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Abstract: The limitations of the current vaccination strategy for the Kyasanur Forest Disease virus
(KFDV) underscore the critical need for effective antiviral treatments, highlighting the crucial im-
portance of exploring novel therapeutic approaches through in silico drug design. Kyasanur Forest
Disease, caused by KFDV, is a tick-borne disease with a mortality of 3–5% and an annual incidence of
400 to 500 cases. In the early stage of infection, the envelope protein plays a crucial role by facilitating
host–virus interactions. The objective of this research is to develop effective antivirals targeting the
envelope protein to disrupt the virus–host interaction. In line with this, the 3D structure of the enve-
lope protein was modeled and refined through molecular modeling techniques, and subsequently,
ligands were designed via de novo design and pharmacophore screening, yielding 12 potential
hits followed by ADMET analysis. The top five candidates underwent geometry optimization and
molecular docking. Notably, compounds L4 (SA28) and L3 (CNP0247967) are predicted to have
significant binding affinities of −8.91 and −7.58 kcal/mol, respectively, toward the envelope protein,
based on computational models. Both compounds demonstrated stability during 200 ns molecular
dynamics simulations, and the MM-GBSA binding free-energy values were −85.26 ± 4.63 kcal/mol
and −66.60 ± 2.92 kcal/mol for the envelope protein L3 and L4 complexes, respectively. Based on
the computational prediction, it is suggested that both compounds have potential as drug candidates
for controlling host–virus interactions by targeting the envelope protein. Further validation through
in-vitro assays would complement the findings of the present in silico investigations.

Keywords: Kyasanur forest disease virus; envelope protein; molecular docking; molecular dynamic
simulation; pharmacophore screening

1. Introduction

The Kyasanur Forest Disease virus (KFDV), responsible for causing Kyasanur Forest
Disease (KFD), which induces a hemorrhagic illness in humans, belongs to the Flaviviridae
family and was first recognized in 1957 as a febrile illness in Shivamogga, Karnataka,
India [1,2]. KFDV primarily targets the black-faced langur (Presbytis entellus) and the red-
faced bonnet monkey (Macaca radiata). It has a zoonotic origin and spreads through the
bites of infected ticks, especially during their nymphal stage, with these ticks remaining
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infectious throughout their lifespan. KFDV, often colloquially referred to as “monkey
fever”, circulates among smaller animals, including rodents, shrews, and birds [3]. While
adult ticks prefer larger animals as their hosts for reproduction, they do not exhibit symp-
toms of the disease. These ticks act as the primary hosts and reservoirs for KFDV, while
monkeys serve as secondary hosts, and humans act as dead-end hosts for the virus. KFDV
is a zoonotic and vector-borne virus circulating between vector ticks and vertebrate hosts
capable of acting as reservoirs. Various vertebrate species, such as monkeys, shrews,
bats, birds, and small rodents, participate in its transmission cycle [4]. Annually, approxi-
mately 400–500 new human cases of KFD are reported, with a mortality rate ranging from
3% to 5% [3,5]. The United States National Institute of Allergy and Infectious Diseases
(NIAID) has designated this virus as a category C priority pathogen, primarily based on
its significant pathogenicity and the lack of licensed vaccines and therapies by the US
Food and Drug Administration (FDA). Furthermore, the infectious dose for KFDV remains
unknown [4,6]. Following internationally recognized biosafety regulations, KFDV is cate-
gorized as a risk group 4 pathogen due to its unpredictable ecological and epidemiological
features. In the International Classification of Diseases-10 (ICD-10) from 2017, KFD is
classified under category A98.2, which falls within the broader category of other viral
hemorrhagic fevers not otherwise classified [7].

Epidemiological investigations have consistently been conducted to monitor and ad-
dress disease outbreaks in the Shivamogga district of Karnataka, India, usually occurring
seasonally from November to June [8]. Over the past 15 years, there has been a noticeable
rise in outbreaks extending beyond the customary endemic areas. It is worth mentioning
that during the period from 2012 to 2014, the first significant occurrences of KFD were
recorded in regions that are not traditionally affected by the disease. These areas include
the Chamarajanagar district of Karnataka as well as the surrounding Malappuram and
Wayanad districts of Kerala [4,5,9]. Likewise, during the years 2015 and 2016, occurrences
of the abovementioned sickness were observed in the North Goa and Sindhudurg regions
of Goa and Maharashtra, respectively [10–12]. In a recent development, an instance of KFD
was detected in China, signifying the initial manifestation of KFDV beyond the borders
of India [13]. Recognized as a neglected human pathogenic virus, the expanding endemic
regions of KFDV raise concerns, highlighting the urgent need for the development of new
preventive measures and treatments. This underscores the importance of gaining a more
profound understanding of the pathogenesis, ecology, and epidemiology of KFDV [14].
KFDV is characterized as a spherical virus enveloped in a lipid bilayer with an approxi-
mate diameter of 45 nm. Its genetic material comprises a single-stranded, positive-sense
RNA genome spanning a total length of 10,774 nucleotides, and shares the same 45 nm
diameter [15]. The polyprotein, encompassing 3146 amino acids, is divided into three
structural proteins: capsid (C), precursor membrane (prM), and envelope (E), along with
seven non-structural proteins—NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [16].

In the initial stages of flavivirus invasion, the envelope protein assumes a pivotal role
in facilitating connections between the virus and the host. It actively engages in membrane
fusion and contributes to the unveiling of the virion [17,18]. Specifically, the envelope
protein of flaviviruses, such as the dengue virus, adheres to the cell surface through
factors like glycosaminoglycans, initiating virus entry through receptor-mediated, clathrin-
dependent endocytosis [19]. The envelope protein, with its receptor-binding site and fusion
peptide, helps the new viral genome assemble and release the virus from the host cell. [20].
Upon penetration into the endosome, the viral envelope protein undergoes structural
changes prompted by the acidic environment, leading to the fusion of host endosomal
membranes with viral membranes [21]. Throughout the life cycle of flaviviruses, virions
undergo considerable structural modifications, ultimately maturing. During this transition,
the dimeric form of the envelope protein interacts with human receptors, bolstering virion
stability in a post-fusion state [22]. The dimeric envelope protein subsequently disassembles
into monomers, later reassembling into trimeric forms [20,21]. The central domain I (DI)
links the extended domain II (DII) with the globular domain III (DIII), playing an essential
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role in receptor binding. This structural aspect is consistent with other flaviviruses like
dengue and Japanese encephalitis, where B-cell epitopes are predominantly situated in
domains DI and DII [23].

The envelope protein also contains two glycosylated asparagine residues, Asn67
and Asn153, which are involved in interacting with cell surface receptors [24]. X-ray
crystallography studies of the envelope protein of the dengue virus, when complexed
with the DC Sign receptor, have shed light on the molecular mechanisms underpinning
envelope protein interactions with host receptors during the entry of flaviviruses into host
cells [25]. Notably, the envelope protein is responsible for triggering host immune responses,
including the production of protective and neutralizing antibodies. This underscores its
significance in drug development aimed at inhibiting the functionality of the E-protein [26].
The initial approach to KFDV prevention involved the use of a formalin-inactivated whole
virus vaccine. However, this vaccine demonstrated limited efficacy [15,27]. Consequently,
the future of this vaccine remains uncertain, leaving the public health response susceptible.
The increasing number of KFDV cases and the expansion of endemic areas in India have
raised significant concerns within the region’s public health infrastructure [28].

As the current vaccination strategy has proven to be less effective, and given the un-
availability of effective antiviral treatments, the exploration of novel therapeutic approaches
for KFDV is significant. This necessitates an interdisciplinary approach to comprehensively
understand the virus, including its vectors, pathogenesis, and epidemiology. The objective
of the research is to develop novel drugs by determining the 3D structure of the KFDV
envelope protein using bioinformatics tools. Without existing 3D structures, we used
Robetta and I-TASSER to predict the protein’s 3D structure and validate these models. We
then employed both ligand-based and structure-based methods to identify potential drug
candidates. Finally, the interactions between the developed drugs and the envelope protein
were examined through molecular docking and molecular dynamics (MD) simulations,
providing detailed insights into their efficacy and stability. By achieving these objectives,
the research aims to pave the way for effective antiviral treatments for KFDV using the in
silico approach.

2. Results
2.1. Sequence Analysis

The envelope protein sequence (282–777 aa) with UniProt ID D7RF80.1 was obtained
from the biological database of UniProt. To identify homologous sequences, a BLASTp
analysis was performed with the PDB as the database, using default algorithm param-
eters. Sequences with query coverage close to 100% and low e-values were considered.
The BLASTp results are represented in Table 1. A multiple sequence alignment (MSA)
was conducted between the target sequence D7RF80.1 and the structures of tick-borne
encephalitis virus, dengue virus 2, Zika virus, Louping ill virus, and Japanese encephalitis
virus (PDB ID: 5O6A, 4CBF, 5GZR, 6J5C, and 5WSN, respectively) using Clustal omega.
The MSA revealed a high degree of conservation in most regions. Specifically, 12 cysteine
residues at positions 3, 30, 60, 74, 92, 105, 116, 121, 186, 290, 307, and 338 were identified
as conserved among all other flaviviruses. Furthermore, the formation of disulfide bonds
between these cysteine residues, as shown in Figure 1, suggests a similar three-dimensional
structure [29].

Table 1. Homologous sequence of envelope protein by BLASTp.

Sr. No. Organism PDB ID Max Score Query Cover Identity % e-Value

01 Tick-borne encephalitis virus (strain HYPR) 5O6A 851 100% 80.24 0
02 Louping ill virus 6J5C 689 80% 80.8 0
03 Dengue virus 2 4CBF 394 99% 40.99 9.00 × 10−133

04 Zika virus 5GZR 377 99% 39.06 1.00 × 10−125

05 Japanese encephalitis virus 5WSN 375 99% 39.45 5.00 × 10−125
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The physicochemical properties of the envelope protein were assessed using the
ProtParam tool, and the findings have been organized in Table 2.

Table 2. Physicochemical properties of the envelope protein.

