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Abstract: Viruses pose a significant threat to human health, causing widespread diseases and
impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant,
is well known for its antiviral properties. This systematic review examines the antiviral potential of
Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters.
Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral
activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and
explored related signaling pathways. Moreover, a classified summary of the active components
of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important
clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that
Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit
the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla
frutescens may involve several pathways, including enhanced immune function, modulation of
inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results
underscore the potential antiviral application of Perilla frutescens as a natural plant and provide
important implications for the development of new antiviral drugs.
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1. Introduction

The role of viral infection in human diseases is significant, and ensuring the preven-
tion of viral infection is a crucial aspect in safeguarding public health. Certain infectious
diseases demonstrate extensive spread and high infectivity, profoundly impacting the
global economy and politics. Furthermore, some viruses can induce chronic infectious
conditions such as human immunodeficiency virus (HIV) [1,2], hepatitis B virus (HBV) [3,4],
and hepatitis C virus (HCV) [5,6]. These conditions progress gradually and chronically,
leading to reduced labor capacity in patients and decreased life expectancy. Consequently,
these viruses profoundly affect both the quality of life for patients as well as economic
aspects. The association between certain tumors and viruses is well-established, such as
Epstein Barr virus with nasopharyngeal carcinoma [7,8], human papillomavirus with cervi-
cal cancer [9–11], and human herpesvirus type 8 (HHV-8) with Kaposi’s sarcoma [12,13].
Viruses exhibit a high mutation rate and continuously generate new variants, posing a
significant threat to human health.

The antiviral potential of numerous natural compounds has been demonstrated in
various studies, revealing the ability of numerous plant extracts and secondary metabolites
to effectively inhibit viral replication and transmission [14]. The mechanisms of antiviral
action are diverse, encompassing interference with viral entry into host cells, inhibition of
viral gene expression, disruption of viral assembly, and augmentation of the host immune
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response [15]. For instance, flavonoids primarily inhibit viral protease activity to prevent
viral replication [16]. On the other hand, terpenoids mainly interfere with the fusion of
viruses and host cell membranes to impede virus entry into host cells [17]. Additionally,
certain polyphenolic compounds directly hinder the cytopathic effect [18]. These findings
establish a crucial scientific foundation for the development of novel antiviral medications.

The annual herb Perilla frutescens (L.) Britt., belonging to the Labiatae family, ex-
hibits medicinal and culinary properties in traditional Chinese medicine (TCM) [19]. Its
dried stems, leaves, and seeds have been utilized as medicinal materials. Perilla frutescens
has demonstrated pharmacological activities, including anti-fungal [20], antiviral [21],
anti-cancer [22,23], hypoglycemic, and heart-protective effects [24,25]. In this paper, the
Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform
(TCMSP) (https://old.tcmsp-e.com/tcmsp.php, accessed on 23 July 2023) were used to
sort all reported monomer components of Perilla frutescens by oral bioavailability (OB). The
term “oral bioavailability” (OB) refers to the extent and rate at which a drug is absorbed
into the systemic circulation. It serves as a crucial parameter for objectively assessing
both the oral bioavailability and intrinsic quality of a drug, while also serving as a pivotal
criterion for determining its potential as a therapeutic agent. A higher OB value indicates
an increased likelihood of clinical development for the compound [26]. Then, the names
of monomer components of Perilla frutescens exhibiting OB values exceeding 20% were
searched in PubMed and Web of Science databases, using keywords such as “antiviral”.
More than 200 recently published papers were reviewed and discussed. This paper focuses
on reviewing the antiviral activities of these primary components and their derivatives.
The antiviral mechanisms are described in terms of the chemical structure, pharmacological
parameters, and bioavailability of these components against viruses.

This review classification summarizes the antiviral abilities of monomeric components
of Perilla frutescens with OB greater than 20% against various viruses and their mechanism
of action. Furthermore, exploring potential synergistic effects by combining these drugs
could pave the way for developing more effective antiviral strategies. In summary, Perilla
frutescens shows promising potential as an antiviral drug candidate, highlighting the need
for further preclinical studies and clinical trials.

2. The Application of Bioinformatics Analysis to Explore the Correlation between
Perilla frutescens and Antiviral Activity

The keyword “Perilla frutescens” was initially searched in the TCMSP firstly, resulting in
the retrieval of 2481 target names. To facilitate analysis, the target proteins were transformed
to standard gene symbols, ultimately yielding 397 gene symbols. Similarly, a total of
190 Perilla frutescens related target genes were obtained from the Encyclopedia of Traditional
Chinese Medicine (ECTM, http://www.tcmip.cn/ETCM/, accessed on 24 October 2023),
while an additional 484 Perillae Folium related target genes were identified in the Symptom
Mapping (SymMap, https://www.Symmap.org/, accessed on 25 October 2023). After
merging these obtained target genes and removing duplicates, a comprehensive set of
671 unique Perilla frutescens-related target genes was identified.

Furthermore, we employed the GeneCards (https://www.genecards.org/, accessed
on 31 October 2023), a comprehensive resource for disease-related information [27], to
extract target genes associated with herpes simplex virus (HSV), Severe Acute Respiratory
Syndrome Coronavirus-2 (SARS-CoV-2), influenza virus, and human immunodeficiency
virus (HIV). This enabled us to integrate these virus-associated target genes with the
Perilla-related target genes for subsequent analysis.

The analysis revealed a significant overlap between 671 Perilla target genes and
2791 HSV-related target genes, 6899 SARS-CoV-2-related target genes, 3211 influenza
virus-related target genes, and 9015 human immunodeficiency virus-related targets. This in-
dicates that Perilla frutescens exhibits substantial antiviral potential, as depicted in Figure 1.

https://old.tcmsp-e.com/tcmsp.php
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tabase for Annotation, Visualization and Integrated Discovery (DAVID, https://da-
vid.ncifcrf.gov/, accessed on 5 November 2023) to analyze the comprehensive set of target 
genes associated with Perilla frutescens, and conducted separate analyses to assess Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment of these target genes. The GO terms in Biological Process (BP), Molecular 
Function (MF), and Cellular Component (CC) categories were ranked based on gene ratio 
applying Benjamini–Hochberg correction at a significance level of p < 0.05. 

