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Abstract: We conducted a 12-week randomized double-blind placebo-controlled clinical trial to
investigate the potential impact of Bifidobacterium bifidum (Bf-688) supplementation on attention-
deficit/hyperactivity disorder (ADHD). Children with ADHD who were already receiving a stable
dose of methylphenidate (MPH) treatment were enrolled and were randomly assigned to two groups:
one receiving add-on Bf-688 (daily bacterial count of 5 × 109 CFUs) (n = 51) and the other receiving a
placebo (n = 51). All participants underwent assessments using Conners’ Continuous Performance
Test (CPT) and Conners’ Continuous Auditory Test of Attention (CATA). Additionally, fecal samples
were collected at the beginning of the trial (week 0) and at the endpoint (week 12). Remarkably, the
group receiving Bf-688 supplementation, but not the placebo group, exhibited significant improve-
ments in omission errors in CPT as well as Hit reaction time in both CPT and CATA. Gut microbiome
analysis revealed a significant increase in the Firmicutes to Bacteroidetes ratio (F/B ratio) only in the
Bf-688 group. Furthermore, we identified significant negative correlations between N-Glycan biosyn-
thesis and Hit reaction time in both CPT and CATA. Our results demonstrate that the probiotic
Bf-688 supplement can enhance neuropsychological performance in children with ADHD, possibly by
altering the composition of the gut microbiota, ultimately leading to reduced N-Glycan biosynthesis.

Keywords: ADHD; Bifidobacterium; gut–brain axis; microbiome; probiotic; psychobiotics

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) stands out as one of the most preva-
lent neurodevelopmental disorders, affecting roughly 8% of school-age children world-
wide [1,2]. Recently, there has been a growing focus on the complex and bidirectional
communication pathways between the gut microbiota and the central nervous system [3,4],
often referred to as the “gut–brain axis” [5]. This axis is implicated in various physical
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aspects, including dietary patterns, neurotransmitters, the endocrine system, immuno-
logical processes, and gut permeability [6–9]. The gut microbiome has the potential to
influence early human brain development and may play a role in the pathophysiology of
ADHD [10–13]. Psychobiotics, the modern term for a type of probiotic, appear to work
through dopamine, epinephrine, noradrenaline, and 5-hydroxytryptamine [14]. Manipu-
lating the microbiome through probiotic supplements in individuals with ADHD holds
promise for uncovering novel therapeutic approaches [15–22].

The Lactobacillus family of probiotics, Lactobacillus rhamnosus (LGG), is the most fre-
quently studied and is known to modulate the relationship between the neural-immune
system, neuroendocrine system, and the central nervous system [23–27]. In addition, re-
search from Sweden reported that Synbiotic 2000 could alleviate autism symptoms and
enhance emotional regulation in children [28], potentially through the reduction in intesti-
nal and vascular inflammation and the elevation of short-chain fatty acid (SCFA) levels [29].
Not only Lactobacillus strains but also members of the Bifidobacterium genus show promise
in the treatment of neurodevelopmental disorders in children, such as ADHD [30]. The
Bifidobacterium genus is linked to the synthesis of dopamine precursors and is considered
one of the biomarkers associated with ADHD [31,32]. In a prior animal study, supplement-
ing with Bifidobacterium breve during early life appeared to help reduce hyperactivity in
adolescent rats with low birthweight [33]. Additionally, a 10-week randomized control
trial involving micronutrient supplementation altered the abundance of Bifidobacterium
and had the potential to influence ADHD behavior in children [34]. Among the Bifidobacte-
rial communities, the Bifidobacterium bifidum (B. bifidum) species stands out as one of the
predominant taxa [35]. B. bifidum G9-1 (BBG9-1) has been found to ameliorate dysbiosis,
leading to an increase in organic acids and an enhancement of neurotransmission, including
dopamine [36]. Furthermore, our previous open-label study also revealed that supple-
mentation with a specific strain of B. bifidum, the probiotic Bf-688, was associated with an
improvement in symptoms related to inattention and hyperactivity/impulsiveness [37].