Features Remark

Protein Envelope protein
Accession number D7RF80.1|POLG_KFDV:282–777
Length of sequence 496 aa

pI (theoretical) 7.26
Molecular mass 53,633.08 Da
Index (aliphatic) 83.10

GRAVY −0.16
Index (instability)(II) 29.41Stable

The isoelectric point (pI) of the protein represents the pH at which the protein becomes
electrically neutral, stable, and compact and exhibits minimal solubility and mobility in an
electro-focusing system [30]. In the case of the envelope protein, the computed theoretical
pI was found to be 7.2, indicating its basic nature. The aliphatic index (AI) of the protein,
which was measured at 83.10, suggests that the envelope protein is stable across a wide
range of temperatures. This stability is attributed to the presence of a higher number of
aliphatic side-chain amino acids, such as alanine, valine, isoleucine, and leucine [31]. The
instability index (II) of the envelope protein was determined to be 29.41, which is below
the threshold of 40. This value indicates that the protein is stable in a solution containing
specific dipeptides [32]. Lastly, the GRAVY (grand average of hydropathicity) value was
calculated and found to be −0.16. A negative GRAVY value implies that the protein
is hydrophilic and has a favorable interaction with water molecules. This is especially
relevant because the envelope protein is extracellular and interacts with the host immune
system [33]. The secondary structure of the envelope protein was predicted using SOPMA
(structure and function of biomolecules: parallelized in silico molecular analysis), and the
results have been summarized in Table 3.
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Table 3. The 2D structure of envelope proteins by SOPMA.

Type of Secondary Structure No. of Amino Acids

Alpha helix (Hh) 95 (19.15%)
Extended strand (Ee) 167 (33.67%)

Pi helix (Ii) 0 (0.00%)
Bend region (Ss) 0 (0.00%)
Random coil (Cc) 203 (40.93%)

Beta turn (Tt) 31 (6.25%)
Beta bridge (Bb) 0 (0.00%)
310 helix (Gg) 0 (0.00%)

The secondary structure analysis of the envelope protein revealed that it is primarily
composed of a random coil, accounting for 40.9% of the amino acid composition. Extended
strands make up 33.67% of the secondary structure, while alpha helices constitute 19.15%.
This distribution suggests that the protein can be classified as a mixed-class protein, as
it contains a lower number of helices and strands in comparison with other secondary
structural elements. Additionally, the transmembrane region of the envelope protein was
predicted using TMHMM 2.0, which segmented the protein into distinct areas. The amino
acids from 1 to 446 were identified as the extracellular region, amino acids 447 to 469 were
classified as the transmembrane region, and amino acids 470 to 475 were designated as the
cytoplasmic region. These findings are summarized in Table 4.

Table 4. Transmembrane region of envelope protein.

Location of Domain Sequence Position

Envelope protein Extracellular region 1–446
Transmembrane 447–469

Cytoplasmic region 470–475
TM helix 476–495

2.2. The 3D Structure Determination and Structure Validation

The 3D structure of the envelope protein was predicted using both the Robetta and
I-Tasser servers. Robetta generated a model using the PD algorithm with a confidence score
of 0.93. On the other hand, I-Tasser produced five models using templates from LOMETS
from the PDB. The model with the highest c-score of 1.51, a TM-score of 0.92 ± 0.06, and
an RMSD of 4.1 ± 2.8 Å was chosen for further analysis. To ensure the reliability of the
selected models from Robetta and I-Tasser, various structure quality assessment software
tools were employed. The results of this assessment are presented in Table 5.

Table 5. Quality assessment of the generated model.

Validation Method Robetta Model I-Tasser Model Refined Model

ERRAT score 89.85 91.51 94.19

Procheck

Most favored region 93.1% 75.4% 92.3
Additionally allowed regions 6.5% 20.3% 7.2
Generously allowed region 0.2% 3.1% 0.2

Disallowed region 0.2% 1.2% 0.2
ProSA Web score −7.91 −7.47 −7.56

Verify 3D 89.11% 78.63% 76.81%
QMean Disco Global 0.72 ± 0.05 0.65 ± 0.05 0.73 ± 0.05

QmeanZscore 1.03 −7.11 0.09
Qmean all-atom 0.56 −0.43 0.60
Qmean torsion 1.30 −6.10 0.16

Qmean Solvation −0.72 −2.78 0.68
Qmean Cβ −0.09 −1.29 0.80
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The stereochemical analysis of the model structure was conducted through a Ra-
machandran plot using the PROCHECK program, which classifies amino acid residues
based on their psi and phi angles. The results of the Ramachandran plot revealed differ-
ent regions within the model proteins, including the most favored region, additionally
allowed region, generously allowed region, and disallowed region. The model predicted
by I-Tasser had approximately 75.4% of its residues in the most favored region, indicating
a somewhat lower stereochemical quality. In contrast, the model generated by Robetta
exhibited a higher percentage, with 93.1% of amino acids falling within the favored region.
This suggests that the Robetta model has better stereochemical quality and is more ener-
getically favored. Validation analyses were performed using various tools. The Verify3D
analysis showed that 89.11% of the residues in the Robetta model had a 3D-1D score of
≥0.2 on average, while the I-Tasser model scored 78.63%, failing to pass this validation.
The ERRAT scores for both Robetta and I-Tasser were high, with 89.85 and 91.51%, re-
spectively, indicating the high quality of their tertiary structures. The ProSA analysis
further confirmed the quality of the models, with Z-scores falling within the range of
those of PDB experimentally determined native structures. The amino acids’ local energy
profile plot displayed mostly negative values across the sequence, except for the residue at
the C-terminal, indicating a favorable amino acid energy profile and high accuracy and
reliability of the models. Based on these validations, the Robetta model was chosen for
further refinement using the YASARA energy minimization server. The energy calculated
before energy minimization was −58,796.02 kcal/mol, and after energy minimization, it
improved to −60,939.90 kcal/mol. The refined model also showed an improvement in
the overall quality of the structure, with an increase in ERRAT score from 89.85 to 94.19.
Figure 2 displays the validation of the refined Robetta model with a 3D structure.

2.3. Active Site Determination

An active site or binding site within a protein is a specific location where ligands can
bind, and it plays a crucial role in drug design. The COACH-D server predicted the top two
binding sites for the refined envelope protein, and these are detailed in Table 6. The best
prediction had a high confidence score of 0.09, indicating very high reliability. Furthermore,
the docking energy of the representative ligand and template complex was −4.6 kcal/mol,
suggesting a strong preference and affinity for potential ligands at this site [34]. The second-
ranked predicted binding site had a c-score of 0.07, which is higher than the lower-ranked
binding sites. Table 6 also provides information about the binding residues for the top
five predicted binding sites, along with their binding energy and grid box dimensions.
COACH-D also identified a tentative ligand template for all the predicted binding sites. The
ligand identified was Octyl-beta-D-glucopyranoside(BOG) (PubChem ID: 62852), which
was subsequently used for ligand screening and pharmacophore pattern definition.

2.4. Ligand Design
2.4.1. De Novo Drug Designing

De novo drug designing involves the creation of entirely new compounds from molec-
ular fragments for the active site of the protein using computational algorithms, which
is efficient, cost-effective, and offers improved biological activity [35,36]. The design cri-
teria for these drugs include a molecular weight cutoff between 100 to 560, a log P value
between 0 and 5, 1 to 10 hydrogen bond donors, 1 to 5 hydrogen bond acceptors, and the
dimensions of the active site in XYZ coordinates obtained from COACH-D. To perform
this, a genetic algorithm was employed, starting with a population of FDA-approved drugs
and allowing for a maximum population size of 20 and 50 generations. A total of 50 drugs
were designed using existing fragments in the database, and they were named from SA1
to SA50. The complete list of these 50 compounds designed by the eLea3d server can be
found in Supplementary Table S1, and was subsequently used for virtual screening using
PyRx 0.8 version software.
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Figure 2. (A) Superimposed Robetta model (yellow color) and refined model (violet color) and
validation of refined Robetta modeled envelope protein; (B) Ramachandran plot; (C) ERRAT quality
factor; (D) ProSA Web score; (E) Verify3D score; and (F) Qmean score.

Table 6. The active site of envelope protein predicted by COACH-D.

Predicted
Binding Site c-Value Docking Energy

(kcal/mol)
Active Site

Grid Box (x, y, z) Amino Acid Residue

1 0.09 −4.6 15.707, 0.627, 11.566 Ile48, His49, Gln50, Pro194, Val215, Val273, Ala274, Gly286

2 0.07 −1.3 11.537, −25.032, −2.164 Asp149, Tyr150, Asn154, Ser158, Asn159

3 0.07 −5.6 11.120, −9.669, −8.399 Arg9, Thr32

4 0.05 −4.1 10.638, −25.498, 2.086 Ala152, Ser156

5 0.04 −3.9 23.933, 10.562, −16.247 Leu430, Val433, Leu437
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2.4.2. Pharmacophoric Screening

The Pharmit server was utilized to perform ligand-based and structure-based phar-
macophore modeling to screen ligand databases based on the 3D structure of the ligand–
protein complex [37]. In addition, structure-based pharmacophore models can also be
generated with computationally derived ligand–target complexes. In the course of a
docking run, known active compounds are fitted into the empty binding pocket of the
target [38,39]. These docked binding poses can then be employed directly to extract the
interaction patterns. For further refinement of the initial docking poses, molecular dy-
namics (MD) simulations can be conducted [40] prior to model generation. In the present
study, the process began by extracting pharmacophore features from the predicted binding
interactions and docked pose between the modeled envelope protein and BOG (PubChem
ID: 62852), a known cofactor for dengue virus envelope protein [41]. This extraction was
accomplished using Webina server 1.0.5, based on the AutoDock Vina algorithm [42]. The
resulting pharmacophore model was then generated using the Pharmit server by upload-
ing the modeled envelope protein as receptor and BOG as pharmacophore features. The
pharmacophore features are detailed in Table 7 and visualized in Figure 3. To enhance
the inclusivity of the search, “inclusive” shape constraints with a tolerance level of 1 were
applied, ensuring that at least one heavy atom of the screened compounds aligned with the
pharmacophore pose. Several other filters were also employed to identify compounds with
a more “drug-like” profile. These filters included octanol-water partition coefficient log P
values within the range of 0 to +5, a maximum of 10 hydrogen bond acceptors, a maximum
of 5 hydrogen bond donors, and a molecular weight between 100 and 560. The selection of
these parameter values adhered to the drug-likeness rules proposed by Lipinski [43]. The
model was then used to search two extensive databases: the COCONUT library, which en-
compasses 8,739,148 conformers from 793,782 molecules, and the Zinc database, containing
122,276,899 conformers from 13,127,550 molecules. The search in the COCONUT database
yielded 7374 hits, while the Zinc database produced 1869 hits. These hits were based on the
pharmacophore pattern generated from the BOG drug molecule. Subsequently, the selected
hits underwent binding energy calculations using the AutoDockVina scoring function
within Pharmit.

