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Abstract: Environmental pollution of phosphorus is becoming increasingly concerning, and phos-
phate removal from water has become an important issue for controlling eutrophication. Modified
metal–organic framework (MOF) materials, such as UiO-66-NH2, are promising adsorbents for
phosphate removal in aquatic environments due to their high specific surface area, high porosity,
and open active metal sites. In this study, a millimeter-sized alginate/UiO-66-NH2 composite hy-
drogel modified by polyethyleneimine (UiO-66-NH2/SA@PEI) was prepared. The entrapping of
UiO-66-NH2 in the alginate microspheres and its modification with PEI facilitate easy separation
in addition to enhanced adsorption properties. The materials were characterized by SEM, FTIR,
XRD, and BET. Static, dynamic, and cyclic adsorption experiments were conducted under different
pH, temperature, adsorbent dosage, and initial concentration conditions to assess the phosphate
adsorption ability of UiO-66-NH2/SA@PEI. Under optimal conditions of 65 ◦C and pH = 2, 0.05 g
UiO-66-NH2/SA@PEI adsorbed 68.75 mg/g, and the adsorption rate remained at 99% after five
cycles of UiO-66-NH2/SA@PEI. These results suggest that UiO-66-NH2/SA@PEI composite materials
can be used as an effective adsorbent for phosphate removal from wastewater.

Keywords: sodium alginate; UiO-66-NH2; phosphate removal; porous nanocomposite

1. Introduction

Phosphorus pollution resulting from the extensive production and mismanagement of
pesticides, detergents, and phosphate fertilizers is becoming more and more serious [1].
Phosphorus manifests in water bodies in multiple forms, such as phosphates, polyphos-
phates, and organic phosphorus. Excessive phosphate in water can cause eutrophication,
leading to the growth of harmful blue-green algae, water quality decline, abnormal death
of fish/invertebrates, and ultimately disturbing the local ecological balance, causing harm
to the ecological environment [2]. The removal of phosphate from water bodies is essential
to enhance the ecological environment [3].

Various methods, such as precipitation, adsorption, ion exchange, and biological
processes have been utilized to remediate phosphate pollution [4–8]. Phosphorus, a non-
renewable resource, is significant not only for preventing phosphorus pollution but also for
recycling phosphorus resources from wastewater [9]. The adsorption method facilitates
the dual purpose of removing contaminants from water bodies and converting them into
fertilizer for agricultural use. The development of efficient adsorbents and techniques
for phosphate removal holds significant practical importance for the protection of water
resources and the environment [10].

In the adsorption of phosphate in wastewater, the oxides and hydroxides of trivalent
and tetravalent metals like Fe, Al, Mn, La, Ce, and Zr demonstrate rapid kinetics and supe-
rior adsorption capacity [11]. Metal–organic frameworks (MOFs) have recently attracted
significant attention for their potential in phosphate removal applications. With high sur-
face areas, controllable pore dimensions, substantial porosity, unique architecture, diverse
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functional groups, and stability under varying temperature and pH conditions, MOFs are
well suited as adsorbents for phosphate recovery compared to conventional oxides and
hydroxides [12]. In fact, MOFs have exhibited enhanced phosphate adsorption capabilities
when constructed using appropriate metal and organic ligands, which are attributed to
their superior specific surface areas and stability [13–17]. Shams et al. developed a novel
hybrid adsorbent, cubic zeolitic imidazolate framework-8 (ZIF-8), and assessed its efficacy
in removing phosphate from aqueous solutions, revealing a notable adsorption capacity
of 38.22 mg/g [18]. Zirconium-based MOFs, compared to other metals, exhibit ordered
porous structures, diverse functional groups, excellent ion exchange/adsorption capabili-
ties, and outstanding water stability [19–23]. Consequently, they are being investigated for
phosphate adsorption and removal in water.

