material (about 28), and ρ is the density of the material (about 7.93 g/cm3).
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The smaller the value of the corrosion current density (jcorr) is, the lower the corrosion
rate is. The lower the current density, the lower the rate at which metal materials are
damaged [48]. The corrosion potentials of the three samples are −618, −159, and −430
mV, respectively. The corrosion current densities are obtained at the point where the anode
Tafel curve and the cathode Tafel curve intersect, which are 3.06, 0.189, and 6.26 µA/cm2,
respectively. The corrosion rates of the three samples were calculated to be 0.0353, 0.0022,
and 0.0723 mm/y, respectively. The corrosion rate of the Coated sample is the lowest.
From the above results, it can be concluded that the corrosion resistance of the Coated
sample is the best. The Cr element plays a key role in improving corrosion resistance.
The dense Cr2O3 film formed in the passive film of stainless steel plays a major role in
corrosion resistance [49]. Compared with the Uncoated sample, the corrosion rate of the
Coated-CR-A sample after corrosion is faster than that of the Uncoated sample. This is
mainly because the grain of the coating after the cold-rolling and annealing treatment is
refined, and the increase in grain boundary leads to an increase in the corrosion rate. Even
though the corrosion jcorr and corrosion rate are the highest, the corrosion potential of
the Coated-CR-A sample is larger, indicating that the Coated-CR-A sample has a higher
threshold at which corrosion begins and it is more difficult for corrosion to occur. This
improves the corrosion resistance to a certain extent.

5. Conclusions

In this study, a Cr coating was prepared on the surface of commercial 304 austenitic
stainless steel by pack-cementation, and the coated samples were subjected to cold-rolling
deformation and the subsequent annealing. The microstructure, microhardness, and wear
resistance of Uncoated, Coated, Coated-CR, and Coated-CR-A samples were characterized
and tested. The main conclusions are drawn as follows.

(1) By pack-cementation, a continuous and dense Cr coating of approximately 100 µm is
formed on the surface of commercial 304 austenitic stainless steel. The Cr coating is
mainly composed of (Cr,Fe)23C6, (Cr,Fe)7C3, and α-Fe-Cr solid solution.

(2) After the cold-rolling and annealing treatment, the grains are significantly refined, the
coating and the matrix are still well-bonded, and the coating is divided into two layers.
The surface layer is composed of carbon-chromium compounds such as Cr23C6, Cr7C3,
Cr2C, and Cr3C2, while the subsurface layer is composed of a single uniform Fe-Cr
solid solution with a body-centered cubic structure.

(3) The concentration gradient distribution of the Cr element in the coating leads to
the gradient distribution of microhardness, which makes 304 austenitic stainless
steel a functionally graded material with a high external hardness and good internal
toughness. The Cr coating significantly improves the microhardness, wear resistance
and corrosion resistance.
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