Table 7. Pharmacophore features of BOG.

Pharmacophore Features
Coordinates of Center

Radius (Å)
x y z

HBD 14.99 3.66 2.38 0.5
HBD 17.58 3.28 3.18 0.5
HBD 18.62 6.15 4.05 0.5
HBD 13.11 4.53 4.83 0.5
HBA 14.99 3.66 2.38 0.5
HBA 17.58 3.28 3.18 0.5
HBA 18.62 6.15 4.05 0.5
HBA 13.11 4.53 4.83 0.5

HBD: hydrogen bond donor; HBA: hydrogen bond acceptor.

2.4.3. Ligand-Based Screening

PubChem, established in 2004 as part of the Molecular Libraries Roadmap Initiatives
by the US National Institutes of Health (NIH), serves as a publicly accessible repository
for information pertaining to chemical substances and their associated biological activities.
PubChem encompasses three interconnected databases: Substance, Compound, and Bioas-
say. Utilizing the ligand obtained from COACH-D, we conducted a ligand-based screening
against the PubChem database, applying a Tanimoto threshold of 90% and adhering to
Lipinski’s Rule of Five. A total of 3808 drugs were subjected to this screening process and
subsequently downloaded in SDF format for further utilization in virtual screening against
the envelope protein, employing PyRx software.
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Figure 3. (A) Active site (Pink transparent sphere) of envelope protein with BOG ligand (Stick model,
Red color) binding, (B) features of the generated pharmacophore model. The orange sphere indicate
hydrogen bond acceptors, and the white dotted line pattern on orange sphere indicates a hydrogen
bond donor site.

2.5. Virtual Screening

The drug screening process involved both primary and secondary stages using PyRx
with the AutoDock Vina set to an exhaustiveness of 8. Initially, a search in the Pub-
Chem database resulted in the identification of 3808 compounds for screening against
the envelope protein. Subsequently, 33 compounds with binding energies ranging from
−10.00 to −7.70 kcal/mol were chosen for secondary screening using PyRx. Further phar-
macophore screening was conducted using the COCONUT and Zinc databases from
Pharmit, yielding 7374 and 1869 compounds, respectively. Based on the minimum binding
energy criteria, 73 compounds from the COCONUT database and 25 compounds from the
Zinc database were selected for secondary screening. The list of selected compounds from
the COCONUT and Zinc databases, based on their binding energy values, can be found in
Supplementary Table S2. Additionally, a primary screening of 50 compounds, generated
through de novo design using eLea3D, was carried out with PyRx, and 15 compounds
exhibiting binding energy values in the range of −8.60 to −7.90 to kcal/mol were selected
for secondary screening.

In the secondary screening phase, 146 drugs were assessed using PyRx against an
energy-minimized envelope protein (33 compounds from PubChem, 73 compounds from
the COCONUT database, 25 compounds from the Zinc database, and 15 compounds from
the de novo design). The process involved ligand–receptor docking runs with Vina, which
evaluated the results, calculated binding affinities, and organized the poses based on
conformational overlaps. The best pose from each cluster was selected, and the ligands
were ranked according to their binding affinities [44]. This screening identified 12 hits based
on their binding affinities and orientations within the protein’s binding site, and these
hits were further subjected to ADMET studies and molecular docking by AutoDock. A
comprehensive summary of the binding affinities for the drugs, generated through various
drug design and screening methods, can be found in Table 8, with additional information
in Supplementary Table S3.



Pharmaceuticals 2024, 17, 884 10 of 36

Table 8. List of drugs selected based on minimum binding energy by PyRx software.

Ligand ID Formula Structure Binding Energy
(kcal/mol)

161783612 C17 H30 O9 −10.20

CNP0187513.6 C26 H30 N2 O8 −8.80

CNP0247967 C27 H40 O8 −8.80

SA8 C25 H28 N6 O2 −8.80

101929509 C14 H26 O9 −8.60

ZINC000028541549 C26 H30 N2 O8 −8.60

ZINC000100052673 C26 H22 O10 −8.60

CNP0097629.2 C29 H34 O9 −8.50

CNP0178494.1 C24 H20 O12 −8.50

CNP0247704.2 C25 H30 O9 −8.50

SA28 C33 H34 N4 O3 −8.50

SA29 C33 H34 N4 O3 −8.50

2.6. Toxicity Measurement

Prior to initiating clinical trials and in the pursuit of identifying superior lead com-
pounds, it is imperative to conduct in silico toxicity assessments. The adoption of computer-
based toxicity measurements has gained considerable popularity due to their precision,
speed, and accessibility, enabling the evaluation of both synthetic and natural compounds.
To evaluate the toxicity and possible adverse effects linked to the twelve chosen chemi-
cals, we utilized the ProTox II server. The assessment encompassed different toxicological
parameters, including acute toxicity, mutagenicity, cytotoxicity, hepatotoxicity, carcino-
genicity, and the determination of the median lethal dose (LD50) in mg/kg, which was
calculated based on weight and is presented in Table 9. As per the ProTox II server’s find-
ings, compounds falling within class 4 or higher were identified and subjected to further
evaluation for different types of toxicity. Among them, compounds 16178612, CNP0247967,
SA8, ZINC0001000052673, CNP0097629.2, and CNP0247704.2, classified in class 4 and
above, were predicted to have very low or no oral toxicity, carcinogenicity, mutagenicity, or
cytotoxicity. On the other hand, compounds CNP0178494, SA28, and SA29, also belonging
to class 4 or higher, were predicted to have mutagenic activity. The complete roster of
compounds selected based on virtual screening data for toxicity prediction is provided
in Table 9. Subsequently, relying on the ProTox II server results, compounds 16178612,
CNP0247967, SA8, ZINC0001000052673, CNP0097629.2, and CNP0247704.2 were chosen
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for further analysis in the context of ADME (absorption, distribution, metabolism, and
excretion) considerations.

Table 9. Toxicity measurement of selected drug molecules by ProTox II.

Name of Drug
Oral Toxicity Organ Toxicity-

Hepatotoxicity Carcinogenicity Mutagenicity Cytotoxicity
LD50 Class

161783612 (L1) 2000 4 IA IA IA IA
CNP0187513.6 (L2) 300 3 IA IA IA IA

CNP0247967(L3) 10000 6 IA IA IA A
SA8(L4) 2000 4 IA IA IA IA

101929509(L5) 51 3 IA IA IA IA
ZINC000028541549 (L6) 300 3 IA IA IA IA
ZINC0001000052673(L7) 2190 5 IA IA IA IA

CNP0097629.2(L8) 3000 5 IA IA IA IA
CNP0178494.1(L9) 5000 5 IA IA A IA
CNP0247704.2(L10) 4000 5 IA IA IA IA

SA28(L11) 400 4 IA IA A IA
SA29(L12) 400 4 IA IA A IA

IA: Inactive; A: Active.

2.7. ADME Analysis

An effective drug candidate must possess the capability to reach the target site within
the body at concentrations that are optimized for therapeutic action [45]. The prediction of
pharmacological and physicochemical parameters plays a crucial role as it provides insights
into whether the molecule can attain the desired concentration at the active site and sustain
it to trigger the intended biological response. The physicochemical and pharmacokinetic
attributes of the six compounds were evaluated through SwissADME [45] and are presented
in Table 10 for reference.

The physicochemical profiling included the assessment of both Lipinski’s Rule of
Five (RO5) and Veber’s Rule to ascertain whether the chemical compounds with specific
pharmacological or biological activities possess the necessary chemical and physical prop-
erties for oral activity [43,46]. With the exception of CNP0097629.2 (with a molecular
weight exceeding 500), all compounds adhered to Lipinski’s Rule. As for Veber’s rules,
compounds ZINC0001000052673, CNP0097629.2, and CNP0247704.2 violated one of the
criteria, as summarized in Table 10. Lipophilicity, a property enabling drug-like compounds
to dissolve in fats, oils, and nonpolar solvents, facilitating their diffusion through cell mem-
branes, indicates the potential for oral administration. However, for compounds other
than SA8 and CNP0247967, gastrointestinal absorption is low, suggesting that injectable
dosage forms may be more effective in achieving a rapid onset of action. In terms of
lipophilicity, all six compounds exhibited good properties, except for 161783612, which
had a consensus log P value of −0.7, falling outside the range of +5.00. Solubility, a crucial
physicochemical property, was predicted to evaluate the bioavailability and bioactivity
of the identified compounds [47]. The poor solubility of lead compounds has led to their
failure in clinical trials despite their potency, emphasizing the significance of early-stage
solubility predictions in drug design [48]. Fortunately, all compounds were predicted to be
soluble. The evaluation of molar refractivity (MR) provided valuable insights into the phar-
macokinetics and pharmacodynamics of the compounds, considering various interactions
in solution such as drug–solvent, drug–drug, and drug–co-solute interactions [49]. Except
for SA8 and CNP0097629.2, all compounds fell within the acceptable range of MR values,
ranging from 40 to 130. Topological polar surface area (TPSA) assessment indicated good
oral bioavailability for all compounds, as their values did not exceed 140 Å2. However,
ZINC0001000052673, CNP0097629.2, and CNP0247704.2 were exceptions, predicted to
have lower oral bioavailability. Synthetic accessibility [50] was explored to evaluate the
feasibility of synthesizing the de novo hits, with all compounds predicted to have easy
synthesis. Many druggable candidates, especially de novo-constructed chemical entities,
are unable to reach clinical trials due to their molecular complexity coupled with difficulty
in synthesis [51].
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Table 10. ADME analysis of selected drug molecules by SwissADME.