However, the particle agglomeration of MOFs often causes a lack of full contact
between the active adsorption sites and the adsorbate, ultimately limiting the adsorption
efficiency of the materials [24]. MOFs typically exist in powder form, posing challenges for
their recyclability after being utilized for phosphate adsorption [25,26]. Sodium alginate
(SA), a natural and cheap polysaccharide polymer, has a strong ability to bond with
multivalent metal ions in aqueous solutions, and it forms a stable hydrogel by cross-
linking [27–30]. In this study, UiO-66-NH2 nanoparticles were compounded with sodium
alginate, gelled with Ca2+, surface grafted with polyethyleneimine, and subsequently
exchanged with Zr4+ to produce UiO-66-NH2/SA@PEI composites. The impact of pH,
temperature, adsorbent dosage, and initial concentration on phosphate removal using the
composite material was systematically investigated through batch experiments, with a
discussion on its static/dynamic adsorption and regeneration performance.

2. Materials and Methods
2.1. Chemicals

Sodium alginate, zirconium oxychloride octahydrate (99%), polyethylene imine (PEI,
MW = 10,000, 99%), glacial acetic acid (99.5%), N, N-dimethylformamide (99.5%), zirconium
chloride (98%), ammonium molybdate (99.8%), potassium antimony tartrate hemihydrate
(98%), and potassium dihydrogen phosphate (99.5%) were purchased from Aladdin, Shang-
hai, China; anhydrous calcium chloride was obtained from Xilong Chemical, Shantou,
China; 2-Amino para benzyl dimethyl (98%) and L-ascorbic acid (>99.0%) were acquired
from Macklin, Shanghai, China; sulfuric acid and hydrochloric acid were purchased from
Chuandong Chemical, Chongqing, China; and sodium hydroxide (AR) was obtained from
Chengdu Jinshan Chemical Reagent Company (Chengdu, China). Deionized water (DW)
was produced by an ultra-pure water instrument.

2.2. Synthesis of UiO-66-NH2/SA@PEI

UiO-66-NH2 nanoparticles were prepared according to the previous literature [31]. To
synthesize UiO-66-NH2/SA, 1.5 g of UiO-66-NH2 was dispersed in 50 mL of water, followed
by the addition of 1 g of sodium alginate after ultrasonication. The resulting mixture was
heated at 100 ◦C in a water bath and stirred for 12 h to form a viscous suspension. This
suspension was then slowly added dropwise into a 5% (w/v) CaCl2 solution and allowed
to react for 12 h with gentle stirring to form hydrogel beads. Subsequently, the beads
underwent three water washes to remove residual CaCl2, followed by immersion in a 2%
polyethyleneimine 10000 (PEI-10000) solution at 50 ◦C for 1 h, and then rinsed with water.
Finally, the hydrogel beads were immersed in a 50 mL ZrOCl2 aqueous solution (5% wt)
for 12 h to displace the calcium ions within the beads, followed by three water washes and
freeze-drying for preservation.

2.3. Adsorption of Phosphate by UiO-66-NH2/SA@PEI

The content of phosphate in the solution was determined by molybdenum antimony
anti-spectrophotometry. An appropriate amount of UiO-66-NH2/SA@PEI was added
to 25 mL of a phosphate solution whose pH had been adjusted with NaOH and HCl.
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Following this, an adsorption experiment was conducted at a predetermined temperature.
Subsequently, the adsorption capacity of UiO-66-NH2/SA@PEI could be calculated with
Formulas (1) and (2).

Qe =
(C0 − Ce)·V

M
(1)

Removal rate % =
C0 − Ct

C0
× 100% (2)

Qe is the equilibrium adsorption capacity of UiO-66-NH2/SA@PEI, mg/g; C0 is the
initial concentration of phosphate solution, mg/L; Ce is the concentration of phosphate
solution at equilibrium, mg/L; V is the solution volume, mL; and M is the mass of the
adsorbent, g.

For recycling adsorption, UiO-66-NH2/SA@PEI was immersed in a 0.1 M NaOH
solution for 30 min and then washed with water for further adsorption experiments.

A dynamic adsorption system of UiO-66-NH2/SA@PEI was designed with a peristaltic
pump and glass beads, allowing the liquid to enter and exit the column from the bottom.
The adsorption column had an inner diameter of 1 cm and a length of 20 cm, with the
adsorbent positioned in the middle and glass beads filling the top and bottom. The
adsorption efficiency of the UiO-66-NH2/SA@PEI sample was studied under different
concentrations of phosphate solutions and peristaltic pump flow rates.