Through GO enrichment analysis on the DAVID platform, the predicted enrichments 
of Perilla frutescens targets primarily involve the regulation of signal transduction, positive 
transcriptional regulation from RNA polymerase II promoter, negative regulation of 
apoptotic process, and inflammatory response, as illustrated in the top 10 biological pro-
cesses (BP) shown in Figure 2A. Furthermore, the GO enrichment analysis for overlapping 

Figure 1. The targets of Perilla frutescens against viral infection. (A) The number of target genes
associated with Perilla frutescens retrieved from three publicly available databases. (B) The number of
target genes associated with prevalent viral pathogens from GeneCards database. (C) Venn diagram
depicting common target genes between diseases associated with viral infections and Perilla frutescens.

To further investigate the biological function of Perilla frutescens, we utilized the
Database for Annotation, Visualization and Integrated Discovery (DAVID, https://david.
ncifcrf.gov/, accessed on 5 November 2023) to analyze the comprehensive set of target
genes associated with Perilla frutescens, and conducted separate analyses to assess Gene
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment of these target genes. The GO terms in Biological Process (BP), Molecular
Function (MF), and Cellular Component (CC) categories were ranked based on gene ratio
applying Benjamini–Hochberg correction at a significance level of p < 0.05.

Through GO enrichment analysis on the DAVID platform, the predicted enrichments
of Perilla frutescens targets primarily involve the regulation of signal transduction, pos-
itive transcriptional regulation from RNA polymerase II promoter, negative regulation
of apoptotic process, and inflammatory response, as illustrated in the top 10 biological
processes (BP) shown in Figure 2A. Furthermore, the GO enrichment analysis for overlap-
ping genes between Perilla frutescens and diseases associated with viral infections aligns
with the GO results for total targets of Perilla frutescens as depicted in Figure 2B. This sug-

https://david.ncifcrf.gov/
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gests that these molecular functions may play a crucial role in enhancing Perilla frutescens’
antiviral capability.
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Figure 2. Gene Ontology enrichment analysis revealed the potential of Perilla frutescens against
viral infection. (A) The top 10 results of enrichment analyses for biological processes (BP), cellular
components (CC), and molecular functions (MF) were obtained based on the predicted targets of
Perilla frutescens. (B) The top 10 results of enrichment analyses for biological processes (BP), cellular
components (CC), and molecular functions (MF) were obtained based on the overlap genes between
Perilla frutescens and diseases associated with viral infections.
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The KEGG pathway enrichment analysis identified the top 20 enriched terms in
Perilla frutescens using the DAVID database, revealing associations with pathways involved
in cancer and viral infection. Furthermore, comparison of overlapping genes between
Perilla frutescens and diseases associated with viral infections showed that 90% of the top
20 enriched terms aligned with the KEGG results obtained for total drug predicted targets.
These findings underscored the importance of further investigation into these signaling
pathways to advance research on antiviral treatments, as depicted in Figure 3.
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The integration of bioinformatics analysis suggests that Perilla frutescens, might play a
pivotal role in antiviral processes by regulating diverse biological mechanisms and exerting
antiviral effects through the aforementioned molecular mechanisms.
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3. The Antiviral Properties of Monomer Components Derived from Perilla

From the TCMSP database, we retrieved the monomeric constituents of Perilla frutescens,
ranked their OB, and selected the top 20% with higher OB (%) values for the literature
review using the PubMed database. Based on compound classification, our objective was
to summarize the reported active components associated with antiviral activity.

3.1. Phenols

Phenols and phenolic ethers are significant scaffolds found commonly both in na-
ture and among approved small-molecule pharmaceuticals [28]. These natural phenolic
compounds are widespread in plants, where they serve protective roles against ultraviolet
radiation and other forms of harm [29]. Phenolic compounds possess significant pharmaco-
logical and nutritional characteristics, including anti-inflammatory [30], antibacterial [31],
antiviral [32], and antioxidant [33,34] properties among others. As their value continues to
be recognized by the scientific community, they may emerge as important micronutrients.
Phenolic compounds are recurrent and significant moieties in nature, playing a crucial
role as authorized small molecule drugs [28]. Furthermore, they exhibit inhibitory effects
on viral replicase such as HIV reverse transcriptase and RNA polymerase of influenza
virus [35]. The antiviral activity of numerous polyphenols, including resveratrol, curcumin,
epigallocatechin gallate, indigo, aloe-emodine, quinomethyl triterpenoids, quercetin or
gallates has been identified through computer simulations and in vitro studies involving
cell-free polyphenol–protein interactions and cell-based viral infection models [36]. Some
of these compounds demonstrate promising potential to emerge as dominant agents for
COVID-19 therapeutics.

3.1.1. Thymol

The natural phenolic monoterpenoid thymol (2-isopropyl-5-methylphenol) is primarily
extracted from Thymus species [37]. In the field of traditional Chinese medicine, thymol has
been utilized for an extended period as an expectorant [38], anti-inflammatory [39], antivi-
ral [40], and antibacterial [41,42] agent specifically targeting upper respiratory system diseases.

Thymol exhibited antiviral activity against influenza virus, herpes simplex virus
type 1 (HSV-1) [43], and HIV [44]. It demonstrated the ability to inhibit replication of
IAV and suppress inflammatory mediators, thereby restraining pneumonia development.
Additionally, it reduced interleukin (IL)-4 and IFN (interferon)-γ levels in serum while
enhancing antioxidant activity in lung tissue [45]. These findings suggest that thymol could
be a potential drug candidate for treating influenza infections in mice.

Thymol exhibited antiviral activity by effectively binding to the receptor of SARS-
CoV-2 spike glycoprotein S1 [46]. Transmembrane protease serine 2 (TMPRSS2) proteins
facilitated virus internalization by cleaving the spike protein of SARS-CoV-2 [47]. Stable
binding of thymol with TMPRSS2 induces subtle spatial rearrangements in catalytic triad
residues, making it an excellent inhibitor against SARS-CoV-2.