Molecule 161783612
(L1)

SA8
(L4)

CNP0247967
(L3)

ZINC0001000052673
(L7)

CNP0097629.2
(L8)

CNP0247704.2
(L10)

Formula C17H30O9 C25H32N6O2 C27H40O8 C26H22O10 C29H34O9 C25H30O9

Physicochemical properties

Weight (molecular) (Da) 378.41 448.56 492.6 494.45 526.57 474.5
#Heavy atoms 26 33 35 36 38 34

#Rotatable bonds 2 7 0 3 3 3
#Aromatic heavy atoms 0 12 0 18 6 12

#H-bond donors 5 5 5 5 5 5
#H-bond acceptors 9 4 8 10 9 9

MR 87.64 150.18 126.48 120.87 135.38 120.32
TPSA 138.07 97.53 136.68 155.14 153.75 145.91

Lipophilicity
Consensus log P −0.96 1.54 1.11 1.29 1.83 0.87

Water solubility
ESOL log S −0.96 −3.39 −3.24 −4.1 −4.46 −3.48

Water solubility
ESOL class Very soluble Soluble Soluble Moderately

soluble
Moderately

soluble Soluble

Pharmacokinetics

GI absorption Low High High Low Low Low
log Kp (cm/s) skin permeation −9.84 −7.96 −8.91 −8.17 −7.89 −8.48

BBB permeant No No No No No No

Drug likeness

Lipinski #violations 0 0 0 0 1 0
Veber #violations 0 0 0 1 1 1

Bioavailability score 0.55 0.55 0.55 0.55 0.55 0.55
PAINS #alerts 0 0 0 0 1 0

Lead likeness #violations 1 1 1 1 1 1
Synthetic accessibility 7.32 4.06 6.93 5.78 6.72 6.76

Metabolism

Pgp substrate Yes Yes Yes No Yes Yes
CYP2D6 inhibitor No Yes No No No No
CYP2C9 inhibitor No No No No No No

CYP2C19 inhibitor No Yes No No Yes No
CYP1A2 inhibitor No No No No No No
CYP3A4 inhibitor No No No Yes No No

SwissADME predicted that all six compounds, except 161783612 (L1), possess syn-
thetic accessibility. An examination of potential non-specific reactivity with various bi-
ological targets identified PAINS (pan assay interference compounds) [52,53], and all
compounds, except CNP0097629.2, were predicted not to contain PAINS substructures.
Pharmacokinetics studies assessed parameters such as blood–brain barrier (BBB) permeabil-
ity, gastrointestinal absorption (GI), and permeability glycoprotein (P-gp) interactions [54].
None of the compounds were predicted to cross the blood–brain barrier [55,56]. Ligands
SA8 and CNP0247967 exhibited high GI absorption scores, while others displayed low GI
absorption [57]. Additionally, all compounds, except ZINC0001000052673, were predicted
to be P-glycoprotein substrates, potentially enhancing their bioavailability. In summary,
the predictions suggest that all the compounds may exhibit favorable pharmacokinetic and
pharmacodynamic profiles.

2.8. Molecular Docking

Molecular docking plays a crucial role in comprehending the interaction between
ligands and proteins at the atomic level, facilitating the screening of drug molecules from
libraries. Following ADME and toxicity assessments, AutoDock was employed to analyze
the selected six compounds. The binding affinities of all six ligands fell within the range
of −7.82 to −4.1 kcal/mol, as detailed in Table 11. Based on these binding affinities, five
compounds/ligands were chosen for further geometric optimization, which was carried
out using Orca version 4.2.1 software.
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Table 11. Molecular docking results of six compounds by AutoDock.

Compound ID Name Binding Affinity
(kcal/mol)

Inhibition
Constant Ki

161783612 (L1)
(1S,3R,5R,6S,12R,14R,15R,16R,17R,18R)-5-ethyl-14-

(hydroxymethyl)-2,4,7,13-etraoxatricyclo
[10.2.2.23,6]octadecane-15,16,17,18-tetrol

−4.58 436.03 µM

CNP0247967 (L3) Tupichigenin C −7.26 4.79 µM

SA28 (L4) De novo design −7.82 1.86 µM

ZINC0001000052673 (L7) Fluorescein beta-D-galactopyranoside −7.65 2.48 µM

CNP0097629.2 (L8)

5′-hydroxy-7′-{[3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy}-3′,4′,5′a,6′,11′,11′a-
hexahydro-1′H-spiro[cyclohexane-1,2′-tetracene]-

6′,11′-dione

−7.04 6.91 µM

CNP0247704.2 (L10)
10-hydroxy-4-{[3,4,5-trihydroxy-6-

(hydroxymethyl)oxan-2-yl]oxy}-2-oxatricyclo
[13.2.2.13,7]icosa-1(17),3(20),4,6,15,18-hexane-12-one

−5.72 64.51 µM

2.9. DFT Studies

Geometry optimization is a quantum chemical technique that involves refining rough
geometric approximations to achieve the highest degree of precision [58]. The geometry
characterized by the lowest energy state signifies the most stable form, as molecules tend to
reduce their energy spontaneously. Consequently, utilizing Orca 4.2, we have determined
the molecular geometry that is best optimized and possesses the lowest energy value.
The optimized energy of the ligand structures determined by Orca is depicted in Table 12
for reference.

Table 12. Calculated FMO energy band values of ligands.

Ligand Optimized Energy (eV) HOMO (eV) LUMO (eV) Energy Gap (eV)

L3 −44,966 −6.63 −0.99 5.63
L4 −39,428 −4.85 −0.66 4.18
L7 −47,727 −6.15 −0.05 4.71
L8 −48,985 −5.15 −1.93 3.20

L10 −44,777 −6.32 −0.95 5.37

2.10. Frontier Molecular Orbital—HOMO/LUMO Calculation

The frontier molecular orbital (FMO) theory is vital in organic chemistry for under-
standing molecular structure and reactivity. It uses the HOMO-LUMO energy gap to reveal
a molecule’s properties [59]. The gap between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) indicates sensitivity to
reactions and stability. In the HOMO, electrons are engaged in nucleophilic reactions, while
in the LUMO, electrons are involved in electrophilic reactions. Molecules with a narrow
HOMO-LUMO gap are highly reactive and less stable (“soft”), while those with a wide gap
are less reactive, more stable, and have lower bioactivity. A high FMO energy gap signifies
better stability and lower reactivity [54,59].

Figure 4 represents the HOMO-LUMO orbitals of the selected five compounds with
energy gap values. The computed FMO energy band gap values, presented in Table 12, were
notably high, signifying elevated kinetic stability and reduced chemical reactivity of the
molecules. The energy gap for ligand L3 is comparatively higher and considered to be more
stable, whereas ligand L8 has a lower energy gap and is considered as less stable. The energy
gap between the HOMO and LUMO is very high for all the selected molecules, indicating
their stability and lower reactivity, due to which the geometry optimized structure does
not show considerable difference in binding affinity during molecular docking between the
initial and optimized structure.
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Figure 4. Molecular orbitals showing HOMO-LUMO and energy gap of the selected ligands.
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2.11. Redocking and Interaction Analysis

The redocking process was executed, involving the envelope protein and the ligands
that had undergone geometric optimization, employing AutoDock 4.0. Upon optimization,
ligands L3, L4, and L10 exhibited improved binding energy compared with their initial
values, as indicated in Table 13. In contrast, the binding energy of ligands L7 and L8
decreased after optimization. This suggests that the quantum-mechanics-based (QM-based)
optimization of these ligands had a positive impact on their binding characteristics. To gain
deeper insights, a comprehensive analysis of protein–ligand interactions was conducted
to identify the specific amino acid residues involved in the binding. Understanding these
interactions plays a pivotal role in the development of drugs and the treatment of disease.
Therefore, the interactions between the envelope protein and ligands were thoroughly
examined using BIOVIA Discovery Studio Visualizer.

Table 13. Ligand binding energy values before and after geometry optimization.

Compound ID
Binding Affinity (kcal/mol)

Before Optimization After Optimization

CNP0247967 (L3) −7.26 −7.58
SA28 (L4) −7.82 −8.91

ZINC0001000052673 (L7) −7.65 −6.43
CNP0097629.2 (L8) −7.04 −6.12
CNP0247704.2 (L10) −5.72 −6.02

The analysis of interactions between proteins and ligands holds a crucial role in the
drug development process, aiding in the identification of lead molecules for combating
various diseases. Consequently, we conducted an in-depth examination of the interactions
between the protein and the ligand chosen using the BIOVIA Discovery Studio Visualizer
tool. Table 14 and Figure 5 present the results of this interaction analysis, encompassing
hydrogen bonding interactions (conventional, pi–donor H–B, and carbon H–B), various
hydrophobic interactions (pi–alkyl, alkyl, pi–sigma, and pi–pi T-shaped), and electrostatic
interactions (pi–anion).

Table 14. Interaction analysis of selected ligands with envelope protein.

Complex Amino Acid
Residue Bond Distance (Å) Bond Category Type of Bond

L3

His216 1.95 HB CHB
Gly270 1.65 HB CHB
Gly270 2.11 HB CHB
Val192 2.67 HB Carbon H–B
Val215 2.99 HB Carbon H–B
His216 2.42 HB Carbon H–B
Gln214 2.86 HB Carbon H–B
Val192 4.89 HP Alkyl
Val192 3.73 HP Alkyl
His287 4.19 HP Pi–Alkyl
His419 4.34 HP Pi–Alkyl

L4

Gly191 1.77 HB CHB
Gln214 1.75 HB CHB
Val415 2.55 HB CHB
His216 2.75 HB Carbon H–B
His216 2.75 HB Carbon H–B
Val192 4.93 HP Pi–Alkyl
Val415 5.24 HP Pi–Alkyl
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Table 14. Cont.