Pharmacological treatments have demonstrated their effectiveness in addressing the
symptoms of ADHD and enhancing various functional aspects, including quality of life,
academic performance, and reducing accident rates [38]. Methylphenidate (MPH), acting
as a dopamine and norepinephrine reuptake inhibitor, stands out as the most commonly
prescribed psychostimulant for ADHD [39]. Nonetheless, MPH is known to bring about
common adverse effects in children and adolescents, including reduced appetite, weight
loss, and abdominal discomfort [40,41]. A meta-analysis revealed the prevalence of MPH
side effects such as sleep disturbances (17.9%), headaches (14.4%), abdominal pain (10.7%),
and reduced appetite (31.1%) [42]. Heat-inactivated B. bifidum MIMBb75 (SYN-HI-001)
has been shown to significantly alleviate the symptoms of irritable bowel syndrome [43].
Furthermore, our prior open-label study revealed that supplementation with the probiotic
Bf-688 was associated with weight gain in drug-naïve children with ADHD [37]. Hence,
we posited that the inclusion of Bf-688 as an adjunct treatment could yield advantages
in alleviating gastrointestinal symptoms and promoting weight gain in individuals with
ADHD who are also receiving pharmacotherapy. Moreover, we anticipated that augmenting
the treatment with Bf-688 might prove beneficial in addressing ADHD symptoms and
rectifying microbiota imbalances.

Consequently, we conducted a randomized double-blind placebo-controlled clinical
trial with the primary objective of assessing the impact of Bf-688 add-on therapy on ADHD
clinical presentation, neuropsychological performance, and body weight progression in
children undergoing pharmacotherapy for ADHD. The secondary outcome focused on the
potential alteration of gut microbiome composition during the clinical trial.

2. Materials and Methods
2.1. Study Participants

This research protocol received approval from the Institutional Review Board (IRB)
at Chang Gung Memorial Hospital in Taiwan (Approval No. 202100880A3). The trial
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has been registered with ClinicalTrials.gov (NCT04958460). We recruited eligible patients
with ADHD from the Outpatient Department of Child Psychiatry at Chang Gung Chil-
dren’s Hospital in Taiwan. Before participants were enrolled in this study, we provided
a detailed explanation of the study protocols to both the participants and their parents
or legal guardians. Written informed consent was obtained from both the child and the
parent/guardian once they agreed to participate in the study.

The eligibility criteria for patients with ADHD were as follows: (a) a confirmed clinical
diagnosis of ADHD by an experienced child psychiatrist, determined through structured
interviews based on the Diagnostic and Statistical Manual of Mental Disorders (DSM–5)
criteria [44,45]; (b) age between 6 and 12; and (c) ongoing pharmacotherapy for ADHD at a
stable dosage for a minimum of four weeks.

Conversely, individuals meeting any of the following criteria were excluded from
this study: (a) patients with a history of significant neuropsychiatric conditions, including
intellectual disabilities, autism spectrum disorder, bipolar disorders, major depressive
disorders, psychotic disorders, or substance use disorders; (b) patients with major under-
lying physical illnesses, such as genetic or endocrine disorders, severe head trauma, or
gastrointestinal disorders; and (c) patients who followed a vegetarian diet or were currently
taking probiotics or antibiotics.

2.2. Allocation

We conducted power calculations to determine the sample size for the randomized
controlled trial (RCT) [46]. We utilized an online sample size calculator available at https:
//clincalc.com/stats/samplesize.aspx (accessed on 28 June 2021). Based on the findings
from our preliminary open-label study [37], the estimated sample sizes required for this
double-blind placebo-controlled randomized clinical trial were determined to be n = 45 in
each group.

In this clinical trial, which followed a randomized double-blind placebo-controlled
design, a total of 107 children between the ages of 6 and 12 years, meeting the criteria for
an ADHD diagnosis, were recruited. The assignment of patients was conducted using a
computer-generated random number, with participants being assigned in a 1:1 ratio to
either the Bf-688 group (n = 54) or the placebo group (n = 53).

Individuals in the Bf-688 group were administered Bf-688 for a duration of 12 weeks,
with one sachet taken both in the morning and evening, resulting in a daily bacterial count
of 5 × 109 CFUs. Conversely, participants in the placebo group were provided with placebo
packets consisting of maltodextrin and corn starch, also taken twice daily for a period of
12 weeks.

Patients were instructed to adhere to their prescribed MPH treatment consistently,
maintaining a stable dosage. Compliance with the medication regimen was verified at each
visit by assessing patient reports provided by their parents and examining any remaining
medication. The use of other concurrent medications was prohibited. Additionally, all
participants were instructed not to make any alterations to their dietary habits or lifestyle
during the study.