Additionally, thymol has been documented to exhibit antiviral activity against various
viruses, including norovirus surrogates [48], feline calicivirus (FCV) [48], murine norovirus
(MNV) [48], bovine viral diarrhea virus (BVDV) [49], tomato leaf curl New Delhi virus [50],
and Cyprinid herpesvirus 3 (CyHV-3) [51].

3.1.2. Eugenol

Eugenol, a phenolic aromatic compound primarily derived from clove oil [52], plays a
crucial role in the innate immune response against viruses [53].

Eugenol has antiviral properties against IAV [54] and HSV [55], inhibiting viral repli-
cation. It can also enhance the effectiveness of acyclovir in inhibiting HSV replication.
Additionally, topical application of Eugenol delays the development of herpes virus kerati-
tis in mice models [56]. Meanwhile, Eugenol exhibited potential binding characteristics
with the main proteinase of SARS-CoV-2 [57]. Network analysis revealed that Eugenol inter-
acted with host proteins ACE2, DPP4, COMT, TUBGCP3, CENPF, BRD2 and HMOX1 [58],
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thereby playing an antiviral role in virus entry, viral replication, host immune response and
antioxidant activity. Moreover, Eugenol effectively mitigated intestinal heat necrosis caused
by transmissible gastroenteritis virus (TGEV) by suppressing the activation of NLRP3
inflammasome. This effect may be mediated through modulation of intracellular ROS
levels. These findings suggest Eugenol as a promising strategy for preventing TGEV infec-
tion [53]. Additionally, the results of molecular docking research have also shown Eugenol’s
inhibitory effects on Dengue virus by interacting with the NS1 and NS5 proteins [59]. More-
over, Eugenol has been documented to exhibit antiviral activity against tomato yellow leaf
curl virus (TYLCV) [60], tomato yellow leaf curl Thailand virus (TYLCTHV) [61], human
norovirus, tobacco mosaic virus (TMV) [62], HCV [63], and Feline Calicivirus (FCV) [64].

3.1.3. Protocatechualdehyde

The compound protocatechualdehyde demonstrated significant anti-HBV activity.
In vitro, protocatechualdehyde effectively suppressed the secretion of hepatitis B e anti-
gen (HBeAg) and hepatitis B surface antigen (HBsAg) and reduced the release of HBV
DNA in the HepG2 2.2.15 cell line. In vivo, protocatechualdehyde diminished viremia in
DHBV-infected ducks. As a novel therapeutic agent against HBV, protocatechualdehyde
exhibited potential as an efficacious treatment for HBV infections [65]. The combination
of angiotensin-converting enzyme 2 (ACE2) and the spike protein of SARS-CoV-2 enables
viral entry into host cells by crossing the cell membrane. Transmembrane protease serine 2
(TMPRSS2) modifies SARS-CoV-2 to facilitate cellular access, making ACE2 and TMPRSS2
crucial targets for preventing virus infection. In cell lines and mouse models infected
with SARS-CoV-2, protocatechualdehyde demonstrated potential activity in reducing the
expression of ACE2 and TMPRSS2, suggesting its efficacy in preventing SARS-CoV-2
infection [66].

3.1.4. Methyl Caffeate

Methyl caffeate (MC) significantly inhibited the replication of HIV in peripheral blood
mononuclear cells (PBMCs) without causing noticeable cytotoxicity. In mice infected with
HIV, different doses of MC treatment led to varying degrees of increased expression of IL-2,
IL-4, interferon-gamma (IFN-g), and soluble Fas. However, the expression of granulocyte-
macrophage colony-stimulating factor (GM-CSF) remains unaffected by MC. These findings
suggest that MC has potential as a chemotherapy agent for anti-HIV infection and cytokine
regulation, warranting further investigation [67].

Table 1 presented the antiviral activity of the main phenols found in Perilla frutescens.
The evaluation of drug similarity is crucial in the production and upgrading of drug
entities [68]. We first predicted the physicochemical properties of main phenols according to
Lipinski’s rule of five (Ro5) using Molinspiration cheminformatics (https://molinspiration.
com/, accessed on 8 November 2023). The criteria for the Rule of Five (Ro5) are as follows:
LogP should be less than or equal to 5, molecular weight (MW) should be less than or equal
to 500 Da, the number of hydrogen bond acceptors (n-ON) should be less than or equal
to 10, and the number of violations in terms of hydrogen bond donors (n-OHNH) should
be less than or equal to 5. The compounds that conform to the Rule of Five (Ro5) exhibit
improved pharmacokinetic properties, enhanced bioavailability in biological metabolism,
and therefore possess a higher likelihood of being developed into oral medications [69].
The topological polar surface area (TPSA), which utilizes functional group contributions
derived from a comprehensive database of structures, serves as a convenient metric for
quantifying the extent of polar surface area [70] and a TPSA value ≤ 140 Å represents
good oral bioavailability [68]. The results demonstrated that the main phenols fulfilled
the criteria of Rule of Five (Ro5) and exhibited a TPSA value ≤ 140 Å, as presented in
Table 2. The biological activity analysis of compounds, conducted using Molinspiration
cheminformatics, encompassed G-protein coupled receptor (GPCR) ligands, ion channel
modulators, kinase inhibitors, nuclear receptor ligands, protease inhibitors, and enzyme
inhibitors. A bioactivity score >0 indicated promising activity; a score between −0.50 and

https://molinspiration.com/
https://molinspiration.com/
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0.00 represented moderate activity; while a score ≤ −0.50 indicated no activity [68,71].
These findings suggest that phenolic compounds possess moderate affinity as ion channel
modulators. Physicochemical properties are shown in Table 2 and the bioavailabity of
compounds is seen in Table 3.

Table 1. The main phenolic compounds exhibiting antiviral activity in Perilla frutescens.

Compound’s Name Chemical Structure OB (%) The Drug’s Efficacy against
Specific Virus

Thymol
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Compound’s Name mi Log P MW n-ON n-OHNH TPSA

Thymol 3.34 150.22 1 1 20.23
Eugenol 2.10 164.20 2 1 29.46

Protocatechualdehyde 0.76 138.12 3 2 57.53
Methyl caffeate 1.56 194.19 4 2 66.76

Standard criteria ≤5 ≤500 ≤10 ≤5

Table 3. Bioactivity scores of main phenols in Perilla frutescens based on Molinspiration cheminformatics.