Complex Amino Acid
Residue Bond Distance (Å) Bond Category Type of Bond

L7

Gln214 2.10 HB CHB
Glu26 2.10 HB CHB
Leu27 2.38 HB CHB
Gly270 1.67 HB CHB
Ser285 2.83 HB Pi–Donor H–B
Val192 5.23 HP Pi–Alkyl
Pro272 3.90 HP Pi–Alkyl

L8

Val273 2.39 HB CHB
Ser285 2.15 HB CHB
Gln284 2.27 HB CHB
Val271 2.28 HB CHB
Ser285 2.87 HB Carbon H–B
Val415 2.77 HB Carbon H–B
His287 3.71 HP Pi–Sigma
Val192 5.29 HP Alkyl
Val192 4.37 HP Alkyl
His287 4.93 HP Pi–Alkyl
Val415 5.18 HP Pi–Alkyl

L10

Gln196 2.79 HB CHB
Gly191 2.13 HB CHB
Asp193 2.68 HB Pi–Donor H–B
His216 4.57 HP Pi–Pi T-shaped
Val192 4.60 HP Pi–Alkyl

HB: hydrogen bond; HP: hydrophobic; CHB: conventional H–B.

The interaction analysis between the protein and L3 complex (Figure 5A,B) revealed a to-
tal of 11 bonding interactions, encompassing 7 hydrogen bonds (comprising 3 conventional
and 4 carbon H–B bonds) and 4 hydrophobic interactions (including 2 alkyl and 2 pi–alkyl
interactions). These interactions were associated with a binding energy of −7.58 kcal/mol.
Notably, amino acid residues like His216 and Gly270 formed HN–O and H–O conventional
hydrogen bonds with the ligand, while Val192 and 215, His216, and Gln214 engaged in
carbon–hydrogen bonding with the ligand. Val192 established an alkyl interaction, whereas
His287 and 419 contributed to pi–alkyl interactions with the ligand. In the case of the pro-
tein’s interaction with the L4 complex (Figure 5C,D), a total of seven bonding interactions
were observed. These included five hydrogen bonds (comprising three conventional and
two carbon H–B bonds) and two hydrophobic interactions (pi–alkyl interactions). The bind-
ing energy for this interaction was −8.91 kcal/mol. Residues Gly191 and 214, and Val415,
participated in O–H conventional hydrogen bonding with the ligand, while His216 formed
an HA–O carbon–hydrogen bond. Val192 and 415 contributed to pi–alkyl interactions
with the ligand. Analysis of the protein’s interaction with the L7 complex (Figure 5E,F)
revealed a total of seven bonding interactions, including five hydrogen bonds (comprising
four conventional and one pi H–B bond) and two pi–alkyl hydrophobic interactions. This
interaction possessed a binding energy of −6.43 kcal/mol. Amino acid residues such as
Gly214, Glu26, Leu27, and Gly270 engaged in conventional hydrogen bonding with the
ligand. At the same time, Ser285 formed a pi donor hydrogen bond, and Val192 and Pro272
established pi–alkyl interactions with the ligand. On a similar note, the interaction analysis
of the protein with the L8 complex (Figure 5G,H) revealed a total of 13 bonding interac-
tions. These included eight hydrogen bonds (comprising six conventional and two carbon
H–B bonds) and five hydrophobic interactions (including one p–sigma, two alkyl, and
two pi–alkyl interactions). This interaction exhibited a binding energy of −6.12 kcal/mol.
Residues such as Val273, Ser285, Gln284, and Val271 participated in conventional hydro-
gen bonding with the ligand, while His287, Val192, His287, and Val415 contributed to
hydrophobic interactions. Furthermore, the interaction analysis of the protein with the L10
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ligand (Figure 5I,J) involved five bonding interactions (two conventional and one pi–donor
hydrogen bond) and two hydrophobic interactions (one pi–pi T-shaped and one pi–alkyl).
Amino acid residues like Gln196, Gly191, Asp193, His216, and Val192 were involved in
these interactions. Based on this interaction analysis, ligands L3 and L4 were chosen for
subsequent simulation studies.

Figure 5. 3D interaction between the envelope protein (yellow ribbon model) with the ligand (red
ball & stick model) (A,C,E,G,I) and 2D interaction plot between envelope protein and different ligand
(ball & stick model) (B,D,F,H,J).
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2.12. Molecular Dynamics (MD) Simulation Studies
2.12.1. Simulation of Envelope Protein

In order to evaluate the stability and convergence of the envelope protein, MD sim-
ulations were conducted over 200 ns duration. The root-mean-square deviation (RMSD)
trajectory of the envelope protein initially began at 3.2 Å at 0 ns and increased gradually
to 5.2 Å at 25 ns. It reached a maximum RMSD of 6.2 Å at 50 ns before stabilizing around
5.2 Å (Figure 6A). This range of RMSD values falls within an acceptable range. Substantial
deviations could indicate significant conformational changes in the protein during the
MD simulation, which were observed in the initial 50 ns of simulation time. Furthermore,
convergence of the simulation and stabilization of the RMSD values around a fixed value
are of the utmost importance. A stable RMSD plot throughout the simulation signifies good
convergence and stable protein conformations, which were observed after 100 ns simulation
time. The root-mean-square fluctuations (RMSF) plot revealed notable fluctuations in the
envelope protein, primarily observed in C-terminal residues from 420 aa to 490 aa, possibly
indicating higher flexibility in these regions (Figure 6B). Consequently, the RMSF plots
suggest that the protein structure remains rigid during the simulation. Secondary struc-
tural elements, such as alpha-helical regions (depicted in red) and beta-stranded areas (in
blue), are also annotated in the RMSF plot and were found to be stable and showed fewer
fluctuations during simulation. The other secondary structural elements, like random coil,
accounted for 40% of the amino acid as depicted by SOPMA and showed higher fluctuation
during simulation.

Figure 6. MD simulation analysis of 200 ns trajectories for the envelope protein. RMSD of the Cα

backbone of the envelope protein is represented in (A), and RMSF of the Cα backbone of the envelope
protein is represented in (B).

2.12.2. Simulation of L3 Complex

Figure 7A provides a visual representation of the RMSD trajectory for the envelope
protein–L3 complex. The provided picture illustrates the trajectory of the protein’s RMSD
in blue, with the corresponding RMSD values presented in Å units on the Y-axis (left).
Additionally, the figure displays the trajectory of the ligand’s RMSD in red, with the
corresponding values also in Å units on the Y-axis (right). The RMSD of the protein
displayed fluctuations beginning around 2.80 Å at 0 ns and gradually increasing to above
6.8 Å by 60 ns. Subsequently, the protein’s RMSD trajectory decreased and fluctuated
between 5.8 Å and 6.4 Å between 60 ns and 150 ns. After 150 ns, it increased to 6.8 Å and
7.2 Å at 175 ns. Further, the protein RMSD stabilized around 5.44 Å during the end of
the 200 ns MD simulation. The protein’s RMSD exhibited fluctuations primarily within
the range of 2.8 Å to 5.8 Å, with some intermediate spikes around 7.2 Å, suggesting that
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the protein maintained a stable conformation throughout the simulation. Contrastingly,
the ligand’s RMSD trajectory initiated around 3.16 Å but sharply increased, reaching
approximately 6 Å at the initial stage of 5 ns. After 5 ns, the RMSD of the ligand fluctuated
around 3.0 Å up to 50 ns. From 50 ns to 120 ns, the ligand RMSD fluctuated between
5.8 Å and 9.0 Å. From 120 ns onwards, the ligand’s RMSD exhibited fluctuations around
5.8 Å, suggesting a stable conformation at the end of the simulation time. In general,
the RMSD of the ligand suggests the ligand stayed stable at the binding pocket of the
protein and interacted with different amino acids to reach stable binding at the end of the
simulation time.

Figure 7. RMSD trajectory, RMSF plot, ligand RMSF plot, and ligand structure of the envelope
protein–L3 complex (A,C,E,G) and envelope protein–L4 complex (B,D,F,H).
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Turning to the RMSF plot of the protein in the envelope protein–L3 complex (Figure 7C),
the bars in the green color seen in the plot correspond to instances where amino acids are
engaging in interactions with the ligand. While amino acids at the C-terminal displayed
higher RMSF values, the average RMSF for most amino acids remained under 2.0 Å. RMSF
values for the majority of the interacting amino acid residues were below 2.0, with the
exception of a few C-terminal amino acids. It is noteworthy that the amino acids at the
terminal exhibited higher RMSF values, varying from 4.0 to 5.6 Å. This observation was
particularly pronounced in the C-terminal region, characterized by a loop conformation,
leading to significant RMSF fluctuations [60]. In a side-by-side comparison with the
protein’s free state (as depicted in Figure 6B), the envelope protein–L3 complex exhibited
lower RMSF values, which are likely a result of the binding of the L3 ligand in the loop
region of the protein. This suggests that the complex experiences lower RMSF fluctuations
compared with the protein in its free state. It is worth noting that secondary structure
elements, such as alpha helices and beta strands, typically exhibit less fluctuation compared
with loop regions (indicated by a white background). The ligand’s RMSF plot for L3 in the
envelope protein–L3 complex is presented in Figure 8E. The RMSF diagram of the ligand,
on average, reveals that every atom of L3 possesses an RMSF value between 2.0 and 2.8 Å.
This suggests that the ligand was stable at the binding pocket of the envelope protein
but explores binding to different amino acids within the binding pocket to reach a more
stable configuration.