2.3. Study Procedures

The patients followed the aforementioned prescription regimen consistently for a
duration of 12 consecutive weeks. The study protocol and the follow-up schedule are
depicted in Figure 1. At four different time points, specifically at the baseline, the 4th
week, the 8th week, and the 12th week, the following assessments and measurements
were conducted: recording of the children’s height, body weight, and body mass index
(BMI). The assessment of ADHD symptoms was conducted using two established tools:
the Swanson, Nolan, and Pelham Rating Scale (SNAP-IV) [47,48] and the ADHD rating
scale (ADHD-RS) [49]. Parents of the children were asked to complete the SNAP-IV parent
form [47,48] as well as Barkley’s Side Effects Rating Scale (SERS) [50], and the clinical
symptoms were assessed by the researcher using the ADHD-RS [49]. In order to explore
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any potential benefits of Bf-688 concerning gastrointestinal (GI) symptoms, we separately
analyzed the cumulative scores for stomachaches and loss of appetite [51].
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Figure 1. CONSORT diagram for study procedure and flowchart. During the second visit at week 4,
three individuals from the Bf-688 group discontinued their participation in the trial. This included
two participants who found the taste of the probiotics unacceptable and one who ceased taking
ADHD medication. In the placebo group, one participant withdrew from the trial due to an aversion
to the taste of the placebo, and another participant withdrew their consent.

Additionally, at both the baseline (week 0) and the conclusion (week 12) of the study,
a child psychologist administered the Conners’ Continuous Performance Test (Conners
CPT) [52] and Conners’ Continuous Auditory Test of Attention (CATA) [53] to evaluate
the patients’ visual and auditory attention abilities, respectively. Previous research has
demonstrated that the neuropsychological tests CPT3 and CATA provide objective infor-
mation pertaining to ADHD cases [54,55]. The specific measures employed in the analyses
encompass detectability (d’), omissions, commissions, and Hit reaction time (RT).

2.4. Gut Microbiome Analysis

All participants were instructed to provide fecal samples both at the study’s outset
(week 0) and at its conclusion (week 12). The extraction of bacterial DNA from these fecal
samples was carried out using the QIAamp Fast DNA Stool Mini Kit, manufactured by
Qiagen in Hilden, Germany, albeit with some adjustments to the standard protocol.
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In brief, the stool sample underwent a centrifugation step at 13,200 rpm for 10 min to
eliminate the storage buffer, followed by lysis utilizing InhibitEX buffer by Qiagen in Hilden,
Germany. After homogenization, proteinase K and ethanol were introduced to process the
resulting supernatant. Subsequently, the supernatant underwent a wash step using a QIAamp
spin column, with the final elution being carried out using elution buffer. The concentration of
the extracted DNA was assessed using a NanoDrop 2000 (Thermo Fisher Scientific, Waltham,
MA, USA), and a subsequent 10× dilution was performed using elution buffer.

2.5. Next Generation Sequencing (NGS) Analysis

The gut microbiome library was constructed by targeting the standard V3–V4 region of
the 16S rRNA gene. PCR amplification was performed using KAPA HiFi hotstart readymix
from Roche in the United States, and subsequent purification was accomplished using
AMPure XP magnetic beads manufactured by Beckman Coulter (Brea, CA, USA).

To ensure the quality and quantity of the PCR product, an assessment was conducted
using a Fragment Analyzer, which is a product from Advanced Analytical in the United
States. Additionally, quantification was carried out using a Qubit 3.0 Fluorometer (Thermo
Fisher, Waltham, MA, USA). Following these steps, the library underwent sequencing on a
MiSeq platform provided by Illumina in the United States, utilizing paired-end reads with
dimensions of 2 × 301 nt for each sample.

2.6. Data Analysis

Statistical analysis was carried out using IBM’s SPSS version 22 software (Armonk,
NY, USA). Continuous data were presented as either mean ± standard error of the mean
or standard deviation, and comparisons were made using an independent t-test. For
categorical data, percentages were used, and comparisons were performed using the
chi-squared test.