Compound’s Name GPCR
Ligand

Ion
Channel

Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Thymol −1.05 −0.53 −1.29 −0.78 −1.34 −0.57
Eugenol −0.86 −0.36 −1.14 −0.78 −1.29 −0.41

Protocatechualdehyde −1.25 −0.47 −1.25 −0.88 −1.66 −0.65
Methyl caffeate −0.62 −0.32 −0.82 −0.26 −0.78 −0.22

3.2. Terpenoids

Terpenoids, also referred to as isoprenoids, constitute a class of secondary metabolites
found in plants characterized by diverse chemical structures. They are widely recognized
as a vast reservoir of bioactive compounds in nature and hold significant industrial and
pharmaceutical value [72,73]. Terpenoids have been recognized for their multifaceted
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pharmacological effects including anti-cancer [74,75], anti-inflammatory [76,77], antioxi-
dant [76,78], analgesic [79], antibacterial [80,81], antifungal [81,82], hepatoprotective [79,83],
antiviral [84,85] and antiparasitic activities [86,87].

3.2.1. Perillyl Alcohol

Perillyl alcohol is classified as a type of terpenoid compound [88]. It has been scientif-
ically proven to possess potent anti-tumor [89,90], antiviral [91], anti-inflammatory [92],
and antibacterial [93] properties. Protein separation analysis has demonstrated that perillyl
alcohol exhibited strong antiviral activity [94], particularly against HSV-1. The replication
of viral genomes was not inhibited by Perillyl alcohol; instead, it effectively suppressed
the release of infectious viral particles in Vero cells. This suggested that Perillyl alcohol
exerted its effects during the late maturation stage of HSV-1 and holds great potential for
clinical anti-HSV-1 therapy to prevent intermittent reactivation and progressive gray matter
loss [91]. In vitro studies have shown that treatment with perillyl alcohol could reduce
respiratory syncytial virus (RSV) infection by inhibiting host protein prenylation, including
the prenylation of Rho GTPases [95].

3.2.2. Germacron

Germacron, a natural terpenoid, has garnered significant attention due to its diverse
pharmacological properties including anticancer [74,96], antiviral [97,98], antioxidant [99]
and antibacterial effects [96].

The biological activities of germacron are attributed to its ketone and non-conjugated
double bonds [100]. Studies have demonstrated that germacron activated transcription of
interferon genes and protects peripheral cells from IAV infection [100]. Moreover, it exhib-
ited dose-dependent antiviral activity against H1N1 and H3N2 influenza A viruses (IAV)
as well as influenza B viruses (IBV) by reducing viral protein expression, RNA synthesis
and production of infectious progeny viruses in vitro [101]. It also reduced H1N1-induced
lung injury and viral load in serum and whole blood cells while decreasing the expres-
sion of antiviral proteins [102]. Furthermore, combination therapy with germacone and
oseltamivir showed an additive effect on inhibiting influenza virus infection both in vitro
and in vivo suggesting that germacone could be a potential therapeutic agent for treating
influenza virus infections alone or in combination with other drugs [101]. Additionally,
germacron protected cells from Porcine parvovirus (PPV) infection by suppressing viral
mRNA/protein synthesis while inhibiting PRRV replication remarkably without blocking
PRRS binding/entry [97,103]. In addition, germacron was found to have potential as
a therapeutic agent for treating Porcine Reproductive and Respiratory Syndrome Virus
(PRRSV) infection [97]. In vitro studies demonstrated that germacron effectively inhibited
the growth of Feline calicivirus (FCV) strain F9 and exhibited strong antiviral effects against
FCV primarily during the early stages of its life cycle [104], with efficacy dependent on drug
concentration. Meanwhile, germacron treatment significantly suppressed the replication
rates of reference strains 2280 and Bolin, as well as WZ-1 and HRB-SS strains isolated from
China [97]. Additionally, germacron dose-dependently inhibited Pseudo rabies virus (PRV)
replication in vitro and displayed antiviral activity against PRV during the initial phases of
viral replication. Importantly, it did not directly kill the virus nor affect the expression of
PRV receptor proteins nectin-1, nectin-2, or CD155, and the possible antiviral mechanism
was affecting the cellular antiviral mechanisms [105].

3.2.3. Patchouli Alcohol

The tricyclic sesquiterpene patchouli alcohol (PA) has been reported to possess a wide
range of health-promoting activities, including antiviral effects against influenza [17,106],
antidepressant properties [107], tissue-protective effects against injury [108,109], vascular
relaxation abilities [110], lung and brain protective actions [111], anti-ulcer and anti-colitis
activities [112], potent anti-inflammatory effects [113,114], potential anticancer properties
as well as protective effects against metabolic diseases [115,116].
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The compound PA exhibited potent antiviral activity against IAV both in vitro and
in vivo. It demonstrated dose-dependent inhibition of influenza virus A/PR/8/34 (H1N1),
while showing no activity against influenza virus A/54/89 (H3N2). However, it displayed
weak antiviral activity against influenza virus B/Ibaraki/2/85 [117]. Notably, PA effectively
suppressed viral replication during the early stages of IAV infection [17], suggesting its
potential as a membrane fusion inhibitor for treating IAV infections. Furthermore, PA
specifically hindered the expression of viral proteins hemagglutinin (HA) and nuclear
protein (NP). In hemagglutinin inhibition (HAI) and hemolysis inhibition experiments, PA
was able to block HA2-mediated membrane fusion at low pH levels with a lower binding
energy to HA2 compared to HA1 [17]. Mechanistically, PA targeted the PI3K/Akt and
ERK/MAPK signaling pathways within viral particles and cells to inhibit IAV infection.
Intranasal administration of PA significantly improved survival rates in mice infected
with IAV by reducing pneumonia symptoms, highlighting its potential as an effective
antiviral drug against IAV infection [106]. Additionally, treatment with PA inhibited
cytokine expression and RLH pathway mRNA levels associated with H1N1 influenza virus
infection in vitro [118]. Moreover, through interference with neuraminidase function and
cleavage of α-glycosidic bonds between sialic acid and glycoconjugates, PA also exhibited
anti-influenza A (H2N2) virus activity [119]. Lastly, molecular docking studies combined
with molecular dynamics simulations revealed that PA could serve as an inhibitor for
SARS-CoV-2 enzymes including 3CLpro, PLpro, and NSP15 [120].