2.4. Characterizations

The morphology of the adsorbent was observed by scanning electron microscopy
(SEM) using an FEI-SEM system (FEI Helios Nanolab 600i, Hillsboro, OR, USA) operating
at 15 kV. Before measurement, all samples were sprayed with a thin gold film. Fourier
transform infrared spectroscopy (FTIR) was recorded on a Perkin–Elmer Spectrum GX-
spectrophotometer (Waltham, MA, USA) with a spectral resolution of 1 cm−1 and a scan
number of 32. X-ray diffraction (XRD) patterns were recorded using a Philips diffractometer
with a Geiger counter (Eindhoven, The Netherlands). The X-ray tube was operated at 40 kV
and 30 mA (Cu Kα radiation with Ni filter, λ = 1.5406 Å) with a scan speed of 1◦/min.
Nitrogen adsorption–desorption measurements (ASAP 2046, Micromeritics, Norcross, GA,
USA) were performed at 77 K to assess their Brunauer–Emmett Teller (BET) surface areas.
UV–visible spectra were recorded using a UV-2700 spectrophotometer (Shimadzu, Kyoto,
Japan) with 1 cm quartz cuvettes.

3. Results
3.1. Characterization

The morphology of the material was analyzed using a scanning electron microscope
before and after the phosphate adsorption. The results revealed no significant differences in
size or morphology and only a slight increase in surface roughness (Figure 1a,b). Examina-
tion of the cross-section images showed that the structure of the adsorbent remained intact
after the phosphate adsorption (Figure 1c,d). Furthermore, a close connection between the
UiO-66-NH2 nanoparticles and the SA network structure was observed.

Figure 2 shows the FT-IR spectra of the SA, UiO-66-NH2, SA@PEI and UiO-66-
NH2/SA@PE materials before and after the adsorption. It can be observed that the stretch-
ing vibration peak of -OH in SA appeared at 3430 cm−1, while the stretching vibration
of -CH2 occurred at 2930 cm−1. Furthermore, the absorption peaks at 1638 cm−1 and
1410 cm−1 were attributed to the stretching vibration of -COOH [32]. Additionally, the
absorption peak at 1031 cm−1 was caused by the stretching vibration of -COC. After the
PEI was grafted, the peak position at 3000–3500 cm−1 shifted to the right, and the peak
value was enhanced, indicating an increase in the NH2 groups [33]. The FTIR spectrum of
UiO-66-NH2/SA@PEI displayed the characteristic peaks of UiO-66-NH2 at various posi-
tions, which suggests that UiO-66-NH2/SA was successfully compounded. A comparison
between Figures 2c and 2d reveals a significant enhancement of the peak at 1047 cm−1,
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with the absorption peak region for the P-O stretching vibrations located between 1000 and
1100 cm−1, indicating successful phosphate adsorption [34].
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Figure 1. The SEM images of UiO-66-NH2/SA@PEI before (a,c) and after the phosphate adsorption (b,d).
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Figure 2. FTIR spectra of (a) SA, (b) SA@PEI, (c,d) UiO-66-NH2/SA@PEI before and after adsorption,
(e) UiO-66-NH2.
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The adsorption–desorption isotherms and pore size distribution curves of UiO-66-
NH2 and UiO-66-NH2/SA@PEI are shown in Figure 3a,b. The N2 adsorption–desorption
isotherm of UiO-66-NH2 exhibited a Type II curve. Upon composite formation with
SA@PEI, UiO-66-NH2/SA@PEI displayed a distinct hysteresis loop in the P/P0 range of
0.6–1.0. The specific surface area decreased from 1062.2 m2/g to 325.1 m2/g, while the pore
volume reduced from 0.5 cm3/g to 0.3 cm3/g. Furthermore, the average pore diameter
increased from 1.9 nm to 3.7 nm, facilitating enhanced diffusion of phosphates within the
material and providing additional adsorption sites for potential applications.