When analyzing the longitudinal data, we adhered to the modified intention-to-treat
(ITT) principle [56]. Specifically, participants who were randomized to receive treatment
and had taken at least one dose of probiotics or placebo (as evidenced by their presence
at week 4) were included in the analysis. To address missing data at week 8 and week 12,
we employed the last observation carried forward method (LOCF). To assess the extent of
change in various outcome measures over the course, we employed a mixed-model analysis
of variance (ANOVA). This analysis allowed us to examine within-group differences (referred
to as the “time effect”), between-group differences (comparing the Bf-688 group to the placebo
group), and potential interactions between time and groups. The homogeneity of variances
and covariances was examined using Levene’s test to ensure that the distribution of results
was close to normal [57,58]. Statistical significance was indicated by p < 0.05.

We conducted sequence data quality control and constructed the feature table using
QIIME 2 version 2023.2 (https://qiime2.org, accessed on 26 May 2023) [59] in conjunction
with the DADA2 pipeline [60] for correction. Alpha diversity, which characterizes the di-
versity within a specific area or ecosystem, was assessed using metrics such as the Shannon
and Chao-1 indices. Chao-1 was employed to gauge community richness, with higher
values indicating greater abundance. The Shannon index was used to measure bacterial
diversity, with higher values signifying a more diverse community. For beta diversity
analysis, we utilized MicrobiomeAnalyst (version 2.0) [61]. Taxonomic compositions of
the Amplicon Sequence Variants (ASVs) were mapped based on the Greengenes 13_8 99%
Operational Taxonomic Units (OTUs) as reference sequences [62].

All data presented in this study are expressed as means ± standard deviation. The
plots were generated using the Python packages seaborn and matplotlib [63]. To investigate
differentially abundant bacterial taxa between groups, we performed bidirectional hier-
archical clustering analysis based on different grouping information using the R package
heatmap. Functional analysis, specifically Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt), was conducted using the Galaxy/Hutlab
website (https://huttenhower.sph.harvard.edu/galaxy/, accessed on 3 July 2023).

https://qiime2.org
https://huttenhower.sph.harvard.edu/galaxy/
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Statistical significance was defined as a p-value less than 0.05. Further adjustments for
statistical significance were made using the False Discovery Rate (FDR). The FDR correction
involved determining the smallest Benjamini–Hochberg adjusted p-value when applying
unpaired t-tests with Welch’s correction. An FDR-adjusted p-value, also referred to as a
q-value, of 0.05 indicates that 5% of significant tests may result in false positives.

3. Results
3.1. Clinical Outcome Analysis

A total of 107 children diagnosed with ADHD who met the screening criteria were
recruited and then divided into two groups: the Bf-688 group, comprising 54 participants, and
the placebo group, with 53 participants. All 107 participants successfully completed the initial
baseline assessment, as illustrated in Figure 1. In total, we proceeded with a modified ITT
analysis involving 51 subjects in both the Bf-688 group (average age: 9.1 years, 82.4% boys)
and the placebo group (average age: 9.1 years, 88.2% boys). The characteristics of these 102
participants are detailed in Table 1. Importantly, at baseline, no significant differences were
observed across various factors, including demographic data, ADHD subtypes, comorbidities,
MPH doses, side effects, clinical symptoms, and neuropsychological test results.

Table 1. Characteristics at baseline among children with ADHD pharmacotherapy allocated into the
probiotic (Bf-688) group (n = 51) and the placebo group (n = 51).

Variables Probiotic Group
(n = 51)

Placebo Group
(n = 51) χ or t p-Value

Sex, n (%) 0.703 a 0.402
Boys 42 (82.4) 45 (88.2)
Girls 9 (17.6) 6 (11.8)

Age, years 9.1 ± 1.8 9.1 ± 1.8 −0.117 0.97
Height, cm 133.0 ± 12.0 133.4 ± 10.1 −0.151 0.88
Body weight, kg 28.8 ± 7.7 29.6 ± 8.0 −0.494 0.622
Body mass index (kg/m2) 16.0 ± 2.1 16.4 ± 2.7 −0.722 0.472
Birth weight, g 3046.3 ± 483.0 3182.2 ± 519.3 −1.369 0.174
ADHD subtype, n (%) 0.043 a 0.835

Inattentive 17 (33.3) 18 (35.3)
Hyperactive or combined 34 (66.7) 33 (64.7)

Comorbidity, n (%)
Oppositional defiant disorder 4 (7.8) 2 (3.9) 0.708 a 0.678
Tic disorders 0 (0) 2 (3.9) 2.040 a 0.495