3.2.4. Menthol

Peppermint essential oil (PEO), containing menthol as its primary component, ex-
hibited anti-inflammatory [121,122], antibacterial [123], antiviral [124], and antioxidant
properties [122]. Menthol activated transient receptor potential cation channel subfamily M
member 8 (TRPM8), inducing a sensation of “cold” that reduced Coxsackievirus B infection
and mitigated mitochondrial fission during infection. Additionally, menthol stabilized
the level of mitochondrial antiviral signaling (MAVS) protein which is associated with
mitochondrial dynamics [124]. It also influenced the proliferation of herpes simplex virus
type 1 (HSV-1) and pseudorabies virus (PrV), without exhibiting cytotoxic effects at the
tested concentrations [125].

The antiviral activity of main terpenoids in Perilla frutescens, with an OB value exceed-
ing 20%, is presented in Table 4. Their physicochemical properties are listed in Table 5,
while the bioactivity scores are displayed in Table 6. The results showed that main ter-
penoids met the criteria of Ro5 and the value of TPSA ≤ 140 Å and represented promising
or moderate ion channel modulator and enzyme inhibitor affinity.

Table 4. The main terpenoids exhibiting antiviral activity in Perilla frutescens.

Compound’s Name Chemical Structure OB (%) The Drug’s Efficacy against
Specific Virus

Perillyl alcohol
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Table 4. Cont.

Compound’s Name Chemical Structure OB (%) The Drug’s Efficacy against
Specific Virus
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Table 6. Bioactivity scores of the main terpenoids in Perilla frutescens based on Molinspiration
cheminformatics.

Compound GPCR
Ligand

Ion
Channel

Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Perillyl alcohol −0.61 0.04 −1.31 0.03 −0.93 0.14
Germacron −0.36 −0.14 −1.01 −0.03 −0.66 0.25

Patchouli alcohol −0.12 0.37 −0.88 0.55 −0.32 0.40
Menthol −0.76 −0.30 −1.36 −0.60 −0.67 −0.22

3.3. Flavonoids

The flavonoids, a prominent group of phytochemicals present in various plant
species, have demonstrated significant antiviral activity against influenza virus and other
RNA viruses [16,126]. They effectively impede viral replication and infectivity, modulate
the host’s response to viral infection, and hold potential as promising candidates for
antiviral therapeutics.

3.3.1. Luteolin

Luteolin is a 3′, 4′, 5, 7-tetrahydroxyflavonoid that is widely present in various plants,
fruits, and vegetables [127]. Evidence has shown its antiviral [128], anti-inflammatory [129,130],
and immune regulatory functions [131].

Luteolin has been reported to inhibit multiple targets involved in SARS-CoV-2 repli-
cation including Papain-like protease [132–134], Coronavirus main proteinase [133–135],
RNA nucleoside triphosphatases (NTPase)/helicases and Angiotensin-Converting Enzyme
2 [134]. In patients with long-term COVID-19 disease, luteolin could enhance GABAB-ergic
activity and cortical plasticity while also showing potential for treating COVID-19/asthma
comorbidity [136]. By regulating the NF-κB/STAT3/ATF6 signaling pathway, luteolin
inhibited the replication of African swine fever virus in a dose-dependent manner [137]. It
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activated the cGAS-STING signaling pathway to produce IFNs with antiviral effects against
herpes simplex virus 1 infection [138]. Luteolin exhibited antiviral activity against chikun-
gunya virus (CHIKV) without causing cytotoxicity [139]. While it showed no antiviral
activity during viral binding and entry stages of Japanese encephalitis virus (JEV) infec-
tion in vitro, it demonstrated cell killing activity against extracellular JEV particles [140].
Moreover, in vitro and in vivo studies have revealed that luteolin distinctly inhibited Pseu-
dorabies virus (PRV) replication as well as Feline infectious peritonitis virus at different
stages of infection onset [128,141]. Luteolin effectively targeted the post-attachment stage
of EV71 and CA16 infections by suppressing viral RNA replication [142]. In picornavirus
life cycle where 3C protease plays an essential role, luteolin exhibited good binding affin-
ity with foot-and-mouth-disease virus (FMDV) 3CPro thereby hindering FMDV life cycle
through inhibition of its enzymatic activity. Hence, luteolin holds great potential as an
antiviral agent not only against FMDV but also other picornaviruses [143].

3.3.2. Apigenin

Apigenin, a flavonoid with low toxicity [144,145], exhibits diverse beneficial biological
activities including anti-tumor [146,147], antioxidant [148,149], anti-inflammatory [150],
and antiviral effects [126].

In vitro and in vivo studies have demonstrated the potent antiviral activity of apigenin
against buffalopox virus (BPXV) [151]. Mechanistically, apigenin not only directly inhibited
viral polymerase activity but also suppressed viral protein translation. Moreover, apigenin
prevented cell death induced by IAV infection and reduces viral neuraminidase (NA)
activity to impede viral replication. This inhibition is attributed to the disruption of
heat shock protein 90α (Hsp90α) and retinoic acid-inducible gene-I (RIG-I) interaction by
apigenin as well as the promotion of ubiquitin-mediated degradation of RIG-I to attenuate
the RIG-I signaling pathway [144]. Furthermore, apigenin exerted its antiviral effect against
foot-and-mouth disease virus (FMDV) through interference with FMDV translational
activity driven by internal ribosomal entry site rather than direct extracellular virocidal
action [152]. Additionally, apigenin inhibited the initiation of Epstein–Barr virus (EBV)
lytic cycle via suppression of immediate early gene Zta and Rta promoter activation
to prevent EBV reactivation [153]. Notably, previous reports have highlighted distinct
antiviral properties of apigenin against various viruses such as HSV [154], EV71 [155,156],
HCV [157,158], dengue virus (DENV) [159,160], and severe acute respiratory syndrome
coronavirus (SARS-CoV) [161,162].