Figure 4 illustrates that UiO-66-NH2 exhibited strong characteristic peaks at 7.35◦,
8.45◦, and 25.7◦, while SA@PEI had weaker peaks at 13.63◦ and 21.31◦ [35]. The spectrum
for UiO-66-NH2/SA@PEI revealed that the characteristic peaks of UiO-66-NH2 remained
intact, indicating that the combination of sodium alginate did not change the crystal
structure of UiO-66-NH2.
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3.2. The Adsorption Capacity of UiO-66-NH2/SA@PEI under Different Conditions

In order to determine the phosphate adsorption capacity of UiO-66-NH2/SA@PEI from
water, experiments were conducted under various conditions, including pH, temperature,
adsorbent quantity, and initial phosphate concentration. To investigate the impact of
pH on adsorption capacity, the pH was varied from 1 to 9 using 0.05 g of adsorbent, an
initial phosphate concentration of 100 mg/L, a volume of 12.5 mL, and an adsorption
temperature of 25 ◦C. Figure 5a illustrates the consistently high adsorption capacity of
UiO-66-NH2/SA@PEI for phosphate across the pH range of 1–9. The positively charged
surface of UiO-66-NH2 at lower pH levels enhanced its affinity for negatively charged
H2PO4

−/HPO4
2−, while the protonation of -NH2 to -NH3

+ further strengthened the
electrostatic adsorption of phosphate ions.
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Figure 5. The adsorption capacity and removal rate of the phosphate adsorption by UiO-66-
NH2/SA@PEI under different conditions: (a) pH, (b) temperature, (c) dosage of adsorbent (d) initial
phosphate concentration.

Adsorption experiments were conducted at temperatures of 25 ◦C, 35 ◦C, 45 ◦C, 55 ◦C,
and 65 ◦C using a dosage of 0.05 g of UiO-66-NH2/SA@PEI, a phosphate concentration
of 100 mg/L, a pH of 2, and a volume of 12.5 mL. Figure 5b depicts the relationship
between the adsorption capacity, removal rate, and temperature of phosphate adsorbed
by UiO-66-NH2/SA@PEI. The results indicated a direct correlation between temperature
and the adsorption capacity of phosphate by the adsorbent, increasing from 39.8 mg/g to
51.3 mg/g. Additionally, the removal rate rose from 42.4% to 55.1%. These findings suggest
that the adsorption of phosphate by UiO-66-NH2/SA@PEI is an endothermic process, as
higher temperatures enhanced the adsorption capacity.
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The effect of varying amounts of adsorbent on phosphate removal was examined
using an initial phosphate solution of 100 mg/L, a 25 mL volume, a pH of 2, and a
temperature of 65 ◦C. Different dosages of adsorbent—0.0055 g, 0.01 g, 0.0265 g, 0.05 g,
0.1 g, 0.15 g, and 0.2 g—were employed in the investigation. As shown in Figure 5c, upon
increasing the dosage of UiO-66-NH2/SA@PEI, the adsorption capacity of the adsorbent
reached 68.75 mg/g at a dosage of 0.0055 g. Increasing the dosage of the adsorbent led to
an increase in adsorption sites; however, the phosphate content in the system remained
constant, resulting in internal competition within the adsorbent. This competition led to
a decrease in the amount of phosphate adsorbed per unit of adsorbent, hence reducing
the adsorption capacity. The removal efficiency of UiO-66-NH2/SA@PEI for phosphorus
initially increased rapidly, then plateaued. At a dosage of 0.1 g, the removal efficiency of
UiO-66-NH2/SA@PEI in the adsorption system reached 99.76%. Beyond a dosage of 0.1 g,
the removal efficiency remained relatively constant, indicating an excess of adsorption sites
in the adsorbent compared to the phosphate content in the system.