Methylphenidate dose (mg/day) 22.1 ± 11.7 23.4 ± 10.0 −0.576 0.566
MPH formulation, n (%) 0.050 1.000

Short-acting MPH 14 (27.5) 13 (25.5)
Long-acting MPH 37 (72.5) 38 (74.5)

Barkley’s Side Effects Rating Scale
Total score 14.8 ± 12.7 13.7 ± 9.4 0.487 0.628
Gastrointestinal symptoms 3.8 ± 3.5 4.0 ± 3.3 −0.174 0.862

SNAP-IV scores
Inattention 14.7 ± 5.6 15.3 ± 6.2 −0.458 0.648
Hyperactivity/impulsivity 12.8 ± 6.1 12.7 ± 7.0 0.137 0.891

ADHD-RS scores
Inattention 11.7 ± 5.4 11.5 ± 6.7 0.197 0.844
Hyperactivity/impulsivity 13.9 ± 4.9 13.3 ± 7.1 0.462 0.645

CPT
Detectability (d’) 50.1 ± 9.7 48.6 ± 10.7 0.756 0.451
Omissions 53.0 ± 12.6 53.5 ± 12.2 −0.135 0.893
Commissions 47.2 ± 8.9 46.1 ± 8.6 0.633 0.528
Hit reaction time (RT) 62.7 ± 10.5 61.6 ± 13.2 0.481 0.632

CATA
Detectability (d’) 51.6 ± 9.4 50.3 ± 10.0 0.663 0.509
Omissions 49.2 ± 8.6 48.7 ± 7.6 0.328 0.743
Commissions 52.1 ± 11.6 51.8 ± 12.4 0.14 0.889
Hit reaction time (RT) 53.7 ± 10.6 51.3 ± 9.7 1.187 0.238

Notes: Data are expressed as mean ± SD or n (%); a Pearson Chi-square; CPT, Conners’ Continuous Performance
Test; CATA, Conners’ Continuous Auditory Test of Attention; Hit reaction time (RT); ODD, oppositional defiant
disorder; SNAP-IV, the Swanson, Nolan, and Pelham Rating Scale; ADHD-RS, ADHD rating scale; SERS, Barkley’s
Side Effects Rating Scale; SERS gastrointestinal symptoms, severity of stomachache, and loss of appetite.
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As illustrated in Figure 2, both the Bf-688 group and the placebo group exhibited
similar patterns in their SNAP-IV scores, ADHD-RS scores, body weight, BMI, and SERS
total scores over the course of the 12-week study period. Specifically, scores related to
inattention and hyperactivity on the SNAP-IV and ADHD-RS scales registered significant
reductions in both groups during this period.

Moreover, in both the Bf-688 and placebo groups, the children’s body weight increased
by the end of the 12-week period compared to their baseline measurements. Notably, BMI
and SERS total scores displayed no significant changes throughout the study duration
when compared to their initial values. Interestingly, GI symptoms assessed using the SERS
scale significantly decreased in the Bf-688 group between week 4 and the endpoint at week
12. However, in the placebo group, GI symptoms saw a notable reduction at both week
4 and week 8, but experienced an upward trend, returning to their baseline levels by the
study’s endpoint at week 12.

Figure 3 illustrates the levels of visual attention (CPT) and auditory attention (CATA) in
children receiving ADHD pharmacotherapy in both groups at two time points: week 0 and
week 12. After 12 weeks, both groups displayed significant improvements in commissions
and detectability (d’). However, the Bf-688 group showed significant enhancements in
omission errors of CPT and Hit RT in both CPT and CATA, while no such improvements
were observed in the placebo group.
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Figure 2. ADHD symptoms, body weight, BMI, and adverse effects of children with ADHD phar-
macotherapy over the course of a 12-week double-blind placebo-controlled trial. (A) SNAP-IV
Inattention symptoms; (B) SNAP-IV Hyperactivity symptoms; (C) ADHD-RS Inattention symptoms;
(D) ADHD-RS Hyperactivity symptoms; (E) Body weight; (F) Body mass index; (G) SERS total scores;
and (H) SERS GI symptoms. Bf-688, Bifidobacterium Bifidum plus ADHD medication for 12 weeks;
Placebo, placebo plus ADHD medication for 12 weeks; SNAP-IV, the Swanson, Nolan, and Pelham
Rating Scale; ADHD-RS, ADHD rating scale; SERS, Barkley’s Side Effects Rating Scale; SERS GI
(gastrointestinal) symptoms, severity of stomachache, and loss of appetite. * p < 0.05, ** p < 0.01,
*** p < 0.001 compared with baseline data.
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Figure 3. Patients’ visual and auditory attention of children with ADHD pharmacotherapy at the
baseline (week 0) and the endpoint (week 12). CPT, Conners’ Continuous Performance Test; CATA,
Conners’ Continuous Auditory Test of Attention; Hit reaction time (RT). * p < 0.05, ** p < 0.01,
*** p < 0.001 compared with baseline data.