The antiviral activity of the main flavonoids in Perilla frutescens is presented in Table 7,
while the physicochemical properties of these flavonoids are displayed in Table 8. Ad-
ditionally, the bioactivity scores of the main flavonoids in Perilla frutescens can be found
in Table 9.

Table 7. The main flavonoids exhibiting antiviral activity in Perilla frutescens.

Compound’s
Name Chemical Structure OB (%) The Drug’s Efficacy against
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Table 8. The physicochemical properties of the main flavonoids in Perilla frutescens were assessed
using Molinspiration cheminformatics.

Compound’s
Name mi Log P MW n-ON n-OHNH TPSA

Luteolin 1.73 286.24 6 4 111.12
Apigenin 2.46 270.24 5 5 90.89

Standard criteria ≤5 ≤500 ≤10 ≤5

Table 9. Bioactivity scores of the main flavonoids in Perilla frutescens based on Molinspiration
cheminformatics.

Compound’s
Name

GPCR
Ligand

Ion
Channel

Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Luteolin −0.02 −0.07 0.26 0.39 −0.22 0.28
Apigenin −0.07 −0.09 0.18 0.34 −0.25 0.26

3.4. Sterols

Sterols, which are isoprenoid derivatives, serve as integral components of biological
membranes [163]. They have been widely identified in diverse marine and terrestrial
sources (such as plants, animals, and microorganisms), making them a prevalent category
of natural products. Moreover, sterols encompass numerous subclasses that exhibit a wide
range of biological activities. Notably, sterols demonstrate potential antiviral effects against
various viruses including herpes simplex virus (HSV) [154], and HBV [158]. The steroid
class comprises 25 chemical subclasses with approximately 11,825 previously reported
compounds [164].

β-Sitosterol

β-sitosterol has shown potential as an antiviral compound against HIV, HBV, IAV,
SARS-CoV-2, WSSV, HSV-2, and TMV through various mechanisms such as immunomodu-
lation and inhibition of viral replication.

β-sitosterol has been reported to effectively inhibit the pyrolysis process of the 3C-like
protease (3CLpro) of SARS-coronavirus and closely interact with the main protease (M(pro))
of SARS-CoV-2 [165]. It showed potential as an herbal candidate with antiviral activity
against SARS-CoV-2, making it valuable for future drug development against coronavirus
diseases [166]. Additionally, β-sitosterol acted as a potent inhibitor of white spot syndrome
virus (WSSV), significantly reducing viral load and viral gene transcription levels while
improving survival in crayfish infected with WSSV [167]. Moreover, it exhibited antiviral
activity against herpes simplex virus Type 2 (HSV-2) by directly inactivating viral particles
and demonstrates efficacy against tobacco mosaic virus (TMV) [168]. Furthermore, β-
sitosterol displayed great antiviral potential against avian and human IAVs in vitro [169].

Molecular docking studies have shown that β-sitosterol exerted its antiviral activity
against IAV by binding to hemagglutinin protein, inhibiting viral replication through inter-
ference with viral neuraminidase and IAV M2 protein [169]. In addition, both in vivo and
in vitro studies have demonstrated that β-sitosterol possesses anti-HIV activity through
various immunomodulatory mechanisms such as stabilizing CD4+ T lymphocyte counts
and significantly reducing interleukin-6 levels [170]. It also exhibited remarkable an-
tioxidant properties along with being an anti-HBV agent [170,171], anti-Dengue virus 2
compound [172], and anti-IAV substance [173]. Bioinformatics analysis revealed that β-
sitosterol participates in regulating the TRAF6/MAPK14 axis for its anti-influenza activity
while displaying inhibitory effects on IAV nucleoprotein, polymerase, PBP2A, and DNA
gyrase B [174,175]. Furthermore, it might exert its antiviral effects by inhibiting the fusion
process to impede dengue virus-2 entry [172].
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The antiviral activity of main sterols in Perilla frutescens were showed in Table 10.
Physicochemical properties of main sterols in Perilla frutescens were showed in Table 11.
Bioactivity scores of main sterols in Perilla frutescens were showed in Table 12. The results
showed that β-sitosterol met the criteria of Ro5 and the value of TPSA ≤ 140 Å. Furthermore,
β-sitosterol exhibited promising GPCR ligand, ion channel modulator, nuclear receptor
ligand, protease inhibitor and enzyme inhibitor affinity.

Table 10. The main sterols exhibiting antiviral activity in Perilla frutescens.

Compound’s
Name Chemical Structure OB (%) The Drug’s Efficacy against

Specific Virus
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Compound’s
Name mi Log P MW n-ON n-OHNH TPSA

β-sitosterol 8.62 414.72 1 1 20.23
Standard criteria ≤5 ≤500 ≤10 ≤5

Table 12. Bioactivity scores of the main sterols in Perilla frutescens based on Molinspiration cheminformatics.

Compound’s
Name

GPCR
Ligand

Ion
Channel

Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

β-sitosterol 0.14 0.04 −0.51 0.73 0.07 0.51

3.5. Aldehydes

Aldehydes constitute a class of organic compounds with significant activity, naturally
present in various food sources and ingredients, rendering them highly intriguing in
both academic and industrial contexts. Aldehydes and their derivatives exhibit diverse
effects, including antimicrobial [176], antioxidant [177], anti-inflammatory [178,179], and
immunomodulatory properties [176]. The versatile applications of aldehyde products span
across industries such as cosmetics and pharmaceuticals, making them promising targets
for novel biological drugs [176,180].

Cinnamaldehyde

Cinnamaldehyde (CA) serves as a naturally occurring active ingredient well tolerated
by both humans and animals. The safety of CA has been confirmed by the US Food and
Drug Administration (FDA) and European Commission, who recommend a daily intake
of 1.25 mg/kg [176]. Additionally, CA has been reported to possess numerous health
benefits such as its application in the treatment of gastritis [181], dyspepsia [182], and blood
circulation disorders [183].