An investigation into the effect of initial concentration on the removal of P using UiO-
66-NH2/SA@PEI (a dosage of 0.05 g, a pH of 2, a volume of 12.5 mL, and an adsorption
temperature of 65 ◦C) revealed that the adsorption amount increased with an increase in
the initial concentration (Figure 5d). However, the rate of increase in the adsorption amount
decreased with a higher initial concentration, resulting in a decrease in the removal rate of
the adsorbent [36]. Higher initial concentrations led to an increase in adsorption capacity,
with the rate of increase gradually decreasing. However, higher initial concentrations also
reduced the removal efficiency of the adsorbent. The high initial phosphate concentrations
facilitated the binding of phosphate ions to the adsorption sites on UiO-66-NH2/SA@PEI.
As the number of adsorption sites was limited once saturation was reached, no further ad-
sorption occurred. Consequently, higher initial concentrations resulted in lower phosphate
removal rates.

3.3. Adsorption Kinetics of Phosphate by UiO-66-NH2/SA@PEI

To investigate the adsorption kinetics of phosphate on UiO-66-NH2/SA@PEI, kinetic
data were fitted using pseudo-first-order (3), pseudo-second-order (4), and Elovich (5)
models with varying initial phosphate concentrations.

Qt = Qe

(
1 − e−k1t

)
(3)

Qt = k2Q2
e t/(1 + k2Qet) (4)

Qt = [ln(αβ) + ln t]/β (5)

Qt is the adsorption amount of UiO-66-NH2/SA@PEI at time t, mg-P/g; Qe is the
adsorption amount at adsorption equilibrium, mg-P/g; k is the adsorption constant of
each model, k1-h−1, k2-g/(mg·h); α is the adsorption rate constant, mg/(mg·h); and β
is the adsorbent surface coverage and chemical adsorption activation of energy-related
parameters, g/mg.

The curve fitting for the adsorption kinetic data of UiO-66-NH2/SA@PEI on phosphate
is illustrated in Figure 6, with corresponding fitting parameters detailed in Table 1. The
correlation coefficients of the pseudo-first-order and pseudo-second-order kinetic models
at initial concentrations of 20 mg/L, 50 mg/L, and 100 mg/L exceeded 0.99, indicating
a strong correlation. Notably, the pseudo-second-order kinetic model showed a higher
coefficient of determination compared to the pseudo-first-order kinetic model, suggesting
that the adsorption process was primarily governed by chemical adsorption. Phosphate
was effectively adsorbed onto the materials through a chemical reaction, also as evidenced
by the emergence of a peak at 1047 cm−1, corresponding to the P-O stretching vibration
peak following phosphate adsorption in the FTIR spectrum (Figure 2d).
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Table 1. Fitting parameters of the kinetic model of UiO-66-NH2/SA@PEI for phosphate adsorption.

Kinetic Model
Initial Concentration of Phosphate Solution (mg/L)

20 50 100

Pseudo-first-order model
k1 0.03877 0.05502 0.04844
Qe 19.7897 33.7230 49.9256
R2 0.9970 0.9959 0.9971

Quasi-secondary model
k2 0.00117 0.0012 0.00066
Qe 27.4322 43.6677 66.1599
R2 0.9978 0.9973 0.9993

Elovich model
α 2.6000 6.2009 8.1156
β 0.2031 0.1160 0.0787

R2 0.9472 0.9701 0.9654

3.4. The Adsorption Isotherm of Phosphate by UiO-66-NH2/SA@PEI

The adsorption isotherm, illustrating the equilibrium concentration (Ce) and adsorbed
amount (Qe) at a given temperature and pH, was analyzed using the Langmuir (6), Fre-
undlich (7), Temkin (8), and Dubinin–Radushkevich (DR) (9) models. The formulas, as-
sociated parameters, and fitting curves for these models are presented in Table 2 and
Figure 7.