3.2. Gut Microbiome Analysis

To explore the influence of the gut–brain axis, fecal samples were collected from
patients before and after 12 weeks of consistent administration of the prescribed treatment.
In total, 76 patients successfully provided fecal samples, comprising 37 individuals from
the Bf-688 group and 39 from the placebo group. We utilized 16S rRNA gene sequencing to
track changes in the gut microbial community.

Initially, alpha diversity analysis, including the Simpson and Chao-1 indices, was
conducted to examine differences in gut microbiota composition before and after treatment.
Both the placebo and Bf-688 groups exhibited a significant increase in microbial evenness
after treatment, as depicted in Figure 4A. However, there were no significant differences in
the number of rare microbial species (Chao-1 index) between the Bf-688 and placebo groups
(Figure 4A). Figure 4B reveals significant variations in beta diversity analysis between
the two groups before and after the 12-week treatment period. To elucidate the microbial
communities, we initially analyzed the dominant microbes at the phylum, genus, and
species levels, as depicted in Figure 4C. Among the top ten phyla, notable differences
in abundance were observed specifically in Firmicutes and Bacteroidetes before and after
the intervention, and this was significant solely in the Bf-688 group. Furthermore, when
comparing the Firmicutes to Bacteroidetes (F/B) ratio, a significant increase was observed in
the F/B ratio of the Bf-688 group following the intervention, in contrast to the placebo group.

Further examination of the top ten genera and species did not reveal any significant
alterations before and after the intervention, as depicted in Figure S1. To visually represent
the significant differences in microbial communities between the placebo group (on the left)
and the Bf-688 group (on the right) before and after the intervention, a heatmap was utilized
(Figure S2). For instance, in the placebo group, only five bacteria displayed significant changes
in their richness before and after the intervention, and the corresponding bacteria in the Bf-688
group were presented in the same heatmap. Notably, both groups exhibited similar trends
based on significant differences in microbial communities before and after the intervention.

Given that all participants received consistent and appropriate treatment throughout
the study and any potential influence attributable to the placebo was excluded in accordance
with ethical principles governing human trials, we employed a Venn diagram analysis
to delineate distinct and significant differences in gut microbiota before and after the
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intervention with Bf-688 (Figure S3). This analysis allowed us to identify the specific
gut bacteria that were truly affected by Bf-688. Among these, 20 gut bacteria displayed
significant differences before and after the administration of Bf-688. Subsequently, we
presented box plots to visually depict these differences individually (Figure S4).