The drug has been reported to interact with ACE 2, DPP4, COMT, TUBGCP3, CENPF,
BRD 2 and HMOX 1 host proteins involved in antiviral mechanisms such as viral entry,
replication, immune response and antioxidant activity against SARS-CoV-2 based on
network pharmacology, virtual screening, molecular docking and molecular dynamics
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methods [58]. Meanwhile, it has been reported to possess anti-inflammatory effects and
alleviate lung inflammation caused by SARS-CoV-2 infection [184].

Moreover, a combination of plant essential oils (PEO) from CA and glycerol monolau-
rate (GML) demonstrated significant inhibitory effects on infectious bronchitis virus (IBV),
potentially through inhibition of viral proliferation and promotion of immune function.
This suggested that PEO could be a promising novel anti-IBV drug for inhibiting IBV
infection [185]. Furthermore, CA treatment inhibited the replication of influenza A/PR/8
virus in Madin–Darby canine kidney cells during the growth cycle without cytotoxicity in
a dose-dependent manner. Direct application of CA in the airways significantly rescued
fatal influenza virus-induced pneumonia and reduced lung virus production in infected
mice [186].

Additionally, CA exhibited remarkable therapeutic effects against coxsackie virus B3
(CVB3)-induced viral myocarditis (VMC) [187]. Intraperitoneal injection of CA increased
survival rates and decreased myocardial virus titers in VMC mice. Mechanistically, while
cinnamic acid metabolites contributed to its antiviral activity against VMC by directly alle-
viating inflammatory reactions through inhibition of TLR4-NF-kappaB signal transduction
pathways, brominated cassia bark aldehyde synthesized using CA as the lead compound
not only enhanced antiviral activity against VMC but also exerted strong anti-inflammatory
effects on b type cardiomyocytes [188].

The antiviral activity of aldehydes with an OB greater than 20% in Perilla frutescens
is presented in Table 13, while the physicochemical properties of the main aldehydes in
Perilla frutescens are displayed in Table 14. Additionally, the bioactivity scores of these main
aldehydes are shown in Table 15. CA met the criteria of Ro5 and the value of TPSA ≤ 140 Å.
Furthermore, CA exhibited moderate ion channel modulator and enzyme inhibitor affinity.

Table 13. The main aldehydes exhibiting antiviral activity in Perilla frutescens.

Compound’s Name Chemical Structure OB (%) The Drug’s Efficacy against
Specific Virus

Cinnamaldehyde
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Table 14. The physicochemical properties of the main aldehydes in Perilla frutescens were assessed
using Molinspiration cheminformatics.

Compound’s
Name mi Log P MW n-ON n-OHNH TPSA

Cinnamaldehyde 2.48 132.16 1 0 17.07
Standard criteria ≤5 ≤500 ≤10 ≤5

Table 15. Bioactivity scores of the main aldehydes in Perilla frutescens based on Molinspiration
cheminformatics.

Compound’s
Name

GPCR
Ligand

Ion
Channel

Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Cinnamaldehyde −1.09 −0.39 −1.24 −0.96 −0.79 −0.46

3.6. Others

In addition to the aforementioned compounds with a definite chemical classification,
Perilla frutescens contains numerous compounds without a definitive chemical classification
that have reported antiviral activity.
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3.6.1. Osthol

Osthol exhibited antiviral activity against tobacco mosaic virus (TMV) by directly
targeting viral particles, making it a potential biological agent for controlling plant viruses
using the half-leaf method [189]. Furthermore, osthol alone demonstrated antiviral activity
against Porcine circovirus type 2 (PCV2), while its combination with Matrine resulted
in better anti-PCV2 effects than either compound alone. The combined treatment of Ma-
trine and osthol directly suppressed PCV2 Cap protein expression through the PERK
pathway activated by endoplasmic reticulum GRP78, thereby inhibiting PCV2 Cap protein-
induced PERK apoptosis and alleviating pathological changes such as interstitial pneumo-
nia, splenic lymphocyte loss, macrophage infiltration, and eosinophil infiltration caused by
PCV2 [190,191].

3.6.2. Piperitenone

The compound piperitenone oxide exhibited antiviral activity by disrupting the later
stages of the HSV-1 life cycle. Infection with HSV-1 resulted in depletion of the key
antioxidant glutaglyanin within host cells, which was restored by PEO treatment. These
findings suggested that this compound had the potential to interfere with redox-sensitive
cellular pathways exploited for viral replication [192].

3.6.3. Pulegone

Pulegone ((R)-5-Methyl-2-(1-methylethylidene) cyclohexanone), a pharmacologically
active natural monoterpene ketone, exhibited antiviral activity against herpes simplex virus
type 1 (HSV-1) and pseudorabies virus (PrV) [193], while demonstrating no cytotoxicity.
Computational evaluation revealed that pulegone acted as a potent inhibitor of the SARS-
CoV-2 spike protein, exerting antiviral effects [46]. Therapeutic administration of pulegone
displayed antiviral activity against influenza virus; however, it did not exhibit significant
preventive effects. The mechanism underlying its antiviral properties was associated with
the regulation of IFN-alpha, IFN-beta, and IL-2 [46].

The antiviral activity of additional compounds found in Perilla frutescens is presented
in Table 16. Physicochemical properties of these compounds are displayed in Table 17,
while their bioactivity scores can be found in Table 18. The results showed that these
compounds met the criteria of Ro5 and the value of TPSA ≤ 140 Å and exhibited promising
and enzyme inhibitor affinity.

Table 16. Other compounds exhibiting antiviral activity in Perilla frutescens.

Compound’s
Name Chemical Structure OB (%) The Drug’s Efficacy against Specific

Virus

Osthol
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Table 17. Physicochemical properties of other compounds in Perilla frutescens were assessed using
Molinspiration cheminformatics.

Compound’s
Name mi Log P MW n-ON n-OHNH TPSA

Osthol 3.83 244.29 3 0 39.45
Piperitenone 2.56 150.22 1 0 17.07

Pulegone 2.52 152.24 1 0 17.07
Standard criteria ≤5 ≤500 ≤10 ≤5

Table 18. Bioactivity scores of other compounds in Perilla frutescens based on Molinspiration chemin-
formatics.