Qe = QmKLCe/(1 + KLCe) (6)

Qe = KFC1/nF
e (7)

Qe = B ln KT + B ln Ce (8)

Qe = Qmexp

{
−KD

[
RTln

(
1 +

1
Ce

)]2
}

(9)

Qe is the adsorption amount at adsorption equilibrium, mg-P/g; K is the adsorption
constant of each model, KL-L/mg, KF-mg/g, KT-L/mg, and KD-mol2/kJ2; Qm is the theo-
retical maximum adsorption capacity, mg-P/g; nF is the Freundlich model constant, which
is related to the adsorption strength; B is the Temkin model constant related to the heat
of adsorption, kJ/mol; Ce is the concentration at equilibrium, mg/L; R is the ideal gas
constant, 8.314 kJ/mol/K; and T is the absolute temperature, K.
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Table 2. Adsorption isotherm model fitting parameters of UiO-66-NH2/SA@PEI.

Langmuir model Qm KL R2

96.7882 0.0275 0.9680

Freundlich model
KF 1/nF R2

9.3226 0.4431 0.9901

Temkin model
KT B R2

0.4552 18.0698 0.9470

D–R model
Qm KD R2

70.3320 2.3737×10−5 0.8157
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As shown in Table 2 and Figure 7, the adsorption isotherms of UiO-66-NH2/SA@PEI
were analyzed using the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich mod-
els. The correlation coefficients (R2) for the Langmuir, Freundlich, and Temkin models were
all above 0.9, indicating strong correlations [37]. However, the Dubinin–Radushkevich
model had an R2 of only 0.8157, making it unsuitable for data fitting. The Langmuir
model predicted a maximum theoretical adsorption capacity (Qm) of 96.8 mg/g for P on
UiO-66-NH2/SA@PEI. The Freundlich model exhibited the highest correlation coefficient
(R2 = 0.9901) compared to the Langmuir (R2 = 0.9680) and Temkin (R2 = 0.94701) models,



Nanomaterials 2024, 14, 1176 10 of 15

suggesting non-uniform surface adsorption. The adsorption data demonstrated a good fit
with the Freundlich model, showing a 1/nF value of 0.4431, which is below 0.5. This value
indicates the presence of chemical adsorption between phosphate and the adsorbent, high-
lighting the ease of phosphate adsorption. The Temkin model showed a strong correlation,
implying a significant role of electrostatic forces in the adsorption process.

3.5. Cyclic Adsorption Performance of UiO-66-NH2/SA@PEI

An experiment was conducted to assess the cyclic adsorption capacity of UiO-66-
NH2/SA@PEI following regeneration, utilizing NaOH for desorption. Re-adsorption took
place under consistent initial phosphate concentration, adsorption temperature, and pH
conditions. After five cycles, the removal rate still reached 99%, indicating that UiO-66-
NH2/SA@PEI has a good cyclic adsorption capacity as a phosphate adsorbent (Figure 8).
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3.6. Dynamic Adsorption Capacity

To further examine the dynamic adsorption capacity of UiO-66-NH2/SA@PEI, exper-
iments were conducted at different initial concentrations and flow rates. As depicted in
Figure 9, a phosphate solution was delivered into a fixed-bed column containing UiO-66-
NH2/SA@PEI, using a peristaltic pump for dynamic adsorption under various conditions.

The Thomas model (10) was used to fit the results of the experiments. The removal
rate of phosphate was calculated by Formula (11).

Ct

C0
=

1

1 + e
KT Qm

v −KTC0t
(10)

R % =
C0vte/1000

v
1000

∫ te
0 (C0 − Ct)dt

× 100% (11)

C0 is the initial concentration of the inlet water, mg-P/L; Ct is the outlet solution
concentration at time t, mg-P/L; KT is the Thomas model constant, mL/(min·mg); v is the
flow rate of the solution, mL/min; Q is the adsorption capacity of the adsorbent, mg-P/g;
m is the mass of the adsorbent, g; R (%) is the removal rate; and the depletion point te (min)
of the adsorption column is the time point when Ct/C0 = 95%.
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The Thomas model was used to fit the adsorption data of UiO-66-NH2/SA@PEI with
a dosage of 2 g, initial concentrations of 50 mg/L and 100 mg/L and water inlet rates of
1 mL/min and 2 mL/min, respectively. The results showed that the correlation coefficient
R2 fitted by the model was greater than 0.95, indicating a strong correlation (Table 3,
Figure 10). According to the Thomas model, it can be seen that as the flow rate increased,
the adsorption capacity decreased and the rate constant (KT) increased, suggesting that
a lower flow rate is more conducive to adsorption. This is because a lower flow rate will
increase the contact time between the adsorbent and the solution, thus improving the
adsorption effect and increasing the rate constant. Additionally, as the initial concentration
increased, the adsorption capacity decreased and the rate constant increased. This is
because a higher concentration increases the concentration difference between the liquid
and the adsorbent, thus increasing the driving force transmitted to it. At the same time, the
high concentration occupies the adsorption sites faster, resulting in a decrease in the rate
constant and a decrease in the te.