We extended our analysis by employing PICRUSt to predict potential mechanisms
through which gut bacteria might be involved (Figure 5A). In order to uncover the specific
pathways influenced by Bf-688, we scrutinized the distinct and significant differences in
pathways before and after the intervention of Bf-688 using a Venn diagram (Figure S5).
This examination revealed six pathways that exhibited significant differences before and
after the administration of Bf-688. These pathways encompassed Riboflavin metabolism,
Transcription factors, Lipopolysaccharide biosynthesis, protein digestion and absorption,
Lipopolysaccharide biosynthesis proteins, and N-Glycan biosynthesis. To illustrate the
variations before and after the administration of Bf-688 compared to the placebo group,
these pathways were presented using box plots (Figure S6).
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Figure 4. Analysis of abundant bacteria (A) Shannon and Chao-1 analyses revealed significant differ-
ences in both the placebo and Bf-688 groups before and after probiotic supplementation. (B) PCoA
plots of beta diversity for weighted and unweighted UniFrac distances. Ellipses represent the 95%
confidence intervals for each group. Colors are assigned based on group allocation: red for the Bf-688
group after supplementation, green for the Bf-688 group before supplementation, blue for the placebo
group after supplementation, and purple for the placebo group before supplementation. (C) Bar
charts depict the average abundances of phylum, genus, and species-level ASVs across the four
different samples studied: Bf-688 group after supplementation, Bf-688 group before supplementation,
placebo group after supplementation, and placebo group before supplementation. “Other” refers to
all species representing less than 10% abundance after the 10th most abundant species.
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Figure 5. Correlations between CPT Hit reaction time (CPT Hit RT), CATA Hit reaction time (CATA
Hit RT), and N-Glycan Biosynthesis In this extended error bar chart, we compare the predicted KEGG
functional data based on four different samples: the Bf-688 group before and after supplementation,
and the placebo group before and after supplementation. Welch’s t-tests were applied, and only pre-
dicted functions with p < 0.05 between the two groups are displayed. (A) The left bar chart represents
the mean proportions of each KEGG pathway, while the right dot plot illustrates the differences in
mean proportions between the two compared sample groups, along with their respective p-values.
We employed the PICRUSt to predict the potential mechanisms through which gut bacteria might
be involved in these comparisons. (B) We present the correlations between microbial communities,
pathways, and clinical parameters, including the F/B ratio, SERS GI symptoms, CPT Hit reaction time,
and CATA Hit reaction time. * p-values (C) Significant correlations were observed between CPT Hit
RT, CATA Hit RT, and N-Glycan Biosynthesis.

We explored correlations involving the F/B ratio, GI symptoms, CPT Hit RT, CATA Hit
RT, and the microbial communities and pathways (Figure 5B). Notably, significant correla-
tions were identified between N-Glycan biosynthesis and CPT Hit RT as well as CATA Hit
RT (Figure 5C). Furthermore, N-Glycan biosynthesis exhibited negative correlations with
Firmicutes, Clostridia, Clostridiales, and the F/B ratio, while it displayed positive correlations
with Bacteroidetes, Bacteroidia, and Bacteroidales (Figure S7a). Additionally, CPT Hit RT
showed a negative correlation with protein digestion and absorption. Moreover, protein
digestion and absorption displayed negative correlations with the F/B ratio, Firmicutes,
Clostridia, Clostridiales, Bulleidia, and Bulleidia moorei. Conversely, protein digestion and
absorption exhibited positive correlations with Bacteroidetes, Bacteroidia, and Bacteroidales
(Figure S7b).

4. Discussion

This study represents the inaugural randomized double-blind trial investigating the
effects of B. bifidum (Bf-688 strain) supplementation on clinical symptoms and the associated
gut microbiome in individuals with ADHD. The primary focus of this study was on assess-
ing GI symptoms and body weight changes in individuals undergoing MPH treatment.
Although the results from this trial indicated that Bf-688 did not lead to additional changes
in body weight, the Bf-688 group exhibited a superior outcome compared to the placebo
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group in terms of GI side effects by the study’s endpoint at week 12. Specific strains within
the Lactobacillus and Bifidobacterium genera have demonstrated effectiveness in reducing
body weight in individuals with overweight or obesity [64]. One review article highlighted
the significant positive effects of Bifidobacterium animalis subsp. lactis 420 (B420) on weight
management and metabolic health through a complex network of signaling pathways,
including those related to epithelial barrier function and the gut immune system. In the
current study, we observed significant differences in the composition of Firmicutes and
Bacteroidetes after the intervention in the Bf-688 group. Moreover, there was a noteworthy
increase in the F/B ratio in the Bf-688 group, although no such increase was observed in
the placebo group. An elevated F/B ratio has been associated with conditions like obesity
and various diseases [65]. Despite these findings, Bf-688 did not result in additional body
weight gain effects in our study. In summary, our results suggest that Bf-688 supplements
may have the potential to alleviate GI symptoms by modulating gut microbiome dysbiosis
in individuals undergoing MPH treatment.