Four subtypes of protein–ligand contacts are distinguished in Figure 8A for the enve-
lope protein–L3 complex during the 200 ns MD simulation: hydrophobic, ionic, hydrogen
bonds, and water bridges. Throughout the trajectory, these layered bar charts are nor-
malized; greater interaction fractions indicate more sustained interactions. L3 established
hydrogen bonds (conventional) between amino acids and ligands during the MD simula-
tion, including Gln196, Gln214, His216, Asp218, Trp219, Asp222, Lys266, Ser267, Ala269,
Gly270, His287, Arg457, Met490, Val494, and Gly495. A summary of the interactions
and contacts (including hydrophobic, ionic, H-bonds, and water bridges) is illustrated
in Figure 7E as a timeline. Figure 9A shows the ligand interaction with the envelope
protein with more than 30% of simulation time. The amino acids Asp218, Ser267, Gly270,
Arg457, Met490, and Gly495 maintained 42%, 49%, 32%, 32%, 38%, and 40% of contact
time, respectively, during the simulation. Throughout the trajectory, the total number of
specific contacts between the protein and the ligand is displayed in the top panel. Figure 7E
provides insight into the MD simulation, suggesting that the ligand changed its initial
binding site amino acids during the first 75 ns. However, after 75 ns, L3 exhibited a change
in the pattern of ligand contacts and maintained it throughout 200 ns. This aligns with
the observation in Figure 7A, indicating fluctuations in the ligand’s RMSD and, in turn,
an unstable binding pose of the ligand. This representation allows for a dynamic view
of the evolving interactions between the protein and the ligand throughout the 200 ns
MD simulation.

Finally, Figure 8C presents various properties of L3 in the envelope protein–L3 com-
plex, including the RMSD, radius of gyration (rGyr), molecular surface area (MolSA),
intramolecular hydrogen bond, polar surface area (PSA), and solvent-accessible surface
area (SASA). The ligand’s RMSD fluctuated between 0.3 Å and 0.75 Å, stabilizing at around
0.55 Å after 175 ns. The rGyr fluctuated between 4.94 Å and 5.14 Å, reaching equilibrium at
approximately 5.10 Å after 150 ns. There were only two intramolecular hydrogen bonds
within the L3 molecule. The MolSA fluctuated between 392 Å2 and 404 Å2, maintaining
equilibrium around 400 Å2. The SASA of L3 fluctuated between 60 Å2 and 240 Å2, stabiliz-
ing at around 180 Å2 after 150 ns. The PSA of L3 fluctuated between 206 Å2 and 226 Å2,
stabilizing at around 216 Å2. These properties collectively provide insights into the dynamic
behavior and structural changes experienced by the L3 ligand during the simulation.
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Figure 8. Protein–ligand interaction diagram, ligand properties, and interaction timeline of envelope
protein–L3 complex (A,C,E) and envelope protein–L4 complex (B,D,F).
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Figure 9. Ligand–protein contact for more than 30% of simulation time; (A) L3–envelope protein
complex; (B) L3–envelope protein complex.

2.12.3. Simulation of L4 Complex

Figure 7B provides a visual representation of the RMSD trajectory for the envelope
protein–L4 complex. The provided picture illustrates the trajectory of the protein’s RMSD
in blue, with the corresponding RMSD values presented in Å units on the y-axis (left).
Additionally, the figure displays the trajectory of the ligand’s RMSD in red, with the
corresponding values also in Å units on the y-axis (right). The protein’s RMSD displayed
fluctuations, beginning around 2.45 Å at 0 ns and gradually increasing to above 7.9 Å
by 25 ns. Subsequently, the protein’s RMSD trajectory decreased to approximately 7.0 Å
around 50 ns. From 50 ns onward, the RMSD trajectory exhibited decreasing fluctuations,
ultimately stabilizing around 5.8 Å until the end of the 200 ns MD simulation. The protein’s
RMSD predominantly exhibited a range of 2.4 Å to 5.8 Å, with a small intermediate spike of
7.9 Å at 25 ns, which suggests that the protein remained stable during the MD simulation.
Contrastingly, the ligand’s RMSD trajectory initiated around 2.34 Å at 0 ns and increased
up to 12.53 Å at 50 ns. After 50 ns, the RMSD of the ligand fluctuated between 7.0 Å
and 10 Å. From 100 ns onwards, the ligand’s RMSD exhibited fluctuations around 8.7 Å,
suggesting the stable conformation at the end of the simulation time. In general, the RMSD
of the ligand suggests the ligand stayed stable at the binding pocket of the protein and
interacted with different amino acids to reach the stable binding position at the end of the
simulation time.

The protein’s RMSF plot in the envelope protein–L4 complex (Figure 7D) illustrates
the interaction between the ligand and amino acids, as indicated by the bars in green in the
plot. While C-terminal amino acid residues displayed higher RMSF values, the average
RMSF for most amino acids remained under 3.0 Å. Many interacting amino acids showed
RMSF values lower than 2.0 Å, except for a few C-terminal amino acids. In a side-by-side
comparison with the protein’s free state (as depicted in Figure 6B), the envelope protein–L4
complex exhibited higher RMSF values, which are likely a result of the binding of the
L4 ligand in the loop region of the protein. This suggests that the complex experiences
more significant RMSF fluctuations compared with the protein in its free state. The protein
RMSF plot emphasizes the stability of individual amino acid residues during the 200 ns
MD simulation. It is worth noting that secondary structure elements such as alpha helices
and beta strands typically exhibit less fluctuation compared with loop regions (indicated by
a white background). The ligand’s RMSF plot for L4 in the envelope protein–L4 complex is
presented in Figure 7F. The RMSF diagram of the ligand, on average, reveals that every
atom of L4 possesses an RMSF value in the range of 1.8 to 5 Å. This suggests that the ligand
continuously explores different binding poses in search of a more stable configuration in
the binding pocket of the envelope protein.

During the 200 ns MD simulation, the protein–ligand contacts for the envelope protein–
L4 complex are classified into four subtypes in Figure 8B: hydrophobic, ionic, hydrogen
bond, and water bridge. Throughout the trajectory, these layered bar charts are normalized;
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greater interaction fractions indicate more sustained interactions. During the MD simula-
tion, L4 formed conventional hydrogen bonds with amino acids including Gly191, Gln196,
Thr197, Gln214, His287, Val415, Gly417, Glu418, and His419. A summary of the timeline
depicting the interactions and contacts (including hydrophobic, ionic, H-bonds, and water
bridges) can be found in Figure 8D. Figure 9B shows the ligand interaction with the en-
velope protein with more than 30% of simulation time. The amino acids Gln214, His216,
Val415, and Glu418 maintained 64%, 46%, 56%, and 49% of contact time, respectively,
during the simulation. Throughout the trajectory, the total number of specific contacts
between the protein and the ligand is displayed in the upper panel. Figure 8F provides
insight into the first 50 ns of the MD simulation, suggesting that the ligand changed the
interaction with the amino acids within the defined binding pocket. However, after 50 ns,
L4 exhibited a constant binding pattern of ligand contacts. This aligns with the observation
in Figure 7B, indicating fluctuations in the ligand’s RMSD and, in turn, an unstable binding
pose of the ligand in the initial 50 ns of the simulation run.

Finally, Figure 8D presents various properties of L4 in the envelope protein–L4 com-
plex, including RMSD, rGyr, MolSA, intramolecular hydrogen bond, PSA, and SASA. The
ligand’s RMSD fluctuated between 0.8 Å and 2.4 Å, stabilizing at around 1.6 Å after 75 ns.
The rGyr fluctuated between 4.4 Å and 5.6 Å, reaching equilibrium at approximately 5.3 Å
after 160 ns. There was only one intramolecular hydrogen bond within the L4 molecule.
The MolSA fluctuated between 380 Å2 and 440 Å2, maintaining equilibrium around 430 Å2

after 160 ns. The SASA of L4 fluctuated between 150 Å2 and 320 Å2, stabilizing at around
240 Å2 after 160 ns. The PSA of L4 fluctuated between 140 Å2 and 200 Å2, stabilizing at
around 190 Å2 after 160 ns.

In summary, during the 200 ns MD simulation, both L3 and L4 ligands underwent
conformational changes at the active binding pocket as they attempted to stabilize them-
selves by finding more suitable binding residues within the defined binding site. This
is evident in the ligand RMSD trajectories presented in Figure 7A,B. Additionally, as the
ligands sought to stabilize themselves, they interacted with different amino acid residues
over time, as shown in Figure 8A,B. The various binding poses of L3 and L4 at the active
binding pocket of the envelope protein at different time points, including 0 ns, 40 ns, 80 ns,
120 ns, 160 ns, and 200 ns, are depicted in Figures 10 and 11, respectively.

Figure 10. Binding poses of L3 ligand at the active site of the envelope protein at different time
intervals during MD simulation.
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Figure 11. Binding poses of L4 ligand at the active site of the envelope protein at different time
intervals during MD simulation.

2.13. Binding Free Energy Analysis of the L3 and L4 Complex

In this study, we employed the Prime MM-GBSA approach to estimate the binding free
energies of ligand–protein complexes in MD simulations. We considered various energy
components, including electrostatic interactions, covalent contributions, hydrogen bonding,
van der Waals forces, self-contact energies, lipophilic interactions, and solvation effects. These
components were collectively added, adhering to the principle of additivity, to calculate the
binding free energy (∆Gbind) expressed in kilocalories per mole (kcal/mol). The ∆Gbind
values provide insights into the strength and favorability of ligand–protein interactions. This
method is commonly used in drug discovery and molecular dynamics research.

Using the MD simulation trajectory, we computed the binding free energy and other
contributing energies in the form of MM-GBSA for the L3 and L4 complexes. The results, as
shown in Table 15, indicate that the average binding free energy of the envelope protein with
the L3 complex (−85.26 ± 4.63 kcal/mol) is higher than that of the L4 complex (−66.60 ±
2.92 kcal/mol) by a margin of −18.66 kcal/mol. This suggests that the envelope protein–L3
complex exhibits higher stability compared with the L4 complex. From the total energy, the
primary contribution was made by van der Waals forces: for the L3 complex, the ∆GbindvdW is
−70.63 ± 3.57 kcal/mol, and for the L4 complex, it is −53.79 ± 1.23 kcal/mol. Further coulom-
bic interactions give further stability to the protein–ligand complex. The ∆GbindCoulomb for
the L3 and L4 complexes is −43.66 ± 4.48 and−23.60 ± 1.52 kcal/mol, respectively.

Table 15. Binding free energy components for the L3 and L4 complexes calculated by MM-GBSA.