Table 3. Thomas model for dynamic adsorption capacity of UiO-66-NH2/SA@PEI under differ-
ent conditions.

C0 v m te R
Thomas Model

KT Q R2

50 1 2 291 29.19 0.2531 1.4594 0.9951
50 2 2 182 26.54 0.3830 1.3494 0.9873

100 2 2 89 23.79 0.4622 1.1422 0.9896
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3.7. Phosphate Adsorption Mechanism

The adsorption mechanism of UiO-66-NH2/SA@PEI involves numerous metal sites,
with Zr present in the form of Zr6O4(OH)4 carrying a positive charge. This allows for
electrostatic interactions with negatively charged phosphate ions. At low pH, the -OH
groups on Zr6O4(OH)4 are more reactive, enabling phosphate ions to adsorb by displacing
-OH groups on Zr [38]. Additionally, UiO-66-NH2/SA@PEI provides another adsorption
site through positively charged amine groups on UiO-66-NH2 and PEI, which interact
electrostatically with phosphate ions for adsorption [12]. In UiO-66-NH2/SA@PEI material,
the predominant adsorption sites exposed to the solvent are zirconium metal and amino
groups. The presence of water is essential for the adsorption process. When the adsorbent
input is equal, environments rich in water facilitate full accessibility of the adsorption sites
to the solvent, thereby enhancing the adsorption capacities and accelerating saturation
attainment [39].

The composite porous structure of UiO-66-NH2/SA@PEI enhances phosphate mass
transfer and diffusion within its pores, thereby increasing adsorption capacity on the
UiO-66-NH2 surface. Despite not having the highest specific surface area, the UiO-66-
NH2/SA@PEI prepared in this study exhibited superior adsorption capacity due to its
porosity and improved particle dispersion, resulting in a greater number of available
adsorption sites, as illustrated in Table 4.

Table 4. The phosphate adsorption capacities with different porous materials.

Materials Specific Surface Area
(m2/g)

Pore Size
(nm)

Adsorption Capacity
(mg/g) Ref.

UiO-66 990 —— 27.70
[39]UiO-66-NH2 815 —— 30.00

MFC@UiO-66 —— —— 7.83 [40]
Mg-doped UiO-66-NH2 397 1.96 68.00 [41]
Ce-doping UiO-66-NH2 557.7 1.96 69.10 [42]
UiO-66-NH2/SA@PEI 325.1 3.7 68.75 This work

4. Conclusions

A UiO-66-NH2/SA@PEI composite material was synthesized for phosphate adsorp-
tion. After the formation of the composite materials, the UiO-66-NH2 nanoparticles ex-
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hibited good dispersibility and a close association with the SA network. This composite
material not only protected and stabilized UiO-66-NH2 but also resolved the issue of recy-
clability inherent in UiO-66-NH2 as an adsorbent. With a high concentration of Zr metal
sites and amino active sites, the composite material demonstrated efficient adsorption
of phosphate ions in aqueous solutions. Under optimal conditions of 65 ◦C and pH = 2,
0.05 g UiO-66-NH2/SA@PEI achieved an adsorption of 68.75 mg/g, and the adsorption rate
remained at 99% after five cycles. The higher temperature favored adsorption, indicating an
endothermic reaction. Data fitting revealed that the pseudo-second-order and Freundlich
models best matched the experimental results. The cyclic adsorption tests demonstrated
UiO-66-NH2/SA@PEI’s strong re-adsorption capability, highlighting its potential as a
phosphate adsorbent.
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