Both parent-rated (SNAP-IV) and clinician-rated (ADHD-RS) assessments demon-
strated significant reductions in both study groups over the 12-week period. However, the
Bf-688 group outperformed the placebo group in terms of reduced omission errors and
improved response rates in visual attention (CPT) and auditory attention (CATA). Nu-
merous strains of B. bifidum have been shown to have positive effects on various physical
conditions. For example, B. bifidum G9-1 (BBG9-1) has the potential to address dysbiosis,
resulting in the modulation of organic acids and neurotransmitters like dopamine [36].
Bifidobacterium strains may contribute to phenylalanine production, which is involved
in dopamine synthesis [31,32]. Importantly, disturbances in neurochemical mechanisms
that affect the synthesis of monoamine neurotransmitters have been implicated in the
pathophysiology of ADHD [66].

In comparison to the SNAP-IV and ADHD-RS scales, the CPT and CATA assessments
provide relatively objective measures for evaluating neuropsychological function. Our
previous research has indicated that CPT performance, rather than behavioral symptoms,
tends to exhibit associations with biological markers like cytokines [55] or neuroendocrine
markers [67]. We propose that Bf-688 may indirectly influence catecholamine function
in individuals with ADHD, resulting in improvements in visual and auditory attention.
Furthermore, it has been suggested that the abundance of Bifidobacterium could potentially
serve as a biomarker for ADHD due to its involvement in the dopamine neural reward
system [32,68]. Our findings demonstrate that Bifidobacterium bifidum was indeed present at
very low levels in these ADHD patients, and its abundance significantly increased following
Bf-688 supplementation, suggesting potential benefits for individuals with ADHD.

Our findings reveal meaningful correlations between CPT Hit RT, CATA Hit RT, and
N-Glycan Biosynthesis, establishing a link between gut dysbiosis-induced N-glycosylation
abnormalities and neurodevelopmental disorders like ADHD. N-glycosylation plays a
crucial role in multicellular life, and its complete absence can be fatal during embryonic
development [69]. Dysregulation of glycosylation is linked to a wide spectrum of diseases,
including cancer, diabetes, cardiovascular disorders, congenital diseases, immunological
disorders, and infectious diseases [70–72]. Variations in glycosylation have profound physi-
ological significance because alterations in glycans can significantly impact the structure
and function of glycoprotein polypeptide components [73]. Interestingly, prior research
has shown increases in the glycan groups GP11 and DG7, along with a decrease in GP12, in
the plasma of individuals with ADHD [74]. It is conceivable that differences in glycosyla-
tion efficiency could lead to changes in neural signaling and potentially contribute to the
development of ADHD. Therefore, our results suggest that the beneficial effects of Bf-688
on ADHD may be mediated through the reshaping of gut dysbiosis and the normalization
of abnormal N-glycosylation processes.

Our study has several limitations. Firstly, although it was a randomized controlled
trial, the placebo containing maltodextrin and corn starch could potentially have influenced
the gut microbiome during the study period. Secondly, despite our efforts to control for
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dietary habits, lifestyle factors, and the use of antibiotics and anti-inflammatory drugs,
other environmental factors may still have affected the gut microbiota. Thirdly, genetic
variations could play a role in biological pleiotropy and the causal relationship between
microbiota and psychiatric disorders [75]. The gut microbiome is a complex ecosystem
with interdependent taxa involved in intricate interactions along with host genes and
reaction pathways, some of which are related to neurotransmitters that play a role in
ADHD neurocircuitry [76]. However, in our current study, we did not directly measure
genetic variants, neurotransmitter levels, immune markers, or SCFA. Additional research
is necessary to elucidate the molecular mechanisms that underlie the gut–brain axis and
form the basis for modifying commensal microbiota or their functions as a potential
therapeutic approach for ADHD [77,78]. Fourthly, the proportion of girls in the study
was small, so caution is needed when making general recommendations. Additionally,
because the study focused on children from Asia, further investigation is necessary to
determine whether the results can be generalized to children from other continents. Lastly,
the 12-week study period was short and might be insufficient to detect potential behavioral
and neuropsychological functional changes in ADHD patients.

5. Conclusions

This study represents the first double-blind randomized trial to investigate the clin-
ical and gut microbiome effects of B. bifidum (Bf-688 strain) supplementation in children
with ADHD undergoing pharmacotherapy. The results indicate that the probiotic Bf-688
supplement was linked to improvements in visual and auditory attention in these ADHD
children, possibly through its role in reshaping the composition of the gut microbiota and
reducing N-Glycan biosynthesis. These findings suggest the potential benefits of probiotic
supplementation for children with ADHD who are undergoing pharmacotherapy.
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