Energies (kcal/mol) L3 Complex L4 Complex

∆Gbind −85.26 ± 4.63 −66.60 ± 2.92
∆GbindLipo −32.51 ± 1.64 −19.96 ± 0.96
∆GbindvdW −70.63 ± 3.57 −53.79 ± 1.23

∆GbindCoulomb −43.66 ± 4.48 −23.60 ± 1.52
∆GbindHbond −1.87 ± 0.25 −0.58 ± 0.01

∆GbindSolvGB 60.54 ± 3.45 33.55 ± 2.75
∆GbindCovalent 4.22 ± 1.66 0.31 ± 0.64
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3. Discussion

In light of the vaccine’s limited efficacy in combating KFDV, the public health response
becomes more susceptible and less capable of effectively addressing the situation [15,27,61,62].
The increasing number of KFDV cases and the expansion of endemic areas in India neces-
sitate an interdisciplinary approach to the development of antiviral drug candidates for
KFDV [4,63]. Therefore, the present study aimed to inhibit the function of the envelope
protein interaction of KFDV with host cells [64–66] by identifying a novel and effective
antiviral drug candidate against KFDV by a de novo design and pharmacophore-based
screening approach.

In this study, we retrieved the envelope protein sequence from the UniProt database
with UniProt ID D7RF80.1 and performed sequence analysis. MSA revealed the con-
servation of 12 cysteine residues to form disulfide bonds between 3–30, 60–121, 74–105,
92–116, 186–290, and 307–338 amino acids among all flaviviruses including dengue virus,
suggesting similar 3D structures [29]. Due to the unavailability of the 3D structure of
the envelope protein, the 3D structure was determined by Robetta and I-Tasser servers.
Based on the structure validation method, the model generated from Robetta was selected
and further subjected to energy minimization using the YASARA energy minimization
server. Previous studies also reported that the Robetta server provides reliable 3D structure
prediction [41,67]. The refined 3D structure of the envelope protein showed a drastic
change in ERRAT score from 89.85 to 94.19, which represents that the refined model is
of good quality [68,69] and is further considered for drug designing. The active site of
amino acids Ile48, His49, Gln50, Pro194, Val215, Val273, Ala274, and Gly286 with coordinates
15.707, 0.627, and 11.566 of the envelope protein was determined by the COACH-D server;
it also predicted the tentative ligand binding at the BOG pocket based on the PDB template
1OEK.B of the dengue virus envelope protein. A similar BOG pocket was identified in the
crystallographic structure of the dengue virus envelope protein bound by the inhibitor
BOG between the domains 1 and 2 [29,70]. This pocket plays a vital role in conformational
changes between immature and mature flavivirus, including domain orientation of the en-
velope protein. This suggests the binging of ligands at the BOG pocket could inhibit a viral
life cycle, leading to the development of antiviral compounds [71–74]. By considering this,
BOG was used as a template for ligand design by different approaches. Three methods, de
novo designing by eLea3D, pharmacophore screening by Pharmit, and ligand screening by
PubChem database generated 50, 9243 (7374 from the COCONUT database and 1869 from
the Zinc database), and 3808 compounds, respectively. Out of all the identified compounds,
virtual screening of 146 compounds (15 from de novo designing, 98 from pharmacophore
screening, and 33 from ligand screening) by PyRx was carried out. Based on the binding
energy value, 12 compounds were selected. The 12 chosen compounds were subjected to
toxicity analysis using ProTox II, and compounds 16178612 (L1), CNP0247967 (L3), SA8(L4),
ZINC0001000052673(L7), CNP0097629.2(L8), and CNP0247704.2 (L10) were chosen for
further analysis in the context of ADME by the SwissADME server. The compound L3
showed mild cytotoxicity and good oral availability, with an LD50 of 10,000 belonging to
class 6. The L3 drug can be prepared with a concentration that can induce antiviral activity
without inducing cytotoxicity [75]. Based on the ADME property, five compounds, namely
L3, L4, L7, L8, and L10, were selected for geometry optimization. Geometry optimization
of the chosen compounds was carried out by DFT based on Orca 4.2.1. The FMO-based
HOMO-LUMO energy gap was also calculated to evaluate the chemical reactivity of the
compounds. The energy gap for all the compounds was higher than 3.50 eV, indicating
the high kinetic stability and low reactivity corresponding to the bioactivity of the com-
pounds [76]. The geometry-optimized compounds were redocked using AutoDock 4.0 with
an envelope protein, which decreased the docking energy of compound CNP0247967 (L3)
from −7.26 to −7.58 kcal/mol, that of SA8 (L4) from −7.82 to −8.91 kcal/mol, and for the
remaining compounds showed an increase in binding affinity [77,78].

Molecular docking must be validated with MD simulation for at least 100 ns to find
the stability of the protein–ligand complex for in silico analysis [79–81]. The geometry-
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optimized redocking complex structure for the envelope protein–L3 and L4 complex un-
derwent MD simulation to assess the stability of the compounds within the protein’s
binding site. The 200 ns simulation trajectories, including RMSD, RMSF, protein–ligand
contact mapping, and ligand properties [79], were analyzed using Desmond 2022.4 version
software. In the current study, both the envelope protein–L3 and envelope protein–L4 com-
plexes exhibited stable conformations. However, ligands L3 and L4 in the protein–ligand
complexes attempted to explore different binding poses within the binding pocket while
maintaining stability during the 200 ns simulation. Similar results, where ligands sought
stable binding sites during MD simulation, have been reported [79,82,83].

Furthermore, an analysis of the RMSF for both the protein and the ligand was con-
ducted through an all-atom MD simulation. Terminal amino acids generally exhibited
higher RMSF values compared with other residues, with the ideal values being lower than
2 Å. Amino acid residues interacting with the protein should also display RMSF values
below 2 Å. Throughout the 200 ns MD simulation, both L3 and L4 ligands maintained
significant interactions with the protein. Correlations between ligand RMSD, ligand RMSF,
and protein–ligand contacts were observed. Various ligand properties, including RMSD,
rGyr, MolSA, SASA, and PSA, were also thoroughly examined.

Furthermore, the MM-GBSA approach was employed to estimate the binding free ener-
gies of the ligand–protein complexes in MD simulation. The average binding free energy of
the envelope protein with the L3 complex was found to be lower (−85.26 ± 4.63 kcal/mol)
than that of the L4 complex (−66.60 ± 2.92 kcal/mol) by a margin of −18.66 kcal/mol.
These findings suggest that the two ligands, L3 and L4, have the potential to act as in-
hibitors for the envelope protein. However, further validation through in vitro studies [84]
is required to confirm their efficacy.

4. Materials and Methods
4.1. Materials

In this research, various resources were employed, including databases such as
UniProt, PDB, PubChem, COCONUT, and the ZINC database. Additionally, a range
of software programs were utilized to perform structural and functional analyses on the
protein. These programs include BLASTp, Clustal Omega, Swiss Model, I-Tasser, Robetta,
COACH-D, PyRx 0.8, AutoDock 4.0, ORCA 4.2.1, ChemCraft 1.8, SwissADME, Protox-II,
Open Babel, Discovery Studio 2021, and Desmond 2022.4. A workflow schema detailing
the stepwise techniques employed in this study is shown in Figure 12.

4.2. Methods
4.2.1. Sequence Retrieval and Analysis

The envelope protein sequence was obtained from the UniProt database www.uniprot.
org (accessed on 20 December 2023) in FASTA format [85]. To analyze the physicochemical
properties of the chosen protein, the ProtParam tool https://web.expasy.org/protparam
(accessed on 22 December 2023) on the ExPASy server was employed [86]. After obtain-
ing the sequence, a search for homologous sequences was conducted using the BLASTp
tool https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 30 December 2023), employ-
ing NCBI’s BLASTp algorithm [87] and utilizing the PDB as the database. The top five
sequences, determined by their e-value and percentage similarity, from different viruses
were selected for further analysis in multiple sequence alignment and phylogenetic anal-
ysis, which was performed using the Clustal Omega tool [88]. The secondary structure
and transmembrane region of the envelope protein were determined by SOPMA [89] and
TMHMM 2.0 [90], respectively.

4.2.2. Homology Modeling and Structure Refinement

In the absence of a crystalline framework for the envelope protein, we predicted
its 3D structure by leveraging the I-Tasser and Robetta servers. I-Tasser employs an
iterative threading assembly simulation involving four primary stages: identification of

www.uniprot.org
www.uniprot.org
https://web.expasy.org/protparam
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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threading templates, iterative simulation of structure assembly, selection and refinement
of models, and annotation of structure-based functions [91]. The Robetta server http:
//robetta.bakerlab.org (accessed on 31 December 2023) dissects the submitted sequence
into potential domains, creating structural models through either comparative modeling or
de novo structure prediction methods [92]. To achieve the optimal conformation with the
least energy for the constructed 3D envelope protein structure, we utilized the YASARA
Energy Minimization server [93].

Figure 12. Methodology schema employed in the study for predicting inhibitors for the envelope
protein of KFDV.

4.2.3. Structure Validation

Several validation methods were employed to assess the accuracy of the predicted
structure. The initial step involved estimating the overall quality of the protein using the
ERRAT program [94]. Next, the stereochemical analysis of the protein was assessed through
a Ramachandran plot generated by the PROCHECK server [95]. The third step entailed
comparing the predicted model with existing experimental structures in the database,
which was accomplished by evaluating the QMEAN score [96] and using ProSAweb [97].
The fourth and final step involved evaluating the compatibility between the 3D structure
and the amino acids, a task carried out using VERIFY 3D [98].

http://robetta.bakerlab.org
http://robetta.bakerlab.org
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4.2.4. Binding Site/Active Site Prediction

The active site of the predicted model was determined using COACH-D. COACH-D
employs an algorithm that predicts ligand binding sites by referencing the BioLip database.
It does so through comparisons of binding-specific substructures and sequence profiles. The
results from COACH-D regarding binding sites are then ranked based on their confidence
score, known as the c-Score [99].