Compound’s
Name

GPCR
Ligand

Ion
Channel

Modulator

Kinase
Inhibitor

Nuclear
Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Osthol −0.49 −0.59 −0.72 −0.05 −0.77 0.10
Piperitenone −1.14 −0.84 −1.88 −0.74 −1.25 −0.20

Pulegone −1.33 −0.81 -2.13 −0.86 −1.09 −0.48

4. Discussion

Viruses can give rise to a range of diseases, including COVID-19 [194], hepatitis B [195],
AIDS [196], influenza [197], and others. Certain viral infections have the potential to cause
local and even global disruptions, posing substantial risks to public health.

The annual herb Perilla frutescens (L.) Britt., belonging to the Labiatae family, with a
long-standing history in China, possesses an abundance of medicinal benefits [198]. Among
numerous traditional Chinese medicine prescriptions, Perilla frutescens stands out due to its
distinct antiviral efficacy and garners high comments from physicians throughout various
dynasties. In the realm of Chinese traditional medicine, Perilla frutescens is often combined
with other herbal materials to treat medical conditions such as colds, coughs, asthma, and
other viral diseases. For instance, classical Chinese medicine formulas like “Guizhi Soup”
in Zhang Zhongjing’s “Typhoid Theory” feature Perilla frutescens as the principal herb for
treating fever and headache caused by external wind-cold pathogens. Furthermore, Perilla
frutescens can also be incorporated with other herbal ingredients to formulate remedies like
Scattered Leaves of Perilla frutescens or Scattered Stems of Perilla that enhance its antiviral
properties while promoting surface releasing and dispelling coldness.

This study utilized bioinformatics analysis methods for the first time to identify target
genes associated with perilla from multiple databases. The analysis revealed a significant
overlap between target genes of Perilla frutescens and the genes associated with various viral
infections (such as HSV, SARS-CoV-2, influenza virus, and HIV), indicating the substantial
antiviral potential of Perilla frutescens. GO enrichment analysis and KEGG pathway enrich-
ment analysis conducted using the DAVID platform demonstrated that Perilla frutescens
primarily participates in biological processes including signal transduction, transcriptional
regulation, negative regulation of apoptosis, and inflammatory responses. The results
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of GO enrichment analysis indicated significant predicted enrichment of target genes of
Perilla frutescens in biological processes, molecular functions, and cellular components
mainly involving regulatory functions and response mechanisms. These analyses provide
theoretical support for the antiviral activity of Perilla frutescens and serve as a reference for
further research on its pharmacological effects and the development of related drugs.

From the literature review, it is evident that Perilla frutescens contains key active com-
ponents such as phenolic compounds and terpenes, which exhibit potent antiviral potential
through diverse mechanisms of action against viruses. Among these compounds, certain
ones inhibit virus attachment and entry into cells. For instance, thymol prevented HIV-1
entry into target cells by altering the cholesterol content of the viral membrane [44]. Addi-
tionally, some compounds interfere with the late stages of virus release. Perillyl alcohol,
for example, inhibits the release of infectious HSV-1 particles during maturation in Vero
cells [91]. Other compounds like β-sitosterol exert their antiviral activity by directly inacti-
vating viral particles [168]. Furthermore, certain compounds indirectly exert their antiviral
effects through immune system regulation. For example, treatment with different doses of
Methyl caffeate increased the expression of IL-2, IL-4, IFN-g, soluble Fas in HIV-infected
mice [67]. The anti-influenza virus mechanism of pulegone is related to its regulation of
IFN-α, IFN-β and IL-2 [46]. Moreover, some compounds demonstrate antiviral activity
through antioxidant properties or by inhibiting viral replication protein synthesis or in-
flammatory response pathways. These compounds exhibit strong antiviral activity without
cytotoxicity under tested conditions. In vivo mouse models have also confirmed that these
compounds have therapeutic effects on virus-infected mice. Furthermore, combinations of
certain compounds show synergistic antiviral effects. For instance, Eugenol combined with
acyclovir synergistically inhibited herpes virus replication in vitro [56], while the combina-
tion of germacone and oseltamivir demonstrated an additive effect in suppressing influenza
virus infection both in vitro and in vivo [101]; these findings provided new insights for
developing more effective strategies for antiviral therapy and drug combinations.

However, previous studies have primarily focused on modeling virus infection in vitro
using cell lines, with only a limited number of recent studies validating these findings
through in vivo experiments in mice. Nevertheless, there is a significant lack of clinical trial
data to substantiate the therapeutic effects on humans. Therefore, further clinical studies
are necessary to evaluate the safety, efficacy, and potential clinical applications of Perilla
frutescens as an antiviral agent. Additionally, some active ingredients in Perilla frutescens
have relatively low bioavailability and do not strictly adhere to Lipinski’s rules [199]. These
physicochemical properties may affect drug absorption, distribution, and metabolism
thereby impacting their antiviral effects in vivo. Furthermore, although Perilla frutescens
has demonstrated antiviral activity against a wide range of viruses, it is important to
note that different viruses possess unique replication mechanisms and infection routes,
leading to the development of diverse diseases. Therefore, it is imperative to conduct
an in-depth investigation into the antiviral mechanism of the components derived from
Perilla frutescens. In addition to the summarized antiviral components above, there are
several active components present within Perilla frutescens that require further investigation.
Future studies should aim at gaining insight into the mechanism of action for different viral
infection models using Perilla frutescens to gain a more comprehensive understanding of its
antiviral activity providing effective strategies for treating virus-related diseases.

In conclusion, Perilla frutescens has shown remarkable potential as a potent antiviral
agent. Its efficacy in combating viral infections extends beyond humans and encompasses
other species as well. Consequently, Perilla frutescens holds significant application prospects
in the field of antiviral therapy. Given this, it is crucial to further research and develop
Perilla frutescens and its primary constituents to enhance its antiviral capabilities. Moreover,
efforts should be made to mitigate the adverse effects of viral infections on public health by
deriving effective prevention strategies from these natural drugs such as Perilla frutescens.
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