4.2.5. Ligand Design

Ligand design is a critical approach in computational drug design, focusing on the
identification of potential small molecules that can inhibit a specific protein. In the present
study, two distinct approaches were employed for ligand design: the structure-based
approach and the ligand-based approach. In the ligand-based approach, Pharmit and
database screening were utilized, while in the structure-based approach, eLea3D was
employed. Analogs of Octyl beta-D-glucopyranoside (BOG), with PubChem ID 62,852,
was utilized to design ligands by different approaches targeting the BOG pocket of the
envelope protein. A similar approach was carried out for defining the antivirals targeting
the BOG pocket of the envelope protein [100,101].

De Novo Design

A drug targeting the active site of the envelope protein was developed using the
e-LEA3D server, which incorporates the PLANTS docking program. During the drug
design process, molecules were designed while adhering to Lipinski’s Rule of Five as a con-
straint. This involved the implementation of a genetic algorithm with an initial population
consisting of FDA-approved drugs and a maximum population size of 50 molecules [102].

Pharmacophore Screening

The Pharmit server was employed to screen ligands from the COCONUT and Zinc
databases based on pharmacophore patterns generated by the Webina server. The phar-
macophore model was developed using the Pharmit server http://pharmit.csb.pitt.edu
(accessed on 16 January 2024). The pharmacophore features were derived from the COACH-
D complex of the envelope protein with the Octyl beta-D-glucopyranoside inhibitor. Subse-
quently, the COCONUT database (comprising 8,739,148 conformers) and the Zinc database
(comprising 122,276,899 conformers) were searched using this model. The hit compounds’
poses were then optimized using Pharmit’s functions. Finally, the pharmacophore-based,
optimized entries were subjected to further docking with the target protein to identify lead
compounds with the best docking scores [103].

Ligand-Based Screening

The ligand identified by the active site prediction server, Octyl beta-D-glucopyranoside,
with PubChem ID 62852, was used as a template to search for similar ligands based on
Lipinski’s rule from the PubChem database [104]. The entire PubChem database was
curated using several criteria, which included molecular weight (MW) within the range of
160 to 560; hydrogen bond (HB) acceptors and donors not exceeding 10 and 5, respectively;
the number of rotatable bonds in the range of 0 to 21; the number of atoms not exceeding
40; and hydrophobicity (log P) less than or equal to 5.

4.2.6. Virtual Screening

Virtual screening (VS) proves indispensable in identifying potential inhibitors for the
envelope protein from a vast array of ligands from the database. All drug-like compounds
resulting from various ligand design methods were amalgamated into a unified SDF file.
This SDF file was then brought into Open Babel within PyRx 0.8 [105], where the ligands
underwent further conversion into AutoDock PDBQT format. The virtual screening was
conducted in PyRx using the AutoDock Vina [44] option, employing an “exhaustiveness”
setting of 8. For defining the Vina search space, a grid box centered at x 15.707, y 0.627,

http://pharmit.csb.pitt.edu


Pharmaceuticals 2024, 17, 884 29 of 36

z 11.566, with dimensions of 34.4047 Å in the x-axis, 23.6217 Å in the y-axis, and 38.8008 Å
in the z-axis, was established. This grid was designed to encompass the active site residues
identified by COACH-D. The best pose from each ligand design approach was selected
and ranked based on their binding affinities.

4.2.7. ADMET Studies

Assessing drug-likeness and ADME-T (absorption, distribution, metabolism, and
excretion toxicity) properties is vital in drug discovery. The canonical SMILES of each
molecule served as the input for ADME predictions through the SwissADME server [106].
Furthermore, the ProTox II web server [107] predicted various toxicity endpoints, including
hepatotoxicity, carcinogenicity, oral toxicity, mutagenicity, and cytotoxicity. The chemicals
were categorized into six toxicity classes (1–6) by ProTox II, where class 1 represents the
highest level of risk (LD50 < 5), while class 6 denotes compounds that are non-toxic
(LD50 > 5000). The top 12 compounds with the most favorable binding energies from the
PyRx results were selected to conduct subsequent ADMET investigations.

4.2.8. Geometry Optimization of the Selected Ligand Compounds

Geometric optimization calculations were conducted using the density functional
theory (DFT) method. The quantum-mechanical wave function contains comprehensive
information about the system under investigation. Optimization and vibration frequency
calculations were carried out using Becke’s three parameters with the Lee–Yang–Parr
functional (B3LYP) level of theory with the ORCA version 4.2.1 program [108]. B3LYP is a
hybrid density functional theory method that combines different types of functionals. To
facilitate these calculations, ORCA input files were generated using AVOGADRO version
1.2.0 software [109]. Frequency calculations were performed to obtain thermodynamic
properties and to confirm that each optimization step led to an energy minimum, ensuring
the stability of the calculated molecular structures.

4.2.9. Frontier Molecular Orbital HOMO/LUMO Calculation

Within electrophilic–nucleophilic processes, the movement of electrons transpires from
the HOMO to the LUMO, establishing an energy differential known as the HOMO-LUMO
gap. This gap holds considerable significance in organic chemistry, furnishing valuable
perspectives into the photochemistry, potency, and resilience of organic transition metal
compounds. To gauge the susceptibility of atoms to electrophilic and nucleophilic interac-
tions, the HOMO and LUMO energies were computed and visually represented using the
ChemCraft tool [110]. The energy difference between these two orbitals, designated as the
HOMO-LUMO gap, was ascertained by employing a specific equation. This computation
offers insightful information regarding the reactivity and chemical characteristics of the
scrutinized molecules.

4.2.10. Molecular Docking

Molecular docking is a critical technique in computational drug design, assessing lig-
and interactions with a protein’s active site, including binding energy, free energy, and com-
plex stability. Ligands chosen after ADMET screening underwent geometry optimization
and were docked with the envelope protein using the MGL 1.5.7 tool, employing AutoDock
4.0 [111,112]. In docking simulations, polar hydrogen atoms and Kollman charges were
added to the receptor and ligands, respectively. The grid for docking consisted of 60 points
in each dimension, with dimensions x 15.707 Å, y 0.627 Å, and z 11.566 Å. Default pa-
rameters of Auto Grid 4.0 calculated affinity maps, desolvation maps, and electrostatic
maps. The Lamarckian genetic algorithm (LGA) explored ligand conformations, running
for 50 sets with a maximum of 25,000,000 energy evaluations per run and a maximum of
27,000 generations. Mutation and crossover rates were set at 0.02 and 0.8, respectively, with
a crossover mode of 2. The Cauchy distribution’s mean and variance for gene mutation
were 0 and 1, respectively. The number of generations for selecting the worst individual
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was set to 10. Docking was performed before and after geometric optimization to observe
ligand binding effects on protein affinity. BIOVIA Discovery Studio 2021 software (BIOVIA,
San Diego, CA, USA) [113] elucidated binding interactions between the envelope protein
and ligands, aiding in understanding the protein–ligand interactions and binding modes.

4.2.11. Molecular Simulation Studies for Protein and Complex

Desmond 2022.4 was utilized to conduct MD simulation experiments on the envelope
protein and the envelope protein in complex with L3 and L4 [114]. At a temperature of
27 ◦C, separate simulations were carried out utilizing the OPLS-2005 force field [115–117]
and an explicit solvent model comprising SPC water molecules contained within a periodic
boundary salvation box of 10 Å × 10 Å × 10 Å [118]. To achieve a charge of 0.15 M
neutralization, Na+ ions were introduced, accompanied by NaCl solutions, to simulate a
physiological environment. To commence, the system was equilibrated for 10 nanoseconds
utilizing an NVT ensemble to achieve stability of the protein–ligand complexes. A 12 ns
brief equilibration and minimization run using an NPT ensemble was executed. The
NPT ensemble was established using the Nosé–Hoover chain coupling scheme [119] with
a constant pressure of 1 bar throughout all simulations, a variable temperature, and a
relaxation time of 1.0 ps. For pressure regulation, the Martyna–Tuckerman–Klein chain
coupling scheme [120] barostat method was implemented with a relaxation time of 2 ps
and a time step of 2 fs. The Ewald method for long-range electrostatic interactions was
implemented using the particle mesh [121], maintaining the coulomb interaction radius
at 9 Å. The RESPA integrator was employed to compute bonded forces, utilizing a time
step of 2 fs for each trajectory. The ultimate production run was 200 nanoseconds when
conducted. To monitor the stability of the MD simulation, parameters including RMSD,
rRg, and RMSF were calculated.

4.2.12. Binding Free Energy Analysis of L3 and L4 Complex

The molecular mechanics combined with the generalized born surface area (MM–GBSA)
approach was employed to calculate the binding free energies of the ligand–protein com-
plexes. Specifically, the Prime MM–GBSA binding free energy was determined using a
Python script named “thermal mmgbsa.py”. The calculations were conducted on the last
50 frames of the simulation trajectory with a 1-step sampling size. The binding free energy
of Prime MM–GBSA was expressed in kcal/mol, utilizing the principle of additivity. This
methodology considered various individual energy components, encompassing Coulombic
interactions, covalent bonds, hydrogen bonding, van der Waals forces, self-contact energy,
lipophilic interactions, and solvation of the protein. These diverse energy contributions
were amalgamated to yield the overall binding free energy, furnishing valuable insights
into the stability and strength of the ligand–protein interactions [122].

5. Conclusions

To the best of our knowledge, this study offers the first comprehensive computational
approach to address the pressing issue of developing effective antiviral drugs against the
Kyasanur Forest Disease virus (KFDV) envelope protein. An integrated computational
approach involving molecular modeling, ligand designing, virtual screening, molecular
docking, ADMET studies, QM studies, MD simulation, and MM–GBSA techniques re-
vealed two promising compounds, L4 (SA28) and L3 (CNP0247967), with strong binding
affinity to the envelope protein and with free energy values of −66.60 ± 2.92 kcal/mol and
−85.26 ± 26 kcal/mol, respectively. These compounds outperformed BOG inhibitors as
determined by COACH-D in terms of binding energy. This research represents a signifi-
cant step in the development of effective antiviral drugs for KFDV targeting the envelope
protein by a computational approach. Further validation through in vitro assays would
complement the findings of the present in silico investigations.
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